首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Calcium regulates the PI3K-Akt pathway in stretched osteoblasts   总被引:6,自引:0,他引:6  
Mechanical loading plays a vital role in maintaining bone architecture. The process by which osteoblasts convert mechanical signals into biochemical responses leading to bone remodeling is not fully understood. The earliest cellular response detected in mechanically stimulated osteoblasts is an increase in intracellular calcium concentration ([Ca(2+)](i)). In this study, we used the clonal mouse osteoblast cell line MC3T3-E1 to show that uniaxial cyclic stretch induces: (1) an immediate increase in [Ca(2+)](i), and (2) the phosphorylation of critical osteoblast proteins that are implicated in cell proliferation, gene regulation, and cell survival. Our data suggest that cyclic stretch activates the phosphoinositide 3-kinase (PI3K) pathway including: PI3K, Akt, FKHR, and AFX. Moreover, cyclic stretch also causes the phosphorylation of stress-activated protein kinase/c-Jun N-terminal kinase. Attenuation in the level of phosphorylation of these proteins was observed by stretching cells in Ca(2+)-free medium, using intra- (BAPTA-AM) and extracellular (BAPTA) calcium chelators, or gadolinium, suggesting that influx of extracellular calcium plays a significant role in the early response of osteoblasts to mechanical stimuli.  相似文献   

2.
IL-6 is produced by osteoblasts and induces bone resorption   总被引:39,自引:0,他引:39  
To examine the possible involvement of IL-6 in bone metabolism, a mouse osteoblastic cell line (MC3T3-E1) and primary osteoblast-like cells from fetal mouse calvaria were cultured with several systemic and local bone-resorbing agents and their expression of IL-6 mRNA was determined. Local bone-resorbing agents such as IL-1 alpha, IL-1 beta, TNF-alpha, and LPS greatly induced IL-6 mRNA expression in both MC3T3-E1 cells and primary osteoblast-like cells. Parathyroid hormone slightly increased expression of IL-6 mRNA in primary osteoblast-like cells but not in MC3T3-E1 cells. Neither IL-6 nor 1 alpha,25-dihydroxyvitamin D3 increased expression of IL-6 mRNA in either of the osteoblast-like cells. In agreement with the expression of IL-6 mRNA, biologically active IL-6 was produced in response to the treatment with IL-1 alpha, TNF-alpha, and LPS in MC3T3-E1 cells. Adding IL-6 dose dependently stimulated the release of 45Ca from prelabeled fetal mouse calvaria. Simultaneously adding suboptimal concentrations of IL-6 and IL-1 alpha induced bone resorption cooperatively. In accord with the increase in the release of 45Ca by IL-6, there were three times as many osteoclasts in the bone sections of calvaria cultured with IL-6 for 5 days as in the controls. IL-6 slightly suppressed alkaline phosphatase activity and collagen synthesis in MC3T3-E1 cells. These results indicate that IL-6 is also produced by osteoblasts, preferentially in response to local bone-resorbing agents, and it induces bone resorption both alone and in concert with other bone-resorbing agents.  相似文献   

3.
The effects of interleukin 1 (IL-1) on MC3T3-E1 cells (clonal osteoblast-like cells established from mouse calvaria) were studied to elucidate the mechanism of IL-1-induced bone resorption. Recombinant human interleukin 1 alpha (rhIL-1 alpha) and beta (rhIL-1 beta) stimulated PGE2 production in MC3T3-E1 cells in a dose dependent manner. rhIL-1 alpha and 1 beta also stimulated MC3T3-E1 cells to produce macrophage-colony stimulating activity (M-CSA) in a dose-dependent manner. Indomethacin completely abolished PGE2 production but did not affect CSA. These results suggest that bone resorption induced by IL-1s is at least in part mediated by PGE2 produced by osteoblasts, and that M-CSA produced by osteoblasts may synergistically potentiate bone resorption by recruiting osteoclast precursors.  相似文献   

