首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
We have injected human TNF, LPS, and IL-4 into the skin of baboons to examine regulation of endothelial leukocyte adhesion molecules (ELAM) in vivo and to determine which endothelial adhesion molecules correlate temporally and spatially with cytokine-induced T cell infiltration. The expression of adhesion molecules ELAM-1 (E-selectin), VCAM-1, and ICAM-1 (CD54) were quantified by immunocytochemical staining of frozen sections obtained from skin biopsies; T cell infiltration was measured by immunocytochemical staining of CD3+ T cells in serial sections. We found that injection of TNF causes late (24 to 48 h) T cell infiltration whereas injection of LPS, in doses that do not cause tissue necrosis, does not. The ability of TNF (but not LPS) to recruit T cells correlates with the ability of TNF to cause sustained endothelial cell adhesion molecule expression. Expression of VCAM-1 on post-capillary venules showed the highest degree of spatial localization with infiltrates. IL-4, although not proinflammatory by itself, can cause T cell infiltration in combination with an ineffective dose of TNF. The ability of IL-4 to augment TNF-induced inflammation best correlates with the ability of the combination of IL-4 and TNF to increase endothelial VCAM-1 expression. In contrast, IL-4 does not promote T cell infiltration or endothelial VCAM-1 expression in combination with LPS. In cytokine-injected tissues, VCAM-1 is also expressed on connective tissue cells other than endothelium, including smooth muscle and perineural cells, where it is induced by cytokines in parallel with endothelial VCAM-1. Overall, our data support the hypothesis that endothelial VCAM-1 expression contributes to T cell extravasation at sites of inflammation. Furthermore, we find that IL-4, a product a Ag-activated T cells, can interact with TNF to selectively promote VCAM-1 expression and the development of T cell-rich infiltrates, characteristic of Ag-induced inflammatory reactions.  相似文献   

2.
LPS preparations cause a variety of body temperature (T(b)) responses: monophasic fever, different phases of polyphasic fever, and hypothermia. Conventional (c) LPS preparations contain highly active lipoprotein contaminants (endotoxin proteins). Whereas LPS signals predominantly via the Toll-like receptor (TLR) 4, endotoxin proteins signal via TLR2. Several TLR2-dependent responses of immunocytes to cLPS in vitro are triggered by endotoxin proteins and not by LPS itself. We tested whether any T(b) response to cLPS from Escherichia coli 055:B5 is triggered by non-TLR4-signaling contaminants. A decontaminated (d) LPS preparation (free of endotoxin proteins) was produced by subjecting cLPS to phenol-water reextraction. The presence of non-TLR4-signaling contaminants in cLPS (and their absence in dLPS) was confirmed by showing that cLPS (but not dLPS) induced IL-1beta expression in the spleen and increased serum levels of TNF-alpha and IL-1beta of C3H/HeJ mice; these mice bear a nonfunctional TLR4. Yet, both cLPS and dLPS caused cytokine responses in C3H/HeOuJ mice; these mice bear a fully functional TLR4. We then studied the T(b) responses to cLPS and dLPS in Wistar rats preimplanted with jugular catheters. At a neutral ambient temperature (30 degrees C), a low (0.1 microg/kg iv) dose of cLPS caused a monophasic fever, whereas a moderate (10 microg/kg iv) dose produced a polyphasic fever. In the cold (20 degrees C), a high (500 microg/kg iv) dose of cLPS caused hypothermia. All T(b) responses to dLPS were identical to those of cLPS. We conclude that all known T(b) responses to LPS preparations are triggered by LPS per se and not by non-TLR4-signaling contaminants of such preparations.  相似文献   

