首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.  相似文献   

2.
The ubiquitin-proteosome system (UPS) is a non-lysosomal proteolysis system involved in the degradation of irrelevant/misfolded intracellular proteins. The protein substrates of this system are tagged by ubiquitin in sequential reactions that target them for proteasome-dependent destruction. In the developing central nervous system, ubiquitin-mediated proteolysis has recently emerged as an important player in the regulation of neural progenitor proliferation, cell specification, neuronal differentiation, maturation, and migration. E3 ubiquitin ligases are crucial components in the UPS because they provide the specificity that determines which substrates are targeted for ubiquitin-dependent proteolysis. In this review, we discuss the molecular mechanisms of the UPS, focusing primarily on the roles of E3 ligases and their substrates in sequential steps of neurogenesis.  相似文献   

3.
In living cells, polypeptide chains emerging from ribosomes and preexisting polypeptide chains face constant threat of misfolding and aggregation. To prevent protein aggregation and to fulfill their biological activity, generally, protein must fold into its proper three-dimensional structure throughout their lifetimes. Eukaryotic cell possesses a quality control (QC) system to contend the problem of protein misfolding and aggregation. Cells achieve this functional QC system with the help of molecular chaperones and ubiquitin-proteasome system (UPS). The well-conserved UPS regulates the stability of various proteins and maintains all essential cellular function through intracellular protein degradation. E3 ubiquitin ligase enzyme determines specificity for degradation of certain substrates via UPS. New emerging evidences have provided considerable information that various E3 ubiquitin ligases play a major role in cellular QC mechanism and principally designated as QC E3 ubiquitin ligases. Nevertheless, very little is known about how E3 ubiquitin ligase maintains QC mechanism against abnormal proteins under various stress conditions. Here in this review, we highlight and discuss the functions of various E3 ubiquitin ligases implicated in protein QC mechanism. Improving our knowledge about such processes may provide opportunities to modulate protein QC mechanism in age-of-onset diseases that are caused by protein aggregation.  相似文献   

4.
5.
The ubiquitin-proteasome pathway for protein degradation has emerged as one of the most important mechanisms for regulation of a wide spectrum of cellular functions in virtually all eukaryotic organisms. Specifically, in plants, the ubiquitin/26S proteasome system (UPS) regulates protein degradation and contributes significantly to development of a wide range of processes, including immune response, development and programmed cell death. Moreover, increasing evidence suggests that numerous plant pathogens, such as Agrobacterium, exploit the host UPS for efficient infection, emphasizing the importance of UPS in plant-pathogen interactions.The substrate specificity of UPS is achieved by the E3 ubiquitin ligase that acts in concert with the E1 and E2 ligases to recognize and mark specific protein molecules destined for degradation by attaching to them chains of ubiquitin molecules. One class of the E3 ligases is the SCF (Skp1/Cullin/F-box protein) complex, which specifically recognizes the UPS substrates and targets them for ubiquitination via its F-box protein component. To investigate a potential role of UPS in a biological process of interest, it is important to devise a simple and reliable assay for UPS-mediated protein degradation. Here, we describe one such assay using a plant cell-free system. This assay can be adapted for studies of the roles of regulated protein degradation in diverse cellular processes, with a special focus on the F-box protein-substrate interactions.  相似文献   

6.
The ubiquitin–proteasome system (UPS) is the primary pathway responsible for the recognition and degradation of misfolded, damaged, or tightly regulated proteins in addition to performing essential roles in DNA repair, cell cycle regulation, cell migration, and the immune response. While traditional biochemical techniques have proven useful in the identification of key proteins involved in this pathway, the implementation of novel reporters responsible for measuring enzymatic activity of the UPS has provided valuable insight into the effectiveness of therapeutics and role of the UPS in various human diseases such as multiple myeloma and Huntington’s disease. These reporters, usually consisting of a recognition sequence fused to an analytical handle, are designed to specifically evaluate enzymatic activity of certain members of the UPS including the proteasome, E3 ubiquitin ligases, and deubiquitinating enzymes. This review highlights the more commonly used reporters employed in a variety of scenarios ranging from high-throughput screening of novel inhibitors to single cell microscopy techniques measuring E3 ligase or proteasome activity. Finally, a recent study is presented highlighting the development of a novel degron-based substrate designed to overcome the limitations of current reporting techniques in measuring E3 ligase and proteasome activity in patient samples.  相似文献   

