首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells of the wild-type yeast strain Zygosaccharomyces bisporus CBS 702 form alpha-hydroxy ketones from aromatic amino acid precursors during fermentation. Pyruvate decarboxylase (PDC, E.C. 4.1.1.1), the key enzyme of this biotransformation catalysing the non-oxidative decarboxylation of pyruvate and other 2-oxo-acids, was purified and characterised. The active enzyme is homotetrameric (alpha4) with a molecular mass of about 244 kDa. Activation of PDC by its substrate pyruvate results in a sigmoidal dependence of the reaction rate from substrate concentration (apparent Km value 1.73 mM; Hill coefficient 2.10). A cDNA library was screened using a PCR-based procedure, and a 1856 bp cDNA of PDC was identified and sequenced. The cDNA encodes a polypeptide of 563 amino acid residues (monomeric unit). Sequence alignments demonstrate high homologies (> 80%) to PDC genes from Saccharomyces cerevisiae, Kluyveromyces lactis and Kluyveromyces marxianus.  相似文献   

2.
During pyruvate production, ethanol is produced as a by-product, which both decreases the amount of pyruvate and makes the recovery of pyruvate more difficult. Pyruvate decarboxylase (PDC, EC 4.1.1.1), which degrades pyruvate to acetaldehyde and ultimately to ethanol, is a key enzyme in the pyruvate metabolism of yeast. Therefore, to order to increase the yield of pyruvate in Torulopsis glabrata, targeted PDC-disrupted strains were metabolically engineered. First, T. glabrata ura3 strains that were suitable for genetic transformation were isolated and identified through ethyl methansulfonate mutagenesis, 5-fluoroortic acid media selection, and Sacchramyces cerevisiae URA3 complement. Next, the PDC gene in T. glabrata was specifically disrupted through homologous recombinant with the S. cerevisiae URA3 gene as the selective marker. The PDC activity of the disruptants was about 33% that of the parent strain. Targeted PDC gene disruption in T. glabrata was also confirmed by PCR amplification and sequencing of the PDC gene and its mutants, PDC activity staining, and PDC Western blot. The disruptants displayed higher pyruvate accumulation and less ethanol production. Under basal fermentation conditions (see Section 2), the disruptants accumulated about 20 g/L of pyruvate with 4.6 g/L of ethanol, whereas the parental strain (T. glabrata IFO005) only accumulated 7–8 g/L of pyruvate with 7.4 g/L of ethanol. Under favorable conditions in jar fermentation, the disruptants accumulated 82.2 g/L of pyruvate in 52 h.  相似文献   

3.
Acetobacter pasteurianus, an obligately oxidative bacterium, is the first organism shown to utilize pyruvate decarboxylase (PDC) as a central enzyme for oxidative metabolism. In plants, yeast, and other bacteria, PDC functions solely as part of the fermentative ethanol pathway. During the growth of A. pasteurianus on lactic acid, the central intermediate pyruvate is cleaved to acetaldehyde and CO(2) by PDC. Acetaldehyde is subsequently oxidized to its final product, acetic acid. The presence of the PDC enzyme in A. pasteurianus was confirmed by zymograms stained for acetaldehyde production, enzyme assays using alcohol dehydrogenase as the coupling enzyme, and by cloning and characterization of the pdc operon. A. pasteurianus pdc was also expressed in recombinant Escherichia coli. The level of PDC activity was regulated in response to growth substrate, highest with lactic acid and absent with mannitol. The translated PDC sequence (548 amino acids) was most similar to that of Zymomonas mobilis, an obligately fermentative bacterium. A second operon ( aldA) was also found which is transcribed divergently from pdc. This operon encodes a putative aldehyde dehydrogenase (ALD2; 357 amino acids) related to class III alcohol dehydrogenases and most similar to glutathione-dependent formaldehyde dehydrogenases from alpha-Proteobacteria and Anabeana azollae.  相似文献   