3.
4.
The second messengers and protein kinases involved in the induction of type I plasminogen activator inhibitor (PAI-1) synthesis by various agents were evaluated in cultured bovine aortic endothelial cells. Phorbol myristate acetate (PMA) induced PAI-1 in these cells implicating the protein kinase C (PK-C) pathway. However, bradykinin, which also activates PK-C in bovine aortic endothelial cells, did not induce PAI-1. Moreover, when PK-C was down-regulated by PMA pretreatment, subsequent induction of PAI-1 by transforming growth factor beta (TGF beta) and tumor necrosis factor alpha (TNF alpha) was unaltered, and induction by lipopolysaccharide (LPS) was decreased by only 50%. LPS increased phospholipid second messengers which can activate PK-C but TGF beta and TNF alpha did not. Agents which increase cAMP, (e.g., forskolin and isobutylmethylxanthine) blocked the induction of PAI-1 synthesis by PMA, LPS, TGF beta and TNF alpha suggesting that induction may occur by lowering cAMP. This possibility seems unlikely since cAMP levels did not change in response to any of these agents. Moreover, somatostatin lowered cAMP but did not induce PAI-1. PAI-1 was not induced by treating the cells with cGMP, Na+/H+ ionophore and calcium ionophore or arachidonic acid.  相似文献   

5.
Enzymatic deacylation of LPS markedly reduces its activity in the dermal Shwartzman reaction. Inasmuch as polymorphonuclear leukocytes (PMN) are involved in the genesis of tissue injury in Shwartzman reactions, we have investigated the effects of deacylated LPS (dLPS) on PMN. Compared to LPS, dLPS was ineffectual as a stimulus of both PMN adherence and release of secondary granule enzymes, and dLPS inhibited specific LPS-induced adherence. Neither LPS nor dLPS caused release of the primary granule enzymes, myeloperoxidase, and elastase. Unlike LPS, dLPS failed to prime PMN for superoxide release when a second stimulus (FMLP, 10(-6) M was given. The mechanism of the LPS induced increase in PMN adherence was investigated, and we found that LPS significantly increased the amount of the adhesive glycoprotein CD11b on the surface of the PMN. dLPS had no effect on CD11b expression. Our results suggest that enzymatic deacylation of LPS profoundly alters its ability to stimulate PMN and deacylation of LPS by inflammatory cells in vivo might be an important mechanism limiting the toxic effects of LPS.  相似文献   

6.
In the gingival tissues of patients with periodontitis, inflammatory responses are mediated by a wide variety of genes. In our previous screening study, plasminogen activator inhibitor type 1 (PAI-1) mRNA binding protein expression was increased in gingiva from periodontitis patients. In this study, we further investigated the signaling pathway involved in PAI-1 expression induced by Porphyromonas gingivalis LPS (Pg LPS) in human gingival fibroblasts (HGF). When HGFs were treated with Pg LPS, both PAI-1 mRNA expression and PAI-1 protein were induced in a dose-dependent manner. Pg LPS induced NF-κB activation and the expressions of PAI-1 mRNA and protein were suppressed by pretreating with a NF-κB inhibitor. Pg LPS also induced ERK, p38, and JNK activation, and Pg LPS-induced PAI-1 expression was inhibited by ERK/p38/JNK inhibitor pretreatment. In conclusion, Pg LPS induced PAI-1 expression through NF-κB and MAP kinases activation in HGF.  相似文献   

7.
The aim of this study was to assay the influence of capsular polysaccharide (CPS), lipopolysaccharide (LPS) and components of B. thetaiotaomicron lipopolysaccharide--polysaccharide part (PS) and lipid part (lipid A) on the expression of adhesion molecules associated with inflammation (ICAM-1, VCAM-1, E-selectin) on the surface of vascular endothelial cells. Capsular polysaccharide was isolated by the method of Poxton and Ip (1981). Lipopolysaccharides were extracted using the hot phenol-water method (Westphal and Jann, 1965). Components of LPS were prepared by mild acid hydrolysis of lipopolysaccharide. Experiments with bacterial compounds at concentrations 10, 1, 0.1 and 0.01 (mg/ml) were performed on HMEC-1 cell line (human dermal microvascular endothelial cells). Immunoenzymatic ELISA test with mouse monoclonal antibodies against human: ICAM-1, VCAM-1 and E-selectin was applied to determine adhesion molecules. Resting HMEC-1 and E. coli O55:B5 LPS were used as controls in each experiment. Lipopolysaccharides were the strongest stimulants of endothelial adhesion molecules. Capsular polysaccharide caused the expression of three adhesion molecules, but only at the highest concentration (10 mg/ml). The stimulatory activities of LPS lipid components were much higher than the activities of polysaccharide parts. PS preparations did not reveal the property of adhesion molecule stimulation or their activities were weak. The activity of B. thetaiotaomicron cell-surface antigens in the process of adhesion molecule stimulation on vascular endothelium was lower than the activity of E. coli LPS.  相似文献   

