首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many examples of plant-insect interactions have shown that selection from herbivores can act on flowering and fruiting phenology. In Ulex europaeus (Fabaceae), escaping seed predation resulted in extended, but variable flowering periods, with some plants flowering from autumn until spring and others flowering only in spring. The present study aims at understanding how gorses can have a high reproductive success during winter despite harsh climatic conditions and low number of pollinators. We measured pollen production, flower size and seed production in spring and winter, and compared the different seasons. The pollination success of flowers was high in both seasons. The flowers produced as much pollen, and were of comparable size in spring and winter, but they stayed open twice as long in winter than in spring. The high pollination rate we observed was thus due to the longer opening period of flowers and the high attractiveness of flowers during winter. However, pod abortion was higher in winter, with 43% of the flowers in winter and 75% in spring producing ripe pods. Antagonistic selective pressures exerted by biotic and abiotic interactions may, therefore, have lead to the observed flowering polymorphism, and allow U. europaeus to thrive in various climates, thus, increasing its invasiveness in different countries.  相似文献   

2.
Sex-specific interactions with antagonists may explain female maintenance in gynodioecious populations if seeds produced by hermaphroditic plants are preferred over seeds produced by female plants. Among antagonistic interactions, pre-dispersal seed predators have received relatively little attention even though they may exert sex-specific selective pressures on the evolution of floral and flowering traits. In this work, I investigate temporal variation in seed predation in gynodioecious Geranium sylvaticum, where in addition to female and hermaphrodite individuals, plants with an intermediate sexual expression are also present in most populations. Specifically, I examined whether seed predation is linked to flowering phenology, plant gender, and sexual dimorphism in floral and seed traits over the flowering season using an experimental field population. Within the population, I selected female, intermediate, and hermaphrodite plants with different timing of flowering onset (early, mid, or late), and collected seeds across the fruiting period. Seeds were weighed and examined for seed predator damage. The results show that the three genders experienced similar levels of seed predation attack regardless of their flowering phenology, and that overall seed predation was not related to changes in seed production or seed mass. These results suggest that sexual dimorphism in seed predation cannot be responsible for female maintenance in this species.  相似文献   

3.
Summary We experimentally examined factors limiting seed production in two populations of the perennial woodland herb Geranium maculatum in central Illinois, USA. To test the pollinator-limitation hypothesis, we compared the seed production of plants whose flowers were supplementarily pollinated with outcross pollen to that of control plants receiving natural pollination only. To test if fruit production by early flowers suppresses fruit and seed formation by late flowers, a third group of plants was prevented from producing seed from the first 50% of the flowers to open (stigmas were excised at flower opening). Finally, to test if seed maturation and flower initiation are correlated with photosynthetic capacity, we performed a defoliation experiment in which either the stem leaves within the inflorescence, the stem leaves below the inflorescence, or the rosette leaves were removed during late flowering. Plants that reccived supplemental pollination produced 1.5–1.6 times more seeds than control plants. We found no difference between hand-pollinated plants and controls in mortality, flowering frequency or number of flowers produced in the year following the experiment. In both control and hand-pollinated plants, the fruit set and total seed production of early flowers were more than twice as high as those of late flowers. In one of the two populations, plants whose early flowers were prevented from setting seed produced significantly more seeds from their late flowers than did control plants. Seed predation was low and did not differ between early and late flowers. Leaf removal did not affect seed number or size in the year of defoliation, nor did it reduce survival or flower production in the subsequent year. This suggests that the plants were able to compensate for a partial defoliation by using stored resources or by increasing photosynthetic rates in the remaining leaves. Taken together, the results demonstrate that both pollinator activity and resource levels influence patterns of seed production in G. maculatum. While seed production was pollinatorlimited in both populations, a seasonal decline in resource availability was apparently responsible for the low seed production by late flowers.  相似文献   