7.
The recombinant yeast RAD6 and CDC34 gene products were expressed in Escherichia coli extracts and purified to apparent homogeneity. The physical and catalytic properties of RAD6 and CDC34 were similar but distinct from their putative rabbit reticulocyte homologs, E2(20k) and E2(32k), respectively. Like their reticulocyte counterparts, RAD6 and CDC34 are bifunctional enzymes competent in both ubiquitin:protein ligase (E3)-independent and E3-dependent conjugation reactions. RAD6 and E2(20k) exhibit marked specificity for the conjugation of core histones and catalyze the processive ligation of up to three ubiquitin moieties directly to such model substrates. RAD6 differed from its putative E2(20k) homolog in exhibiting simple saturation behavior in the kinetics of histone conjugation and in being unable to distinguish kinetically between core histones H2A and H2B, yielding identical values of kcat (1.9 min-1) and Km (20 microM). A slow rate of multiubiquitination involving formation of extended ubiquitin homopolymers on the histones was also observed with RAD6 and E2(20k). Comparison of conjugate patterns among native, reductively methylated, and K48R ubiquitin variants demonstrated that the linkage between ubiquitin moieties formed by E2(20k) and RAD6 was not through Lys-48 of ubiquitin, the site previously demonstrated as a strong signal for degradation of the target protein. In contrast, CDC34 differs from its putative homolog, E2(32k), in showing a specificity for conjugation to bovine serum albumin rather than to core histones. Both CDC34 and E2(32k) exhibit a marked kinetic selectivity for processive multiubiquitination via Lys-48 of ubiquitin. Calculations based on a model ubiquitin conjugation reaction indicated that E2(32k) and CDC34 preferentially catalyzed multiubiquitination over ligation of the polypeptide directly to target proteins. Formation of such multiubiquitin homopolymers by E2(32k) and CDC34 suggests these enzymes may commit their respective target proteins to degradation via an E3-independent pathway.  相似文献   

8.
The ubiquitin‐proteasome system (UPS) is a rapid regulatory mechanism for selective protein degradation in plants and plays crucial roles in growth and development. There is increasing evidence that the UPS is also an integral part of plant adaptation to environmental stress, such as drought, salinity, cold, nutrient deprivation and pathogens. This review focuses on recent studies illustrating the important functions of the UPS components E2s, E3s and subunits of the proteasome and describes the regulation of proteasome activity during plant responses to environment stimuli. The future research hotspots and the potential for utilization of the UPS to improve plant tolerance to stress are discussed.  相似文献   

9.
10.
11.
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.  相似文献   

12.
The fate of eukaryotic proteins, from their synthesis to destruction, is supervised by the ubiquitin–proteasome system (UPS). The UPS is the primary pathway responsible for selective proteolysis of intracellular proteins, which is guided by covalent attachment of ubiquitin to target proteins by E1 (activating), E2 (conjugating), and E3 (ligating) enzymes in a process known as ubiquitylation. The UPS can also regulate protein synthesis by influencing multiple steps of RNA (ribonucleic acid) metabolism. Here, recent publications concerning the interplay between the UPS and different types of RNA are reviewed. This interplay mainly involves specific RNA-binding E3 ligases that link RNA-dependent processes with protein ubiquitylation. The emerging understanding of their modes of RNA binding, their RNA targets, and their molecular and cellular functions are primarily focused on. It is discussed how the UPS adapted to interact with different types of RNA and how RNA molecules influence the ubiquitin signaling components.  相似文献   