4.
Smad3, a critical component of the TGF-beta signaling pathways, plays an important role in the regulation of bone formation. However, how Smad3 affects osteoblast at the different differentiation stage remains still unknown. In the present study, we examined the effects of Smad3 on osteoblast phenotype by employing mouse bone marrow ST-2 cells and mouse osteoblastic MC3T3-E1 cells at the different differentiation stage. Smad3 overexpression significantly inhibited bone morphogenetic protein-2 (BMP-2)-induced ALP activity in ST-2 cells, indicating that Smad3 suppresses the commitment of pluripotent mesenchymal cells into osteoblastic cells. Smad3 increased the levels of COLI and ALP mRNA at 7 day cultures in MC3T3-E1 cells, and its effects on COL1 were decreased as the culture periods progress, although its effects on ALP were sustained during 21 day cultures. Smad3 overexpression enhanced the level of Runx2 and OCN mRNA at 14 day and 21 day cultures. Smad3 increased the levels of MGP and NPP-1 mRNA, although the extent of increase in MGP and NPP-1 was reduced and enhanced during the progression of culture period, respectively. Smad3 did not affect the level of ANK mRNA. On the other hand, Smad3 enhanced the level of MEPE mRNA at 14 and 21 day cultures, although Smad3 decreased it at 7 day cultures. In conclusion, Smad3 inhibits the osteoblastic commitment of ST-2 cells, while promotes the early stage of differentiation and maturation of osteoblastic committed MC3T3-E1 cells. Also, Smad3 enhanced the expression of mineralization-related genes at the maturation phase of MC3T3-E1 cells.  相似文献   

5.
6.
To elucidate the mechanism of tumor necrosis factor alpha (TNF-alpha)-induced bone resorption, the effects of recombinant human TNF-alpha on mouse osteoblast-like cells (MC3T3-E1) were studied. TNF-alpha stimulated MC3T3-E1 cells to produce prostaglandin E2 (PGE2) and macrophage colony stimulating activity (M-CSA) in a dose-dependent manner. TNF decreased alkaline phosphatase (AL-P) activity of MC3T3-E1 cells. These TNF effects were observed at 1 ng/ml (approximately 6 X 10(-11)M). The inhibitory effect on AL-P activity was reversible and the cell growth of MC3T3-E1 cells was only slightly affected by TNF. These findings suggest that both PGE2 and M-CSA stimulated by TNF-alpha are possibly involved in osteoblast-mediated osteoclastic bone resorption, whereas inhibition of AL-P activity may lead to a decrease in bone formation.  相似文献   

7.
The osteoblastic function of mouse preosteoblastic MC3T3-E1 cells, as measured by alkaline phosphatase activity and osteocalcin secretion, decreases after serial passage. To uncover genes responsible for decreased osteoblastic function in high-passage cells, we have studied passage-dependent change of gene expression in MC3T3-E1 cells. Changes in the expression pattern of 2000 selected genes were examined simultaneously by comparing mRNA levels between MC3T3-E1 cells at passage 20 and passage 60 using the cDNA microarray analysis. Significant changes in the steady-state abundance of 27 mRNAs were observed in response to different passage numbers, including 17 known genes, 4 ESTs with homology to known genes, and 6 genes with no previously described function or homology. Northern blot analysis was used to verify and quantify the expression of selected genes, and revealed a significant higher level of up- and down-regulation compared to microarray data. These results indicate the existence of a significant change in gene expression in osteoblastic cells undergoing serial passages. Such changes might be responsible for a reduction in bone regeneration in older osteoblasts. Potential roles of selected genes in bone aging are discussed.  相似文献   

8.
目的:探讨MC3T3-E1细胞在流体剪切力作用下LEF-1的表达。方法:通过流体剪切加载系统对MC3T3-E1爬片细胞施加12dyn/cm的流体剪切力,分别作用0h,2h,4h,8h,12h,用RT-PCR方法检测细胞受力前后LEF-1 mRNA表达的变化;应用免疫荧光双标记法检测不同时间点流体剪切力作用下MC3T3-E1细胞中的LEF-1 mRNA表达改变。结果:RT-PCR和免疫荧光双标记法的结果表明12dyn/cm 8h流体剪切力作用下的MC3T3-E1细胞LEF-1 mRNA的表达较其它各组明显增强。结论:通过流体剪切力力学刺激,激活了成骨细胞LEF-1/TCF1转录活动,LEF-1 mRNA的表达增强可能是成骨细胞经典Wnt信号通路对剪切应力的应答反应。  相似文献   