4.
A population of the alvar race of the perennial herb, Silene uniflora (Caryophyllaceae), which grows on thin soils in open alvar habitats on the Baltic island of Oland SE Sweden, was found to have an extended and more or less bimodal flowering phenology Large individuals produced flowers during both periods, while small, and presumably young, individuals only produced flowers in either of the two periods, or in part of both In the early flowering period plants were heavily infested by the seed-predatory larvae of a noctuid moth, Hadena confusa , but in the late flowering period only a small proportion of the fruits was attacked by the seed predators The proportion of flowers developing into fruits was consistently high throughout the season Both the number of seeds per capsule and the mass of seeds decreased over the flowering season However, the germination success of early and late seeds did not differ Thus, although differing in number of seeds, both early and late flowers contributed to individual reproductive success Large individuals started to flower early in the season and despite their high loss of seeds in the early part of the summer they contributed a larger number of seeds to the seed pool than smaller and later-flowering individuals Although selection was acting to favour later flowering during a year with high early seed predation, consistency of date of flower initiation and of relative predation impact on individuals across years was low suggesting that recurrent selection by seed predators is weak Seed predation, although heavy, is therefore judged to be unlikely to cause a significant evolutionary response on flowering phenology in this plant  相似文献   

5.
Summary We examined how mycorrhizal infection byGlomus etunicatum Becker and Gerd. affected flowering phenology and components of reproduction in eight wild accessions and two cultivars ofLycopersicon esculentum Mill. We did this by performing a detailed demographic study of flower, fruit and seed production. Mycorrhizal infection had variable effects on the ten accessions. Infection significantly decreased the time taken to initiate flowering in some accessions. In addition, infection increased flowering duration in some accessions. In many accessions, infection significantly increased seed production, primarily by increasing the number of inflorescences and infructescences. In some accessions, mycorrhizal infection also increased the proportion of flowers that produced mature fruits or the number of seeds per fruit. Among accessions, shoot phosphorus content was correlated with seed productivity for both mycorrhizal and non-mycorrhizal plants. However, non-mycorrhizal plants produced more seed biomass per mg of shoot phosphorus than mycorrhizal plants.  相似文献   

6.
Sercu  Bram K.  Moeneclaey  Iris  Goeminne  Birgit  Bonte  Dries  Baeten  Lander 《Plant Ecology》2021,222(6):749-760

Temperate forest understorey plants are subjected to a strong seasonality in their optimal growing conditions. In winter and early spring, low temperatures are suboptimal for plant growth while light becomes limited later in spring season. We can thus expect that differences in plant phenology in relation to spatiotemporal environmental variation will lead to differences in reproductive output, and hence selection. We specifically studied whether early flowering, a paradoxical pattern that is observed in many plant species, is an adaptive strategy, and whether selection for early flowering was confounded with selection for flower duration or was attributable to environmental variables. We used Geum urbanum as a study species to investigate the effect of relevant environmental factors on the species’ flowering phenology and the consequences for plant reproductive output. We monitored the phenology of four to six plants in each of ten locations in a temperate deciduous forest (Belgium). We first quantified variation in flowering time within individuals and related this temporal variation to individual flower reproductive output. Then, we studied inter-individual variation here-in and linked this to reproduction at the plant level, hence studying the selection differential. We found that flowering within individual plants of Geum urbanum was spread over a long period from June to October. Reproductive output of individual flowers, measured as total seed mass per flower, declined during the season. We found no indication for selection for early flowering but rather for longer flower duration. Larger plants had an earlier flowering onset and a higher seed mass, which suggests that these factors covary and are condition dependent. None of the studied environmental variables could explain plant size, although soil pH and to a lesser extent light availability had a positive direct effect on seed mass per plant. Finally, we suggest that the high intra-individual variation in flowering time, which might be a risk spreading strategy of the plant in the presence of seed predation, limits the potential for selection on flowering phenology.

  相似文献   

7.
Exapion ulicis (Forster) and Exapion lemovicinum (Hoffmann) (Coleoptera: Curculionoidea: Apionidae) are seed predators of the three gorse species occurring in Brittany (France): Ulex europaeus L., Ulex gallii Planch., and Ulex minor Roth.(Fabaceae). Host‐plant phenology plays a major role in the relationship between apionid weevils and their gorse species, because larvae develop within gorse pods and adults have to wait for pod dehiscence to be released. We monitored flowering and fruiting phenology of gorse species, weevil reproductive behaviour, and egg‐laying patterns in six natural populations in the native area of these gorse species. At each site, U. europaeus, which flowers mainly in spring, was sympatric with one of two autumn flowering gorse species, U. gallii and U. minor. We noticed that E. ulicis laid eggs in spring and was restricted to U. europaeus whereas E. lemovicinum laid eggs in autumn and was restricted to the two autumn‐flowering species U. gallii and U. minor. Therefore, host specificity depended on gorse phenology, and not on geographic proximity. In addition, the infested pod content showed that E. ulicis laid several eggs per pod and suggested that females chose pods with the highest numbers of seeds. In contrast, E. lemovicinum laid a single egg per pod and showed no preference for pods with many seeds. Finally, the impact of seed predation by E. ulicis was higher than that of E. lemovicinum.  相似文献   