4.
The E1 alpha and E1 beta subunits of the pyruvate dehydrogenase complex from the yeast Saccharomyces cerevisiae were purified. Antibodies raised against these subunits were used to clone the corresponding genes from a genomic yeast DNA library in the expression vector lambda gt11. The gene encoding the E1 alpha subunit was unique and localized on a 1.7-kb HindIII fragment from chromosome V. The identify of the gene was confirmed in two ways. (a) Expression of the gene in Escherichia coli produced a protein that reacted with the anti-E1 alpha serum. (b) Gene replacement at the 1.7-kb HindIII fragment abolished both pyruvate dehydrogenase activity and the production of proteins reacting with anti-E1 alpha serum in haploid cells. In addition, the 1.7-kb HindIII fragment hybridized to a set of oligonucleotides derived from amino acid sequences from the N-terminal and central regions of the human E1 alpha peptide. We propose to call the gene encoding the E1 alpha subunit of the yeast pyruvate dehydrogenase complex PDA1. Screening of the lambda gt11 library using the anti-E1 beta serum resulted in the reisolation of the RAP1 gene, which was located on chromosome XIV.  相似文献   

5.
Ethanol production using hemicelluloses has recently become a focus of many researchers. In order to promote D: -xylose fermentation, we cloned the bacterial xylA gene encoding for xylose isomerase with 434 amino acid residues from Agrobacterium tumefaciens, and successfully expressed it in Saccharomyces cerevisiae, a non-xylose assimilating yeast. The recombinant strain S. cerevisiae W303-1A/pAGROXI successfully colonized a minimal medium containing D: -xylose as a sole carbon source and was capable of growth in minimal medium containing 2% xylose via aerobic shake cultivation. Although the recombinant strain assimilates D: -xylose, its ethanol productivity is quite low during fermentation with D: -xylose alone. In order to ascertain the key enzyme in ethanol production from D: -xylose, we checked the expression levels of the gene clusters involved in the xylose assimilating pathway. Among the genes classified into four groups by their expression patterns, the mRNA level of pyruvate decarboxylase (PDC1) was reduced dramatically in xylose media. This reduced expression of PDC1, an enzyme which converts pyruvate to acetaldehyde, may cause low ethanol productivity in xylose medium. Thus, the enhancement of PDC1 gene expression may provide us with a useful tool for the fermentation of ethanol from hemicellulose.  相似文献   

6.
7.
The 60S ribosomal subunits from Saccharomyces cerevisiae contain a set of four acidic proteins named YP1alpha, YP1beta, YP2alpha, and YP2beta. The genes for each were PCR amplified from a yeast cDNA library, sequenced, and expressed in Escherichia coli cells using two expression systems. The first system, pLM1, was used for YP1beta, YP2alpha, and YP2beta. The second one, pT7-7, was used for YP1alpha. Expression in both cases was under the control of a strong inducible T7 promoter. The amount of induced recombinant proteins in the host cells was around 10 to 20% of the total soluble bacterial proteins. A new protocol for purification of all four recombinant proteins was established. The preliminary steps of purification were done by ammonium sulfate precipitation (YP1alpha, YP1beta) or NH4Cl/ethanol extraction (YP2alpha, YP2beta). The recombinant proteins were then purified to apparent homogeneity by only two steps of classical chromatographies, ion exchange (DEAE-cellulose) and gel filtration (Sephacryl S-200). Isoelectrofocusing analysis of YP2alpha and YP2beta showed the pIs of the recombinant proteins are the same as that of the native yeast ribosomal P2 proteins. The pI of YP1alpha is changed due to the addition of five amino acids attached to the N-terminus of recombinant polypeptide from the expression vector. YP1beta was obtained as a truncated form of polypeptide, similar to its ribosomal counterpart, YP1beta'. This was proved by isoelectrofocusing gel analysis.  相似文献   