8.
The neutrophil is of undoubted importance in lung inflammation after exposure to LPS. We have shown recently that systemic inhibition of JNK decreased neutrophil recruitment to the lung after exposure to LPS, although the mechanisms underlying this inhibition are incompletely understood. As plasminogen activator inhibitor-1 (PAI-1) accentuates cell migration, with JNK activation recently shown to up-regulate PAI-1 expression, this suggested that systemic JNK inhibition may down-regulate LPS-induced pulmonary neutrophil recruitment through a decrease in PAI-1 expression. We show in this study that exposure of mice to aerosolized LPS increased PAI-1 expression in the lung and alveolar compartment, which was decreased by pretreatment with the JNK inhibitor SP600125. Exogenous, intratracheally administered PAI-1 prevented the inhibition of pulmonary neutrophil recruitment in the setting of systemic JNK inhibition, thereby suggesting a role for PAI-1 in the JNK-mediated pathway regulating LPS-induced neutrophil recruitment. In addition, PAI-1(-/-) mice had a decrease in neutrophil recruitment to the alveolar compartment after exposure to LPS, compared with wild-type controls, further suggesting a role for PAI-1 in LPS-induced lung inflammation. An increase in the intravascular level of KC is a likely mechanism for the inhibition of pulmonary neutrophil recruitment after LPS exposure in the setting of decreased PAI-1 expression, as systemic KC levels after exposure to LPS were increased in PAI-1-deficient mice and in mice pretreated with SP600125, with augmentation of intravascular KC levels inhibiting neutrophil recruitment to the lung after exposure to LPS.  相似文献   

9.
Agents that can arrest cellular proliferation are now providing insights into mechanisms of growth factor action and how this action may be controlled. It is shown here that the macrophage activating agents tumor necrosis factor-alpha (TNF alpha), interferon-gamma (IFN gamma), and lipopolysaccharide (LPS) can maximally inhibit colony stimulating factor-1 (CSF-1)-induced, murine bone marrow-derived macrophage (BMM) DNA synthesis even when added 8-12 h after the growth factor, a period coinciding with the G1/S-phase border of the BMM cell cycle. This inhibition was independent of autocrine PGE2 production or increased cAMP levels. In order to compare the mode of action of these agents, their effects on a number of other BMM responses in the absence or presence of CSF-1 were examined. All three agents stimulated BMM protein synthesis; TNF alpha and LPS, but not IFN gamma, stimulated BMM Na+/H+ exchange and Na+,K(+)-ATPase activities, as well as c-fos mRNA levels. IFN gamma did not inhibit the CSF-1-induced Na+,K(+)-ATPase activity. TNF alpha and LPS inhibited both CSF-1-stimulated urokinase-type plasminogen activator (u-PA) mRNA levels and u-PA activity in BMM, whereas IFN gamma lowered only the u-PA activity. In contrast, LPS and IFN gamma, but not TNF alpha, inhibited CSF-1-induced BMM c-myc mRNA levels, the lack of effect of TNF alpha dissociating the inhibition of DNA synthesis and decreased c-myc mRNA expression for this cytokine. These results indicate that certain biochemical responses are common to both growth factors and inhibitors of BMM DNA synthesis and that TNF alpha, IFN gamma, and LPS, even though they all have a common action in suppressing DNA synthesis, activate multiple signaling pathways in BMM, only some of which overlap or converge.  相似文献   