8.
Summary As in many plant species, Lomatium salmoniflorum (Umbelliferae) individuals produce many flowers, only a subset of which produce mature seeds that escape seed parasitism and enter the seed bank. The interrelationships between the timing and number of flowers produced, sex expression, seed set, and seed parasitism were studied for their direct and indirect effects on the numbers and masses of viable seeds produced by individual plants. In a sample population of 369 plants that produced 161 386 flowers, 76% of the plants produced some hermaphroditic flowers. The percentage of hermaphroditic flowers increased significantly with the total number of flowers produced by a plant. Seed set was 65–90% in plants producing >600 flowers, but was highly variable in plants producing fewer flowers. Hand-pollinated plants showed the same pattern of seed set, suggesting that variable seed set in small plants may result from insufficient resources for seed development. The majority of schizocarps was produced by only 12% of the plants. Parasites killed 24.5% of the seeds prior to dispersal. Another 14.5% of the seeds lacked endosperm. Hence, the initial 161 386 flowers, which included 25874 hermaphroditic flowers each capable of producing two seeds, produced 42 468 seeds of which an estimated 25906 entered the seed bank as undamaged seeds with fully developed endosperm. Path analysis indicated that the number of hermaphroditic flowers on a plant and the percentage of seeds attacked by seed parasites had the greatest direct effects on the number of viable seeds entering the seed bank. The date at which a plant began flowering and the percentage of flowers setting seed had smaller or only indirect effects on viable seed production. Mean seed mass for plants was not significantly related to any of the factors that affected seed number, but little of the variance in seed mass occurred among plants. Masses of intact seeds in the population ranged 9-fold in both 1987 and 1988. Thirty-five percent of the variance was among seeds within umbels, 46% was among umbels within plants, and only 19% was among plants. The large variation among umbels within plants resulted from a seasonal pattern in which seeds from umbels produced late in the spring had lower mean seed masses than seeds from umbels produced early in the spring. Overall, the results indicate that both direct and indirect interactions between number of flowers, the date of initiation of flowering, seed set, and seed parasitism affect the number of viable seeds entering the seed bank. These interactions strongly bias viable seed output to a small minority of plants that produce many seeds with a wide range of masses over the growing season.  相似文献   

9.
Summary We investigated the effects of plant density on cleistogamous (CL) and chasmogamous (CH) flowering phenology and seed production in a natural Impatiens capensis population, by censusing individually marked plants at experimentally reduced and natural densities. CL flowering was earlier at natural density. This plastic density response may have resulted from a stress-related threshold for CL flowering; slower growing plants at natural density flowered earlier. Although apparently triggered by slow early growth, early CL flowering also involved an additional cost for later growth rate. In contrast, CH flowering was unrelated to relative growth rate, but apparently required a size threshold. Experimental density reduction resulted in earlier CH flowering and a dramatic increase in the percentage of plants producing CH flowers. Individual CL and CH flowering duration and flower production were greater at reduced density. These density-dependent effects caused differences between treatments in the shape and location of population flowering phenology curves. Moreover, the percentage of CH seeds produced per individual was much higher at reduced density. At natural density total seed production per plant was lower and more hierarchical than at lower density, suggesting that dominance and suppression shape jewelweed fitness distributions.  相似文献   