8.
AIMS: To investigate the relationship between the activity of pyruvate dehydrogenase (PDH) bypass and the production of pyruvate of a multi-vitamin auxotrophic yeast Torulopsis glabrata. METHODS AND RESULTS: Torulopsis glabrata CCTCC M202019, a multi-vitamin auxotrophic yeast that requires acetate for complete growth on glucose minimum medium, was selected after nitrosoguanidine mutagenesis of the parent strain T. glabrata WSH-IP303 screened in previous study [Li et al. (2001) Appl. Microbiol. Biotechnol. 55, 680-685]. Strain CCTCC M202019 produced 21% higher pyruvate than the parent strain and was genetically stable in flask cultures. The activities of the pyruvate metabolism-related enzymes in parent and mutant strains were measured. Compared with the parent strain, the activity of pyruvate decarboxylase (PDC) of the mutant strain CCTCC M202019 decreased by roughly 40%, while the activity of acetyl-CoA synthetase (ACS) of the mutant increased by 103.5 or 57.4%, respectively, in the presence or absence of acetate. Pyruvate production by the mutant strain CCTCC M202019 reached 68.7 g l(-1) at 62 h (yield on glucose of 0.651 g g(-1)) in a 7-l jar fermentor. CONCLUSIONS: The increased pyruvate yield in T. glabrata CCTCC M202019 was due to a balanced manipulation of the PDH bypass, where the shortage of cytoplasmic acetyl-CoA caused by the decreased activity of PDC was properly compensated by the increased activity of ACS. SIGNIFICANCE AND IMPACT OF THE STUDY: Manipulating the PDH bypass may provide an alternative approach to enhance the production of glycolysis-related metabolites.  相似文献   

9.
We have cloned and sequenced the Saccharomyces cerevisiae gene for S-adenosylmethionine decarboxylase. This enzyme contains covalently bound pyruvate which is essential for enzymatic activity. We have shown that this enzyme is synthesized as a Mr 46,000 proenzyme which is then cleaved post-translationally to form two polypeptide chains: a beta subunit (Mr 10,000) from the amino-terminal portion and an alpha subunit (Mr 36,000) from the carboxyl-terminal portion. The protein was overexpressed in Escherichia coli and purified to homogeneity. The purified enzyme contains both the alpha and beta subunits. About half of the alpha subunits have pyruvate blocking the amino-terminal end; the remaining alpha subunits have alanine in this position. From a comparison of the amino acid sequence deduced from the nucleotide sequence with the amino acid sequence of the amino-terminal portion of each subunit (determined by Edman degradation), we have identified the cleavage site of the proenzyme as the peptide bond between glutamic acid 87 and serine 88. The pyruvate moiety, which is essential for activity, is generated from serine 88 during the cleavage. The amino acid sequence of the yeast enzyme has essentially no homology with S-adenosylmethionine decarboxylase of E. coli (Tabor, C. W., and Tabor, H. (1987) J. Biol. Chem. 262, 16037-16040) and only a moderate degree of homology with the human and rat enzymes (Pajunen, A., Crozat, A., J?nne, O. A., Ihalainen, R., Laitinen, P. H., Stanley, B., Madhubala, R., and Pegg, A. E. (1988) J. Biol. Chem. 263, 17040-17049); all of these enzymes are pyruvoyl-containing proteins. Despite this limited overall homology the cleavage site of the yeast proenzyme is identical to the cleavage sites in the human and rat proenzymes, and seven of the eight amino acids adjacent to the cleavage site are identical in the three eukaryote enzymes.  相似文献   

10.
We report characterization of the component proteins and molecular cloning of the genes encoding the two subunits of the carboxyltransferase component of the Escherichia coli acetyl-CoA carboxylase. Peptide mapping of the purified enzyme component indicates that the carboxyltransferase component is a complex of two nonidentical subunits, a 35-kDa alpha subunit and a 33-kDa beta subunit. The alpha subunit gene encodes a protein of 319 residues and is located immediately downstream of the polC gene (min 4.3 of the E. coli genetic map). The deduced amino acid composition, molecular mass, and amino acid sequence match those determined for the purified alpha subunit. Six sequenced internal peptides also match the deduced sequence. The amino-terminal sequence of the beta subunit was found within a previously identified open reading frame of unknown function called dedB and usg (min 50 of the E. coli genetic map) which encodes a protein of 304 residues. Comparative peptide mapping also indicates that the dedB/usg gene encodes the beta subunit. Moreover, the deduced molecular mass and amino acid composition of the dedB/usg-encoded protein closely match those determined for the beta subunit. The deduced amino acid sequences of alpha and beta subunits show marked sequence similarities to the COOH-terminal half and the NH2-terminal halves, respectively, of the rat propionyl-CoA carboxylase, a biotin-dependent carboxylase that catalyzes a similar carboxyltransferase reaction reaction. Several conserved regions which may function as CoA-binding sites are noted.  相似文献   