9.
We have shown earlier that mechanical stimulation by intermittent hydrostatic compression (IHC) promotes alkaline phosphatase and procollagen type I gene expression in calvarial bone cells. The bone matrix glycoprotein osteopontin (OPN) is considered to be important in bone matrix metabolism and cell-matrix interactions, but its role is unknown. Here we examined the effects of IHC (13 kPa) on OPN mRNA expression and synthesis in primary calvarial cell cultures and the osteoblast-like cell line MC3T3-E1. OPN mRNA expression declined during control culture of primary calvarial cells, but not MC3T3-E1 cells. IHC upregulated OPN mRNA expression in late released osteoblastic cell cultures, but not in early released osteoprogenitor-like cells. Also, in both proliferating and differentiating MC3T3-E1 cells, OPN mRNA expression and synthesis were enhanced by IHC, differentiating cells being more responsive than proliferating cells. These results suggest a role for OPN in the reaction of bone cells to mechanical stimuli. The severe loss of OPN expression in primary bone cells cultured without mechanical stimulation suggests that disuse conditions down-regulate the differentiated osteoblastic phenotype. J. Cell. Physiol. 170:174–181, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

10.
Mechanical stress plays a key role in bone remodeling. Previous studies showed that loading of mechanical stretch induces a rapid Ca2+ influx and subsequent activation of stress-activated protein kinase pathways in osteoblasts. However, the activation mechanism and its significance in bone remodeling have not been fully elucidated. Here we show that TAK1 MAPKKK was activated by cyclic stretch loading of MC3T3-E1 cells. Knockdown of TAK1 attenuated the stretch-induced activation of JNK, p38, and NF-κB. Extracellular (EGTA) or intracellular (BAPTA/AM) Ca2+ chelator prevented the stretch-induced activation of TAK1. Activation of TAK1 and its associated downstream signaling pathways were also suppressed by CaMKII inhibitors (KN-93 and KN-62). Furthermore, TAK1-mediated downstream pathways cooperatively induced the expression of IL-6 mRNA in the stretched MC3T3-E1 cells. We also confirmed that TAK1 mediates cyclic stretch-induced IL-6 protein synthesis in the cells using immunoblotting and ELISA. Finally, stretch loading of murine primary osteoblasts induced the expression of IL-6 mRNA via TAK1. Collectively, these data suggest that stretch-dependent Ca2+ influx activates TAK1 via CaMKII, leading to the enhanced expression of IL-6 through JNK, p38, and NF-κB pathways in osteoblasts.  相似文献   

11.
Tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a member of the TNF family, is a multifunctional cytokine that regulates cell growth, migration, and survival principally through a TWEAK receptor, fibroblast growth factor-inducible 14 (Fn14). However, its physiological roles in bone are largely unknown. We herein report various effects of TWEAK on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed Fn14 and produced RANTES (regulated upon activation, healthy T cell expressed and secreted) upon TWEAK stimulation through PI3K-Akt, but not nuclear factor-kappaB (NF-kappaB), pathway. In addition, TWEAK inhibited bone morphogenetic protein (BMP)-2-induced expression of osteoblast differentiation markers such as alkaline phosphatase through mitogen-activated protein kinase (MAPK) Erk pathway. Furthermore, TWEAK upregulated RANKL (receptor activation of NF-kappaB ligand) expression through MAPK Erk pathway in MC3T3-E1 cells. All these effects of TWEAK on MC3T3-E1 cells were abolished by mouse Fn14-Fc chimera. We also found significant TWEAK mRNA or protein expression in osteoblast- and osteoclast-lineage cell lines or the mouse bone tissue, respectively. Finally, we showed that human osteoblasts expressed Fn14 and induced RANTES and RANKL upon TWEAK stimulation. Collectively, TWEAK/Fn14 interaction regulates RANTES production, BMP-2-induced differentiation, and RANKL expression in MC3T3-E1 cells. TWEAK may thus be a novel cytokine that regulates several aspects of osteoblast function.  相似文献   

12.
Prostaglandin F2 alpha (PGF2 alpha) stimulates proliferation of clonal osteoblastic MC3T3-E1 cells mainly via the stimulation of phospholipase C. These cells constitutively produced and secreted insulin-like growth factor I (IGF-I). In addition, a neutralizing anti-IGF-I antibody completely abolished DNA synthesis stimulated by PGF2 alpha in MC3T3-E1 cells, suggesting that IGF-I indeed mediates the PGF2 alpha effect. However, PGF2 alpha decreased the expression of IGF-I mRNA and the secretion of immunoreactive IGF-I into the medium, whereas progression activity in the conditioned medium was not affected by PGF2 alpha. Although IGF-I alone did not stimulate DNA synthesis in MC3T3-E1 cells, when PGF2 alpha was added to the cultures, IGF-I stimulated their proliferation. Thus, PGF2 alpha may potentiate the action of IGF-I. At the same time, PGF2 alpha increased the number of high affinity binding sites (molecular mass of 130 kDa) for IGF-I in a dose-dependent manner. The increase in IGF-I-binding site number preceded the elevation of DNA synthesis by approximately 3 h. Furthermore, MC3T3-E1 cells secreted at least three species of IGF-binding proteins (IGFBPs) with molecular masses of 24, 30, and 34 kDa. In the early period of PGF2 alpha exposure, PGF2 alpha attenuated the secretion of all of these IGFBPs, whereas thereafter, it markedly increased their secretion, especially that of the 34-kDa IGFBP, suggesting a modulation of metabolism and action of IGF-I. These effects of PGF2 alpha on IGF-I receptor number and IGFBP secretion may play a role in the synergism between PGF2 alpha and IGF-I that results in the stimulation of DNA synthesis in MC3T3-E1 cells.  相似文献   