10.
Floral gender in angiosperms often varies within and among populations. We conducted a field survey to test how predispersal seed predation affects sex allocation in an andromonoecious alpine herb Peucedanum multivittatum. We compared plant size, male and perfect flower production, fruit set, and seed predation rate over three years among nine populations inhabiting diverse snowmelt conditions in alpine meadows. Flowering period of individual populations varied from mid‐July to late August reflecting the snowmelt time. Although perfect flower and fruit productions increased with plant size, size dependency of male flower production was less clear. The number of male flowers was larger in the early‐flowering populations, while the number of perfect flowers increased in the late‐flowering populations. Thus, male‐biased sex allocation was common in the early‐flowering populations. Fruit‐set rates varied among populations and between years, irrespective of flowering period. Fruit‐set success of individual plants increased with perfect flower number, but independent of male flower number. Seed predation by lepidopteran larvae was intense in the early‐flowering populations, whereas predation damage was absent in the late‐flowering populations, reflecting the extent of phenological matching between flowering time of host plants and oviposition period of predator moths. Seed predation rate was independent of male and perfect flower numbers of individual plants. Thus, seed predation is a stochastic event in each population. There was a clear correlation between the proportion of male flowers and the intensity of seed predation among populations. These results suggest that male‐biased sex allocation could be a strategy to reduce seed predation damage but maintain the effort as a pollen donor under intensive seed predation.  相似文献   

11.
Patterns of seed and fruit production ofBauhinia ungulata, a small tree legume indigenous in tropical America, were studied in Costa Rica. Only about 8% of flowers produced fruits. The average pod had 19 ovules and about two thirds of these began seed development, with mature pods containing an average of 9.7 mature undamaged seeds. About half of the mature pods were damaged by herbivores and within these, 27% of ovules or seeds had been eaten. Among trees there was no significant variation in pod production, but the number of ovules per pod and seed production per pod varied significantly. Within infructescences most pods were retained at middle positions. Within pods, the probability of an ovule developing into a seed increased toward the distal end. The pattern of seed and fruit production in this species agrees well in general with that reported for other neotropical legumes. The abortion of seeds and fruits can be regarded as a way of controlling maternal investment, and as a response to herbivory.  相似文献   

12.
Johan Ehrlén 《Oecologia》1996,108(4):708-713
The effect of predispersal seed predation by Bruchus atomarius (Bruchidae, Coleoptera) on individual performance and population dynamics of the perennial forest herb, Lathyrus vernus (Leguminosae), was investigated in 11 permanent plots over 4 years. Seed predation and parameters describing intra-specific neighbour distance, plant size, inflorescence size, flowering phenology and current and previous herbivore damage were measured on all plants. In addition, demographic information from all plots was analysed using transition matrix population models in order to estimate the influence of seed predation on population growth rates. Predispersal seed predation rates differed significantly among years. Plot averages ranged from 0 to 83.7%. However, most of the variation occurred among individuals. Within individuals there was no consistency in predation rates among years. Exposure to herbivory, plant size and flowering phenology did not affect predation rates but individuals with larger inflorescences suffered from significantly higher predation. Seed predation in L. vernus was not influenced by neighbour distances of individual plants but it was positively correlated with the average density of seeds within plots, suggesting that seed predation is density dependent at the patch level. The reduction in population growth rate due to seed predation ranged from 0 to 7.6%. The sensitivity of population growth rate to reductions in seed production varied considerably among years and plots. This variation was mainly due to differences in the reproductive value of seeds and seedlings. The intensity of seed predation over the range found was not correlated with changes in population growth rate. The results of this study suggest that the influence of external factors, like seed predation, on population growth rate largely depends on the demographic transition rates in the investigated population.  相似文献   

13.
Abstract The intensity of seed predation the invasive tropical legume Leucaena leucocephala by the bruchid Acanthoscelides macropthalmus was investigated in south‐eastern Queensland, Australia. The number of seeds damaged by A. macropthalmus as a proportion of total seeds available was found to increase the longer the pods remained on the tree. Seed predation ranged from a mean of 10.75% of seeds on pods that remained on the plant for 1 month and increased to 53.54% for pods that remained of the plant for 4 months. The low bruchid populations at high pod densities results in ‘predator satiation’. However, pods dehisce over time and the proportion of pods available over time to the bruchid correspondingly declines. By the time bruchid densities build up, most pods have dehisced and the seeds consequently escape predation. As a result the number of seeds lost to bruchid damage increases only marginally over time. Despite the levels of seed predation observed over the course of the study, the number of seeds in the soil seedbank almost doubled over time increasing from 8.5 seeds m?3 to 15.5 seeds m?3 over a 4‐month period. Levels of seed predation and addition of seeds to the soil seedbank were not correlated. The taxonomic (subspecies) status and apparency of host plants as measured by plant and patch traits (average plant height, density of podding plants and patch size) did not influence levels of seed predation. Pre‐dispersal seed predation studies need to take into account the pod/seed retention behaviour of the plant. The ability of the bruchid to regulate the invasiveness of Leucaena through influencing its demography is likely to be diminished if the insect populations cannot increase rapidly enough to use the seeds before pod dehiscence.  相似文献   