11.
Trypanosoma cruzi, the protozoan parasite causing Chagas disease, contains a novel aromatic alpha-hydroxy acid dehydrogenase. This enzyme is responsible, together with tyrosine aminotransferase, for the catabolism of aromatic amino acids, which leads to the excretion of aromatic lactate derivatives into the culture medium. The gene encoding the aromatic alpha-hydroxy acid dehydrogenase has been cloned through a combined approach using screening of an expression genomic library with antibodies, peptide sequencing and PCR amplification. Its sequence shows high similarity to the cytosolic malate dehydrogenases. However, the enzyme has no malate dehydrogenase activity. The gene seems to be present in a single copy per haploid genome and is differentially expressed throughout the parasite's life cycle, the highest levels being found in the insect forms of T. cruzi. The purified recombinant enzyme, expressed in Escherichia coli, was unable to reduce oxaloacetate and had kinetic constants similar to those of the natural aromatic alpha-hydroxy acid dehydrogenase. Sequence comparisons suggest that the aromatic alpha-hydroxy acid dehydrogenase derives from a cytosolic malate dehydrogenase no longer present in the parasite, made redundant by the presence of a glycosomal malate dehydrogenase as a member of a shuttle device involving the mitochondrial isoenzyme.  相似文献   

12.
An improved procedure was developed for the isolation of pyruvate decarboxylase from wheat germ. Its final step, an electrophoresis of the native apoenzyme in concave pore gradient polyacrylamide gels, followed by superficial activity-staining, produced two bands of different molecular masses and chain compositions. The high-molecular-mass band occurred in low quantity and consisted of, probably eight, apparently identical chains of Mr = 33,000, as judged from sodium dodecyl sulfate electrophoreses. The low-molecular-mass band contained two types of chains with Mr alpha = 63,000-65,000 and Mr beta = 61,000-62,000. The N termini of both chains were threonine, whereas their C-terminal sequences were different: alpha, -(Val)-(Ser)-(Ala)-Leu; beta, -(His)-(Asp)-(Ala)-Ser. Their amino acid composition was too different to be compatible with our original concept of one chain being produced from the other by proteolytic shortening. Limited proteolysis by Staphylococcus aureus V8 proteinase yielded peptides partly identical size and partly quite different. In all properties investigated, the low-molecular-mass enzyme largely resembled yeast pyruvate decarboxylase; the holoenzyme appeared to possess (alpha beta)2 structure, the apoenzyme alpha beta. SH reagents inactivated the enzyme. Binding and fluorescence of 2-p-toluidinonaphthalene-6-sulfonate indicated a similar lipophilicity of the active site as found earlier for the yeast enzyme. 2-Hydroxy-5-nitrobenzyl modification of exposed tryptophan residues left the holoenzyme intact, but in the apoenzyme it destroyed most of the cofactor-binding ability and hence the activity. The strength of cofactor binding and the maximal specific activity were found somewhat lower than in yeast pyruvate decarboxylase.  相似文献   