13.
14.
Many biological processes such as cell proliferation, differentiation, and cell death depend precisely on the timely synthesis anddegradation of key regulatory proteins. While protein synthesis can be regulated at multiple levels, protein degradation is mainlycontrolled by the ubiquitineproteasome system (UPS), which consists of two distinct steps: (1) ubiquitylation of targeted protein by E1ubiquitin-activating enzyme, E2 ubiquitin-conjugating enzyme and E3 ubiquitin ligase, and (2) subsequent degradation by the 26Sproteasome. Among all E3 ubiquitin ligases, the SCF (SKP1-CUL1-F-box protein) E3 ligases are the largest family and are responsiblefor the turnover of many key regulatory proteins. Aberrant regulation of SCF E3 ligases is associated with various human diseases, such ascancers, including skin cancer. In this review, we provide a comprehensive overview of all currently published data to define a promotingrole of SCF E3 ligases in the development of skin cancer. The future directions in this area of research are also discussed with an ultimategoal to develop small molecule inhibitors of SCF E3 ligases as a novel approach for the treatment of human skin cancer. Furthermore,altered components or substrates of SCF E3 ligases may also be developed as the biomarkers for early diagnosis or predicting prognosis.  相似文献   

15.
C J Kolman  J Toth    D K Gonda 《The EMBO journal》1992,11(8):3081-3090
The ubiquitin conjugating (E2) enzyme encoded by CDC34 (UBC3) in Saccharomyces cerevisiae is required for the G1 to S transition of the cell cycle. CDC34 consists of a 170 residue amino-terminal domain that is homologous to that found in other E2s, followed by a 125 residue carboxyl-terminal domain that is specific to CDC34. We found that a truncation mutant of CDC34 which lacked the CDC34 carboxyl-terminal domain could not support the essential function of CDC34 in the cell cycle in vivo. To explore further the role of the carboxyl-terminal domain in determining the cell cycle function of CDC34, we constructed and characterized genes encoding chimeric E2s incorporating sequences from CDC34 and the related but functionally distinct E2 RAD6 (UBC2). We found that a construct encoding a chimeric RAD6-CDC34 ubiquitin conjugating enzyme, in which the 21 residue acidic carboxyl-terminal domain of RAD6 has been replaced with the 125 residue carboxyl-terminal domain of CDC34, performed the essential functions of CDC34 in vivo. This chimeric E2 also complemented the growth deficiency, UV sensitivity and sporulation deficiency of rad6 mutant strains. Deletion analysis of the CDC34 carboxyl-terminal domain in both CDC34 and the RAD6-CDC34 chimeric E2 identified a region comprising residues 171-244 of CDC34 that was sufficient to confer CDC34 function on the amino-terminal domains of CDC34 and RAD6. We suggest that this region interacts with substrates of CDC34 or with trans-acting factors (such as CDC34-specific ubiquitin protein ligases) that govern the substrate selectivity of CDC34. Congruent results demonstrating a positive role for the carboxyl-terminal domain of CDC34 in the essential function of CDC34 have also been obtained by Silver et al. (1992) and are reported in the accompanying paper.  相似文献   

16.
A protein that exemplifies the intimate link between the ubiquitin/proteasome system (UPS) and DNA repair is the yeast nucleotide excision repair (NER) protein Rad23 and its human orthologs hHR23A and hHR23B. Rad23, which was originally identified as an important factor involved in the recognition of DNA lesions, also plays a central role in targeting ubiquitylated proteins for proteasomal degradation, an activity that it shares with other ubiquitin receptors like Dsk2 and Ddi1. Although the finding that Rad23 serves as a ubiquitin receptor explains to a large extent its importance in proteasomal degradation, the precise mode of action of Rad23 in NER and the possible link with the UPS is less clear. In this review, we discuss our present knowledge on the functions of Rad23 in protein degradation and DNA repair and speculate on the importance of the dual roles of Rad23 for the cell's ability to cope with stress conditions.  相似文献   