14.
In field experiments carried out at Hyderabad, India with early and mediumduration cultivars of Cajanus cajan sown at the normal time, in July, removal of all flowers and young pods for up to 5 wk had little or no effect on final yield. The flowering period of the deflowered plants was extended and their senescence delayed. The plants compensated for the loss of earlier-formed flowers by setting pods from later-formed flowers; there was relatively little effect of the deflowering treatments on the number of seeds per pod or weight per seed. The plants were also able to compensate for the repeated removal of all flowers and young pods from alternate nodes by setting more pods at the other nodes.
The removal of flowers from pigeonpeas grown as a winter crop resulted in yield reductions roughly proportional to the length of the deflowering period, probably because maturation of these plants was delayed and occurred under increasingly unfavourable conditions as the weather became hotter.  相似文献   

15.
Fluctuating conditions throughout the year and changes in floral display may promote shifts in pollinator activity and predator pressure, influencing female reproductive output, especially for extended flowering species under seasonal climates. In this regard, flowering and fruit production were tracked in 2 different years in 2 populations of Ononis tridentata in Central Spain. Total fruit production was estimated, and fruits were harvested to obtain primary fruit investment, pollination success, predation incidence, seed production, seed weight and germination rates. Ononis tridentata combined spring mass flowering with a steady long flowering period across the summer and fall. The fewer flowers that are produced in fall were successfully pollinated, and produced fruits that were subject to minimal predation pressure relative to spring fruits. Moreover, fall fruits contained a higher number of heavier seeds and showed higher germination rates than those of spring seeds. Fall reproductive output represent 10% of annual viable seeds and thus may act as an important complement to the main spring reproductive investment. Extended flowering could be interpreted as a “bet-hedging strategy” for enduring Mediterranean unpredictable and changing environmental conditions.  相似文献   

16.
The flowering biology and pollination ecology ofLoranthus acaciae was studied at Hazeva in the northern Arava Valley in Israel. Flowers at anthesis had red anthers, a red stigma and a green corolla which turned red as a postfloral phenomenon. Their flowering period was approximately 10 months long (from mid-June until mid-April) during which time two main flowering patterns were distinguished. Some plants flowered twice a year, with separate summer and winter flowering periods; other plants flowered continuously, with two peaks, one in the summer and one in the winter. Several significant differences between summer and winter flowering and fruiting were found: (1) the summer flowering period was shorter than that of winter, (2) flowering synchrony between individual plants was lower in summer than in winter, (3) in summer the plants produced a larger proportion of female flowers, whereas in winter most of the plants produced a larger proportion of hermaphrodites, (4) in summer a limited number of plants produced smaller flowers while the majority produced normal-sized flowers, whereas in winter the entire population produced only normal-sized flowers, and (5) fruit set percentage was lower in summer than in winter.L. acaciae was found to be self-compatible, but, since it was not spontaneously self-pollinated, it showed high dependence on pollinator activity. In summer the flowers were visited by a wide spectrum of pollinators, both birds and insects, while in winter flowers were visited almost exclusively by the orange-tufted sunbird (Nectarinia osea osea, Nectariniidae). These seasonal changes in flowering characteristics and pollinator activity could explain why reproductive success is higher in winter than in summer.  相似文献   

17.
The genetic variation in flowering phenology may be an important component of a species’ capacity to colonize new environments. In native populations of the invasive species Ulex europaeus, flowering phenology has been shown to be bimodal and related to seed predation. The aim of the present study was to determine if this bimodality has a genetic basis, and to investigate whether the polymorphism in flowering phenology is genetically linked to seed predation, pod production and growth patterns. We set up an experiment raising maternal families in a common garden. Based on mixed analyses of variance and correlations among maternal family means, we found genetic differences between the two main flowering types and confirmed that they reduced seed predation in two different ways: escape in time or predator satiation. We suggest that this polymorphism in strategy may facilitate maintain high genetic diversity for flowering phenology and related life‐history traits in native populations of this species, hence providing high evolutionary potential for these traits in invaded areas.  相似文献   