13.
A 4175-bp EcoRI fragment of DNA that encodes the alpha and beta chains of the pyruvate dehydrogenase (lipoamide) component (E1) of the pyruvate dehydrogenase multienzyme complex of Bacillus stearothermophilus has been cloned in Escherichia coli. Its nucleotide sequence was determined. Open reading frames (pdhA, pdhB) corresponding to the E1 alpha subunit (368 amino acids, Mr 41,312, without the initiating methionine residue) and E1 beta subunit (324 amino acids, Mr 35,306, without the initiating methionine residue) were identified and confirmed with the aid of amino acid sequences determined directly from the purified polypeptide chains. The E1 beta gene begins just 3 bp downstream from the E1 alpha stop codon. It is followed, after a longer gap of 73 bp, by the start of another but incomplete open reading frame that, on the basis of its known amino acid sequence, encodes the dihydrolipoyl acetyltransferase (E2) component of the complex. All three genes are preceded by potential ribosome-binding sites and the gene cluster is located immediately downstream from a region of DNA showing numerous possible promoter sequences. The E1 alpha and E1 beta subunits of the B. stearothermophilus pyruvate dehydrogenase complex exhibit substantial sequence similarity with the E1 alpha and E1 beta subunits of pyruvate and branched-chain 2-oxo-acid dehydrogenase complexes from mammalian mitochondria and Pseudomonas putida. In particular, the E1 alpha chain contains the highly conserved sequence motif that has been found in all enzymes utilizing thiamin diphosphate as cofactor.  相似文献   

14.
J B Green 《FEBS letters》1989,246(1-2):1-5
Protein sequences of pyruvate decarboxylase (PDC) derived from cloned yeast (Saccharomyces cerevisiae) and bacterial (Zymomonas mobilis) genes were compared with each other and with sequence databases. Extensive sequence similarities were found between them and with two others: cytochrome-linked pyruvate oxidase from Escherichia coli and acetolactate synthase (ilvI in E. coli; ILV2 gene in S. cerevisiae). All catalyse decarboxylation of pyruvate using thiamine pyrophosphate (TPP) as cofactor. General overall similarity suggests common ancestry for these enzymes. None of the sequences was similar to the E1 component of pyruvate dehydrogenase from E. coli which also decarboxylates pyruvate with the help of TPP.  相似文献   

15.
The epoxide hydrolase (EH)-encoding gene (EPH1) from the basidiomycetous yeast Xanthophyllomyces dendrorhous was isolated. The genomic sequence has a 1,236-bp open reading frame which is interrupted by eight introns that encode a 411-amino-acid polypeptide with a calculated molecular mass of 46.2 kDa. The amino acid sequence is similar to that of microsomal EH and belongs to the alpha/beta hydrolase fold family. The EPH1 gene was not essential for growth of X. dendrorhous in rich medium under laboratory conditions. The Eph1-encoding cDNA was functionally expressed in Escherichia coli. A sixfold increase in specific activity was observed when we used resting cells rather than X. dendrorhous. The epoxides 1,2-epoxyhexane and 1-methylcyclohexene oxide were substrates for both native and recombinant Eph1. Isolation and characterization of the X. dendrorhous EH-encoding gene are essential steps in developing a yeast EH-based epoxide biotransformation system.  相似文献   

16.
A novel gene (pdxP) encoding a pyridoxine 5'-phosphate (PNP) phosphatase involved in the last step of pyridoxine biosynthesis was cloned from Sinorhizobium meliloti IFO 14782 on the basis of the peptide sequences of the natural enzyme. The pdxP gene is an open reading frame (708 bp) encoding 235 amino acid residues with a calculated molecular weight of 26,466. From its deduced amino acid sequence, it was predicted that the enzyme belongs to the haloacid dehalogenase superfamily. Transformants of Escherichia coli and S. meliloti by pdxP gene expression plasmids showed stimulated PNP phosphatase activities. When pdxP was overexpressed together with the PNP synthase gene (pdxJ) in S. meliloti, the recombinant strain produced 149 mg/l of pyridoxine, 46% and 16% higher than the host strain and the pdxJ recombinant of S. meliloti respectively.  相似文献   

17.
In human (h) pyruvate dehydrogenase complex (PDC) the pyruvate dehydrogenase (E1) is bound to the E1-binding domain of dihydrolipoamide acetyltransferase (E2). The C-terminal surface of the E1beta subunit was scanned for the negatively charged residues involved in binding with E2. betaD289 of hE1 interacts with K276 of hE2 in a manner similar to the corresponding interaction in Bacillus stearothermophilus PDC. In contrast to bacterial E1beta, the C-terminal residue of the hE1beta does not participate in the binding with positively charged residues of hE2. This latter finding shows species specificity in the interaction between hE1beta and hE2 in PDC.  相似文献   