13.
Tang SY  Xie H  Yuan LQ  Luo XH  Huang J  Cui RR  Zhou HD  Wu XP  Liao EY 《Peptides》2007,28(3):708-718
The aim of this study was to investigate the effects of apelin on proliferation and apoptosis of mouse osteoblastic MC3T3-E1 cells. APJ was expressed in MC3T3-E1 cells. Apelin did not affect Runx2 expression, alkaline phosphatase (ALP) activity, osteocalcin and type I collagen secretion, suggesting that it has no effect on osteoblastic differentiation of MC3T3-E1 cells. However, apelin stimulated MC3T3-E1 cell proliferation and inhibited cell apoptosis induced by serum deprivation. Our study also shows that apelin decreased cytochrome c release and caspase-3, capase-8 and caspase-9 activation in serum-deprived MC3T3-E1 cells. Apelin activated c-Jun N-terminal kinase (JNK) and Akt (phosphatidylinositol 3-kinase downstream effector), and the JNK inhibitor SP600125, the phosphatidylinositol 3-kinase (PI3-K) inhibitor LY294002 or the Akt inhibitor 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO) inhibited its effects on proliferation and serum deprivation-induced apoptosis. Furthermore, apelin protected against apoptosis induced by the glucocorticoid dexamethasone or TNF-alpha. Apelin stimulates proliferation and suppresses serum deprivation-induced apoptosis of MC3T3-E1 cells and these actions are mediated via JNK and PI3-K/Akt signaling pathways.  相似文献   

14.
The role that androgens play in the regulation of bone metabolism has been substantiated in animals and humans. We previously demonstrated that testosterone inhibits osteoclast differentiation stimulated by parathyroid hormone through the androgen receptor in mouse bone-cell cultures. However, the details of this mechanism are still unknown. The present study was aimed at examining whether testosterone would affect the mRNA levels of osteoprotegerin (OPG) and receptor activator of Nf kappa B ligand (RANKL) in mouse bone-cell cultures as well as mouse osteoblastic cell-line, MC3T3-E1 cells by employing semi-quantitative RT-PCR. Testosterone increased OPG mRNA expression in both mouse bone-cell cultures and MC3T3-E1 cells. 10-8 M PTH-(1-34) as well as 10-8M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibited OPG mRNA expression in mouse bone cells. 10-8 M testosterone antagonized OPG mRNA expression inhibited by 10-8 M PTH-(1-34), but failed to affect OPG mRNA expression inhibited by 10-8 M 1,25(OH)2D3. 10-8 M alpha-dehydrotestosterone, a non-aromatizable androgen, increased OPG mRNA expression. On the other hand, testosterone did not affect RANKL mRNA expression in MC3T3-E1 or mouse bone cells. In conclusion, the present study demonstrated that testosterone increased OPG mRNA expression in mouse bone-cell cultures and the osteoblastic cell line. These effects are likely to take place through the androgen receptor.  相似文献   