10.
The alteration in the surface of endothelial cells (EC) in response to cytokines is likely to be of great importance to the regulation of cell migration and thereby to the evolution of inflammatory processes. We have generated three mAb against cytokine inducible Ag on EC. Whereas mAb 1.2B6 and 6.5B5 were found to react with ELAM-1 and ICAM-1, respectively, mAb 1.4C3 reacted with a novel molecule that showed a different pattern of expression from ELAM-1 or ICAM-1 after stimulation of EC by TNF, IL-1, or LPS. Like ELAM-1, the 1.4C3 Ag was minimally expressed on resting EC, whereas ICAM-1 was moderately expressed. After stimulation with IL-1, TNF, or LPS, ELAM-1 expression was maximal after 4 to 6 h, 1.4C3 Ag after 6 to 10 h, and ICAM-1 after 10 to 24 h. The duration of 1.4C3 expression was intermediate between ELAM-1 and ICAM-1, and was more prolonged in response to TNF than IL-1 or LPS. Whereas the expression of the three Ag showed a similar dose response to varying concentrations of IL-1 or LPS, EC required a 10-fold higher concentration of TNF for half maximal expression of ELAM-1 than for half maximal expression of 1.4C3 Ag or ICAM-1 (5 ng/ml compared to 0.5 ng/ml). Of the three Ag, only ICAM-1 was enhanced by IFN-gamma. SDS-PAGE under reducing conditions showed the 1.4C3 Ag to migrate as a single band with a relative molecular mass of approximately 95 kDa. mAb 1.4C3 adds to our understanding of the kinetics of the EC response to different cytokines and will be useful in studying the regulation of EC activation. Furthermore, the 1.4C3 molecule may have an important role in leukocyte-EC interactions.  相似文献   

11.
Fibroblasts are important effector cells having a potential role in augmenting the inflammatory responses in various diseases. In infantile diarrhea caused by enteropathogenic Escherichia coli (EPEC), the mechanism of inflammatory reactions at the mucosal site remains unknown. Although the potential involvement of fibroblasts in the pathogenesis of cryptococcus-induced diarrhea in pigs has been suggested, the precise role of lamina propria fibroblasts in the cellular pathogenesis of intestinal infection and inflammation caused by EPEC requires elucidation. Earlier we reported the lipopolysaccharide (LPS)-induced cell proliferation, and collagen synthesis and downregulation of nitric oxide in lamina propria fibroblasts. In this report, we present the profile of cytokines and adhesion molecules in the cultured and characterized human small intestinal lamina propria fibroblasts in relation to neutrophil migration and adhesion in response to lipopolysaccharide (LPS) extracted from EPEC 055:B5. Upon interaction with LPS (1-10 micrograms/ml), lamina propria fibroblasts produced a high level of proinflammatory mediators, interleukin (IL)-1alpha, IL-1beta, IL-6, IL-8, tumor necrosis factor (TNF)-alpha and cell adhesion molecules (CAM) such as intercellular cell adhesion molecule (ICAM), A-CAM, N-CAM and vitronectin in a time-dependent manner. LPS induced cell-associated IL-1alpha and IL-1beta, and IL-6, IL-8 and TNF-alpha as soluble form in the supernatant. Apart from ICAM, vitronectin, A-CAM, and N-CAM proteins were strongly induced in lamina propria fibroblasts by LPS. Adhesion of PBMC to LPS-treated lamina propria fibroblasts was ICAM-dependent. LPS-induced ICAM expression in lamina propria fibroblasts was modulated by whole blood, PBMC and neutrophils. Conditioned medium of LPS-treated lamina propria fibroblasts remarkably enhanced the neutrophil migration. The migration of neutrophils was inhibited by anti-IL-8 antibody. Co-culture of fibroblasts with neutrophils using polycarbonate membrane filters exhibited time-dependent migration of neutrophils. These findings indicate that the coordinate production of proinflammatory cytokines and adhesion molecules in lamina propria fibroblasts which do not classically belong to the immune system can influence the local inflammatory reactions at the intestinal mucosal site during bacterial infections and can influence the immune cell population residing in the lamina propria.  相似文献   