18.
A Haas  K Brehm  J Kreft    W Goebel 《Journal of bacteriology》1991,173(16):5159-5167
A gene coding for catalase (hydrogen-peroxide:hydrogen-peroxide oxidoreductase; EC 1.11.1.6) of the gram-positive bacterium Listeria seeligeri was cloned from a plasmid library of EcoRI-digested chromosomal DNA, with Escherichia coli DH5 alpha as a host. The recombinant catalase was expressed in E. coli to an enzymatic activity approximately 50 times that of the combined E. coli catalases. The nucleotide sequence was determined, and the deduced amino acid sequence revealed 43.2% amino acid sequence identity between bovine liver catalase and L. seeligeri catalase. Most of the amino acid residues which are involved in catalytic activity, the formation of the active center accession channel, and heme binding in bovine liver catalase were also present in L. seeligeri catalase at the corresponding positions. The recombinant protein contained 488 amino acid residues and had a calculated molecular weight of 55,869. The predicted isoelectric point was 5.0. Enzymatic and genetic analyses showed that there is most probably a single catalase of this type in L. seeligeri. A perfect 21-bp inverted repeat, which was highly homologous to previously reported binding sequences of the Fur (ferric uptake regulon) protein of E. coli, was detected next to the putative promoter region of the L. seeligeri catalase gene.  相似文献   

19.
The maleate cis-trans isomerase gene (maiA) from Serratia marcescens IFO3736 was cloned and sequenced. Serratia MaiA has 62.4% amino acid identity with Alcaligenes faecalis IFO13111 MaiA and 64.9% with Bacillus stearothermophilus MI-102 MaiA. All known ten amino acid sequences of MaiA had significant conserved regions containing cysteine residues, which were previously suggested to be involved in an active site of the enzyme. The maiA gene was expressed in Escherichia coli, and expressed products MaiA was purified and characterized. The purified enzyme of strain IFO3736 showed high activity at room temperature and high heat stability. It also showed higher activity in the presence of high concentration of aspartic acid than the enzyme of A. faecalis IFO13111, but it was also sensitive to chemical oxidation. By amino acid composition analysis, cysteine, methionine, and tyrosine residues were suggested to be oxidized to inactivate the enzyme by chemical oxidation. To investigate the mechanism of chemical oxidation of the enzyme, six methionine residues in the conserved regions of S. marcescens MaiA were replaced with cysteine residues by site-directed mutagenesis. The analysis of the constructed mutants suggested that the Met201 residue near the Cys198 residue is involved in the sensitivity of the enzyme to chemical oxidation.  相似文献   

20.
Pea (Pisum sativum) mitochondrial pyruvate dehydrogenase (E1) was produced by coexpression of the mature alpha and beta subunits in the cytoplasm of the yeast Pichia pastoris. Size-exclusion chromatography of recombinant E1, using a Superose 12 column, yielded a peak at M(r) 160,000 that contained both alpha and beta subunits as well as E1 activity. This corresponds to the size of native alpha(2)beta(2) E1. Recombinant E1 alpha (His(6))-E1 beta was purified by affinity chromatography using immobilized Ni(+), with a yield of 2.8 mg L(-1). The pyruvate-decarboxylating activity of recombinant E1 was dependent upon added Mg(2+) and thiamin-pyrophosphate and was enhanced by the oxidant potassium ferricyanide. Native pea mitochondrial E1-kinase catalyzed phosphorylation of Ser residues in the alpha-subunit of recombinant E1, with concomitant loss of enzymatic activity. Thus, mitochondrial pyruvate dehydrogenase can be assembled in the cytoplasm of P. pastoris into an alpha(2)beta(2) heterotetramer that is both catalytically active and competent for regulatory phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号