15.
Leukemia inhibitory factor/differentiation-stimulating factor (LIF/D-factor), expression of its mRNA, and possible roles in bone metabolism were studied in murine primary and clonal osteoblast-like cells. Local bone-resorbing factors such as IL-1, TNF alpha, and LPS strongly induced expression of LIF/D-factor mRNA in both clonal MC3T3-E1 cells and primary osteoblast-like cells. Neither parathyroid hormone nor 1 alpha,25-dihydroxyvitamin D3 stimulated expression of LIF/D-factor mRNA. LIF/D-factor per se did not stimulate expression of its own mRNA. Appreciable amounts of LIF/D-factor were detected in synovial fluids from rheumatoid arthritis (RA) patients but not in those with osteoarthritis (OA). Simultaneous treatment with LIF/D-factor, IL-1, and IL-6 at the concentrations found in synovial fluids from RA patients greatly enhanced bone resorption, though these cytokines did not stimulate bone resorption when separately applied. This suggests that LIF/D-factor produced by osteoblasts is in concert with other bone-resorbing cytokines such as IL-1 and IL-6 involved in the bone resorption seen in the joints of RA patients. LIF/D-factor specifically bound to MC3T3-E1 cells with an apparent dissociation constant of 161 pM and 1,100 binding sites/cell. LIF/D-factor dose-dependently suppressed incorporation of [3H]thymidine into MC3T3-E1 cells. In addition, it potentiated the alkaline phosphatase activity induced by retinoic acid, though LIF/D-factor alone had no effect on enzyme activity. These results suggest that LIF/D-factor is involved in not only osteoclastic bone resorption but also osteoblast differentiation in conjugation with other osteotropic factors.  相似文献   

16.
17.
18.
Recently, substantial evidence has accumulated that the G-protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) is expressed in bone marrow-derived cells, including osteoblasts, stromal cells, monocytes-macrophages, and osteoclast precursor cells. Our previous studies have shown that the mouse osteoblastic MC3T3-E1 cell line also expresses the CaR and exhibits mitogenic responses when exposed to various CaR agonists. In this study, in order to understand the signaling pathway(s) mediating this response, we studied the effects of CaR agonists on the phosphorylation of p42/44 mitogen-activated protein kinase (MAPK) (Erk1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK) in MC3T3-E1 cells. Raising the level of Ca(2+)(o) (4.5 mM) or addition of the polycationic CaR agonists, gadolinium (Gd(3+)) (25 microM), neomycin (300 microM) or spermine (1 mM), each stimulated phosphorylation of both p42/44 and p38 MAPKs, but not JNK, as assessed using phospho-specific antibodies to the respective MAPKs. Furthermore, phosphorylation of p42/44 and p38 MAPK were markedly inhibited by their selective and potent inhibitors, PD98059 (50 microM) and SB203580 (10 microM), respectively. Finally, the two inhibitors suppressed [(3)H]thymidine incorporation into DNA in MC3T3-E1 cells at a normal level of Ca(2+)(o) (1.8 mM) as well as when stimulated by high (4.5 mM) Ca(2+)(o), Gd(3+), or neomycin. Thus, in mouse osteoblastic MC3T3-E1 cells, both the p42/44 and p38 MAPK cascades play pivotal roles in CaR-stimulated mitogenic responses.  相似文献   

19.
Although the neuropeptide Y (NPY) family has been demonstrated to control bone metabolism, the role of pancreatic polypeptide (PP), which has structural homology with NPY and peptide YY (PYY) to share the NPY family receptors, in peripheral bone tissues has remained unknown. In the present study, we studied the regulatory roles of PP and its Y receptors using MC3T3-E1 cells, a murine transformed osteoblastic cell line, as a model for osteoblastic differentiation. We found that (1) PP mRNA was detected and increased during cell-contact-induced differentiation in MC3T3-E1 cells; (2) the immunoreactivity of PP was detected by radioimmunoassay and increased in culture medium during differentiation; (3) all the types of NPY family receptor mRNAs (Y1, Y2, Y4, Y5, and y6) were found to increase during differentiation; (4) PP stimulated differentiation in MC3T3-E1 cells in terms of ALP mRNA and BMP-2 mRNA. These findings suggested that MC3T3-E1 cells produce and secrete PP, which may in turn stimulate the differentiation of MC3T3-E1 through its specific receptors in an autocrine manner.  相似文献   

20.
Interaction between c-fos and 1,25(OH)2 vitamin D3 (VD) on the type I collagen synthesis was studied. VD inhibited collagen synthesis and type I collagen mRNA expression in MC3T3-E1 osteoblastic cells. In contrast, VD reversed the inhibition of collagen synthesis and mRNA expression of the c-fos transfectants that overexpressed c-fos gene to a comparable level as those of the control transfectants. The gel shift assay showed that vitamin D receptor (VDR) complex binding to vitamin D responsive element (VDRE) was inhibited under constitutively expressed c-fos gene, suggesting that c-fos gene product, c-Fos, may inhibit the binding of VDR complex to VDRE by making a c-Fos-VDR complex. The result suggests the existence of a fine tuning between c-fos and VD in the bone metabolism which may be relevant to the pathogenesis of rheumatoid bone lesion. © 1995 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号