12.
Peptidylprolyl cis/trans isomerase, NIMA-interacting 1 (PIN1) modulates phospho-signaling by catalyzing rotation of the bond between a phosphorylated serine or threonine before proline in proteins. As depletion of PIN1 increased inflammatory protein expression in cultured endothelial cells treated with bacterial endotoxin (lipopolysaccharide, LPS) and interferon-γ, we hypothesized that PIN1 knockout would increase sensitivity to LPS-induced lung inflammation in mice. Mortality due to a high dose of LPS (30 mg/kg) was greater in knockout than wildtype mice. Lung myeloperoxidase activity, reflecting neutrophils, was increased to a 35% higher level in PIN1 knockout mouse lung, as compared with wildtype, after treatment with a sublethal dose of 3 mg LPS/kg, ip. Unexpectedly, plasma tumor necrosis factor-α (TNF) was approximately 50% less than in wildtype mice. Knockout mice, however, were more sensitive than wildtype to TNF-induced neutrophil accumulation. The neutrophil adhesion molecule, E-selectin, was also elevated in lungs of knockout mice treated with TNF, suggesting that PIN1 depletion increases endothelial sensitivity to TNF. Indeed, TNF induced more reactive oxygen species in cultured endothelial cells depleted of PIN1 with short hairpin RNA than in control cells. Collectively, the results indicate that while PIN1 normally facilitates TNF production in LPS-treated mice, it suppresses pulmonary and endothelial reactions to the cytokine. Tissue or cell-specific effects of PIN1 may affect the overall inflammatory response to LPS and other stimuli.  相似文献   

13.

Background

Pharmacological inhibition of endothelial arginase-II has been shown to improve endothelial nitric oxide synthase (eNOS) function and reduce atherogenesis in animal models. We investigated whether the endothelial arginase II is involved in inflammatory responses in endothelial cells.

Methods

Human endothelial cells were isolated from umbilical veins and stimulated with TNFα (10 ng/ml) for 4 hours. Endothelial expression of the inflammatory molecules i.e. vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin were assessed by immunoblotting.

Results

The induction of the expression of endothelial VCAM-1, ICAM-1 and E-selectin by TNFα was concentration-dependently reduced by incubation of the endothelial cells with the arginase inhibitor L-norvaline. However, inhibition of arginase by another arginase inhibitor S-(2-boronoethyl)-L-cysteine (BEC) had no effects. To confirm the role of arginase-II (the prominent isoform expressed in HUVECs) in the inflammatory responses, adenoviral mediated siRNA silencing of arginase-II knocked down the arginase II protein level, but did not inhibit the up-regulation of the adhesion molecules. Moreover, the inhibitory effect of L-norvaline was not reversed by the NOS inhibitor L-NAME and L-norvaline did not interfere with TNFα-induced activation of NF-κB, JNK, p38mapk, while it inhibited p70s6k (S6K1) activity. Silencing S6K1 prevented up-regulation of E-selectin, but not that of VCAM-1 or ICAM-1 induced by TNFα.

Conclusion

The arginase inhibitor L-norvaline exhibits anti-inflammatory effects independently of inhibition of arginase in human endothelial cells. The anti-inflammatory properties of L-norvaline are partially attributable to its ability to inhibit S6K1.  相似文献   

14.
15.
16.
During endometrial inflammation, bovine endometrium responds by increasing the production of pro-inflammatory mediators, such as interleukin 1 beta (IL-1β), tumor necrosis factor alpha (TNFα), and eicosanoids. The purpose of this study was to establish and characterize an in vitro model of endometrial inflammation using bovine endometrial epithelial (bEEL) and stromal (bCSC) cell lines. We evaluated the effects of the infectious agent (bacterial lipopolysaccharide; LPS) and pro-inflammatory mediators (IL-1β and TNFα) on eicosanoid biosynthesis pathway gene expression and production by bEEL and bCSC cells. Based on concentration-response experiments, the optimal concentrations for responses were 1?μg/mL LPS, 10?ng/mL IL-1β and 50?ng/mL TNFα. Real-time PCR results show that there was an upregulation of relative mRNA expression of PTGS2 when bEEL and bCSC were treated with LPS, IL-1β and TNFα. An increase in PTGES3 expression was observed when bEEL cells were treated with LPS and IL-1β and PTGES2 when treated with IL-1β. In bCSC cells, FAAH relative mRNA was decreased upon treatments. Rate of production of PGE2, PGF, PGE2-EA and PGF-EA were also determined using liquid chromatography tandem mass spectrometry. Our results show that eicosanoid production was increased in both cell lines in response to LPS, IL-1β, and TNFα. We suggest that the characteristics of bEEL and bCSC cell lines mimic the physiological responses found in mammals with endometrial infection, making them excellent in vitro models for intrauterine environment studies.  相似文献   