17.
18.
The cell division cycle 25A (CDC25A) phosphatase is a key regulator of cell cycle progression that acts on the phosphorylation status of Cyclin–Cyclin-dependent kinase complexes, with an emergent role in the DNA damage response and cell survival control. The regulation of CDC25A activity and its protein level is essential to control the cell cycle and maintain genomic integrity. Here we describe a novel ubiquitin/proteasome-mediated pathway negatively regulating CDC25A stability, dependent on its phosphorylation by the serine/threonine kinase DYRK2. DYRK2 phosphorylates CDC25A on at least 7 residues, resulting in its degradation independent of the known CDC25A E3 ubiquitin ligases. CDC25A in turn is able to control the phosphorylation of DYRK2 at several residues outside from its activation loop, thus affecting DYRK2 localization and activity. An inverse correlation between DYRK2 and CDC25A protein amounts was observed during cell cycle progression and in response to DNA damage, with CDC25A accumulation responding to the manipulation of DYRK2 levels or activity in either physiological scenario. Functional data show that the pro-survival activity of CDC25A and the pro-apoptotic activity of DYRK2 could be partly explained by the mutual regulation between both proteins. Moreover, DYRK2 modulation of CDC25A expression and/or activity contributes to the DYRK2 role in cell cycle regulation. Altogether, we provide evidence suggesting that DYRK2 and CDC25A mutually control their activity and stability by a feedback regulatory loop, with a relevant effect on the genotoxic stress pathway, apoptosis, and cell cycle regulation.Subject terms: Proteins, Cell biology, Proteomics  相似文献   

19.
A novel protein modification pathway related to the ubiquitin system.   总被引:22,自引:2,他引:20       下载免费PDF全文
Ubiquitin conjugation is known to target protein substrates primarily to degradation by the proteasome or via the endocytic route. Here we describe a novel protein modification pathway in yeast which mediates the conjugation of RUB1, a ubiquitin-like protein displaying 53% amino acid identity to ubiquitin. We show that RUB1 conjugation requires at least three proteins in vivo. ULA1 and UBA3 are related to the N- and C-terminal domains of the E1 ubiquitin-activating enzyme, respectively, and together fulfil E1-like functions for RUB1 activation. RUB1 conjugation also requires UBC12, a protein related to E2 ubiquitin-conjugating enzymes, which functions analogously to E2 enzymes in RUB1-protein conjugate formation. Conjugation of RUB1 is not essential for normal cell growth and appears to be selective for a small set of substrates. Remarkably, CDC53/cullin, a common subunit of the multifunctional SCF ubiquitin ligase, was found to be a major substrate for RUB1 conjugation. This suggests that the RUB1 conjugation pathway is functionally affiliated to the ubiquitin-proteasome system and may play a regulatory role.  相似文献   

20.
The ubiquitin proteasome system (UPS) consists of a cascade of enzymatic reactions leading to the ubiquitination of proteins, with consequent degradation or altered functions of the proteins. Alterations in UPS genes have been associated with male infertility, suggesting the role of UPS in spermatogenesis. In the present study, we questioned whether UPS is involved in extensive remodeling and functional changes occurring during the differentiation of neonatal testicular gonocytes to spermatogonia, a step critical for the establishment of the spermatogonial stem cell population. We found that addition of the proteasome inhibitor lactacystin to isolated gonocytes inhibited their retinoic acid-induced differentiation in a dose-dependent manner, blocking the induction of the spermatogonial gene markers Stra8 and Dazl. We then compared the UPS gene expression profiles of Postnatal Day (PND) 3 gonocytes and PND8 spermatogonia, using gene expression arrays and quantitative real-time PCR analyses. We identified 205 UPS genes, including 91 genes expressed at relatively high levels. From those, 28 genes were differentially expressed between gonocytes and spermatogonia. While ubiquitin-activating enzymes and ligases showed higher expression in gonocytes, most ubiquitin conjugating and deubiquitinating enzymes were expressed at higher levels in spermatogonia. Concomitant with the induction of spermatogonial gene markers, retinoic acid altered the expression of many UPS genes, suggesting that the UPS is remodeled during gonocyte differentiation. In conclusion, these studies identified novel ubiquitin-related genes in gonocytes and spermatogonia and revealed that proteasome function is involved in gonocyte differentiation. Considering the multiple roles of the UPS, it will be important to determine which UPS genes direct substrates to the proteasome and which are involved in proteasome-independent functions in gonocytes and to identify their target proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号