18.
Summary We examined the relationship between flowering phenology, reproductive success (seed production only), and seed head herbivory for 20 similarly sized clones of Erigeron glaucus growing at Bodega Bay Reserve, northern California, USA. Although clones tended to reach peak flowering on the same date, they differed in the proportion of their total flowers produced around that date (flowering synchrony). Clones also differed in the number and density of flower heads presented at any one time to pollinators and herbivores (floral display). Both of these characteristics had consequences for herbivory and plant reproductive success. The proportion of flower heads damaged by insect herbivores was greater for clones that concentrated flowering activity during the main flowering period for the population as a whole (high synchrony) compared to clones that spread flowering out temporally. The primary reason for this result was that clones with low flowering synchrony produced a significant proportion of their flower heads during the fall and therefore, escaped attack by the tephritid fly, Tephritis ovatipennis. Clones with intermediate synchrony had lower seed success (total number of viable seeds produced over the year) than clones with either low or high synchrony. The proportion of flower heads damaged by insect herbivores and number of tephritid flies reared from flower heads were both negatively correlated to floral display while seed head mass and germination rates were positively related to display. Thus, clones which produced dense floral displays were favored both in terms of reduced herbivory and increased successful seed production.  相似文献   

19.
Mast-seeding behaviour was monitored in 18 populations of eight species of the African cycad genus Encephalartos between 1988 and 1991. The coefficient of variation (V) in annual cone production for each population ranged between 88 and 200, indicating large fluctuations in reproductive effort between years. Data were collected to determine whether mast-seeding reduced levels of predispersal seed predation by satiating seed predators in mast years and whether it resulted in a reproductive advantage over plants which reproduced more frequently. Masting intensity was greatest in those populations in which individual plants suffered the highest levels of predispersal seed predation in years when only a few plants produced seeds. The principal seed predators were two congeneric weevil species, Antliarhinus zamiae and A. signatus, which develop exclusively on cycad seeds. The lowest intensity of mast-seeding was recorded for cycad populations with low levels of seed predation and in which A. zamiae and A. signatus occurred only in low numbers or were entirely absent. Larger seed crops appeared to result in lower levels of seed predation by A. zamiae and A. signatus in four populations of E. altensteinii, and differences in seed crop size accounted for 48–66% of variation in levels of seed predation in populations of five cycad species. In one population of E. altensteinii, lower levels of seed predation in plants reproducing periodically resulted in a reproductive advantage over plants reproducing more frequently. These results are consistent with the predator satiation hypothesis. However, in most cycad populations, numbers of seed predators did not appear to decrease significantly after a period of 2–8 years between reproductive episodes and, in two of three populations examined, periodic reproduction did not increase the number of seeds surviving to dispersal over a 4-year period. These results are interpreted to mean that periodic reproduction has not evolved in response to selection imposed by seed predators, but that selection may favour those plants which experience lower levels of seed predation by coning in synchrony with the majority of plants in the population.  相似文献   

20.
Field studies on two populations of Agalinis strictifolia were conducted over a 3-year period to investigate the relationship between flowering time of individuals and plant size, flowering duration, flower and fruit production, fruit predation, and growth rate. Seasonal patterns of pollinator visitation were compared with those of individual flowering time, flower density, percent fruit production, and mean seeds/fruit. In general, early and middle flowering individuals (as determined by either first flowering date or peak flowering) were larger, flowered longer, and produced more flowers and fruits than late flowering individuals. Early and middle flowering individuals (based on first flowering date) also grew faster than late flowering individuals. Although early and middle flowering individuals produced more fruits, fruit predators did not damage a disproportionate number of fruits compared to late flowering individuals. Patterns of bee visitation showed no association with seasonal patterns of flower density, percent fruit production, mean seed/fruit, or individual flowering time. In populations of A. strictifolia, it would seem that biotic or environmental determinants of growth rate (hence size and reproductive success) may be more important in generating variation in individual flowering time than patterns of pollinator visitation or fruit predation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号