17.
Ko J  Yun CY  Lee JS  Kim DH  Yuk JE  Kim IS 《Life sciences》2006,79(13):1293-1300
Mast cells are well known as effector cells in a variety of inflammatory diseases, including asthma as well as other allergic disorders. The precise role of 9-cis retinoic acid (9CRA) in mast cells is not understood despite the accepted fact that 9CRA regulates inflammatory responses and neutrophil differentiation. In this study, we investigated the effects of 9CRA on the expression of CC chemokine receptors in the human mast cell line, HMC-1. 9CRA selectively inhibits the CCR2 mRNA level and increases the CCR3 mRNA level in both a time and dose dependent manner. Other CC chemokine receptors, including CCR1, CCR4 and CCR5 are not altered by treatment with 9CRA. Both TNF-alpha and LPS, known pro-inflammatory molecules, have no effect on mRNA levels of CC chemokine receptors. For surface expression, 9CRA decreased the CCR2 level but had no effect on the CCR3 level. 9CRA inhibited the chemotactic activity in response to the CCR2-dependent chemokine, MCP-1/CCL2 but not in response to CCR3-specific chemokine, eotaxin/CCL11. 9CRA decreased spontaneous homotype clustering. Therefore, our results demonstrate that 9CRA differentially decreases both CCR2 expression and chemotactic ability of HMC-1 cells, and may regulate the inflammatory effects of mast cells.  相似文献   

18.
异种移植排斥反应的主要特征为内皮细胞发生Ⅱ型激活.引起黏附分子、细胞因子和前促凝分子等基因高表达.造成血管收缩、白细胞黏附、激活、聚集和血栓形成.最终导致内皮细胞凋亡。保护基因HO-1通过抑制前炎症反应及免疫调抑作用以保护异种移植器官。因此。通过构建含剪切的野生型大鼠HO-1 cDNA的表达型质粒.用DOTAP包裹转入HUVEC中表达。测定表达量及表达产物活性;采用TNF-α诱导细胞凋亡。以及Heme和SnPP分别刺激细胞。诱导和抑制细胞内HO-1表达量.流式细胞仪测定细胞凋亡率,明确HO一1的抗细胞凋亡作用。结果显示HO-1在HUVEC中高度表达。活力为对照组5倍;TNF-α诱导细胞凋亡。但Heme处理后细胞凋亡率下降至20%以下。而SnPP处理后细胞凋亡率显著上升,最高达到95%以上。并且HO-1基因表达抑制时细胞凋亡率是诱导时的5—20倍。本实验表明Heme处理后HO-1表达上调。具有显著抗细胞凋亡作用。细胞凋亡率与HO-1表达量呈负相关,提示HO-1通过抑制细胞凋亡。对细胞有保护作用。  相似文献   

19.
20.
Human Toll like receptor (TLR) 2 has been implicated as a signaling receptor for LPS from Gram-negative bacteria and cell wall components from Gram-positive organisms. In this study, we investigated whether TLR2 can signal cell activation by the heat-killed group B streptococci type III (GBS) and Listeria monocytogenes (HKLM). HKLM, but not GBS, showed a time- and dose-dependent activation of Chinese hamster ovary cells transfected with human TLR2, as measured by translocation of NF-kappaB and induction of IL-6 production. A mAb recognizing a TLR2-associated epitope (TL2.1) was generated that inhibited IL-6 production from Chinese hamster ovary-TLR2 cells stimulated with HKLM or LPS. The TL2.1 mAb reduced HKLM-induced TNF production from human monocytes by 60%, whereas a CD14 mAb (3C10) reduced the TNF production by 30%. However, coadministrating TL2.1 and 3C10 inhibited the TNF response by 80%. In contrast to this, anti-CD14 blocked LPS-induced TNF production from monocytes, whereas anti-TLR2 showed no inhibition. Neither TL2.1 nor 3C10 affected GBS-induced TNF production. These results show that TLR2 can function as a signaling receptor for HKLM, possibly together with CD14, but that TLR2 is unlikely to be involved in cell activation by GBS. Furthermore, although LPS can activate transfected cell lines through TLR2, this receptor does not seem to be the main transducer of LPS activation of human monocytes. Thus, our data demonstrate the ability of TLR2 to distinguish between different pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号