首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In order to improve the gas evolution rate during anaerobic digestion of coffee waste by two-phase methane fermentation with slurry-state liquefaction, the liquefaction and gasification processes were separately investigated. In the liquefaction process (including the acidification process), treatment at a pH above 6 had no major effects on the liquefaction and acidification rates. However, the VFA production rates were 880 and 320 mg/l·d during mesophilic (37°C) and thermophilic (53°C) liquefaction, respectively. Mesophilic conditions were superior to thermophilic conditions in the liquefaction. With respect to the gasification process, a high TOC volumetric loading rate of 21 g/l·d was achieved during thermophilic gasification. However, the mesophilic gasification did not yield stable data, even at a low TOC volumetric loading rate of 2 g/l·d. The gas yield was 1.7 l/g TOC consumed during thermophilic gasification. The thermophilic liquefaction and thermophilic gasification reactors were connected in series and a two-phase experiment was conducted with the reactors at various volumetric ratios. The maximum gas evolution rate of 1.43 l/l·d was achieved with a combination of a gasification reactor with a 0.45l working volume and liquefaction reactor with a 2l working volume. This rate was 1.7 times higher than the rate obtained in a previous study.  相似文献   

2.
Volatile fatty acids (VFA) represent short‐chain fatty acids consisting of six or fewer carbon atoms that can be distilled at atmospheric pressure. In anaerobic digestion processes VFAs are of central importance for maintaining stable reactor performance and biogas production, are used as indicators for arising problems and are important process monitoring parameters. In the present study, sludge derived form a full‐scale anaerobic digester of a wastewater treatment plant was spiked with formate, acetate, propionate, and butyrate in order to evaluate various commonly used techniques for VFA extraction, preservation, and storage. It was shown that VFA extraction after centrifugation warranted the highest recovery rates for spiked VFAs. Moreover, experiments clearly indicated the importance of a fast sample handling, including the necessity of immediate cooling of the samples. Chemical sample preservation within a narrow time frame or deep freezing emerged as an alternative to instant VFA extraction. Short‐time storage of extracted VFA samples at + 4°C is an option for up to 7 days, for longer periods storage at –20°C was found to be applicable.  相似文献   

3.
Two identical 31 completely mixed reactors with solids recycling capabilities were used to investigate the effects of hydraulic retention time (HRT) and low temperatures on volatile fatty acid (VFA) production. One reactor was fed with a 1:1 ratio of diluted primary sludge and a starch-rich industrial wastewater, while the other was fed with diluted primary sludge alone. The VFA and soluble COD concentrations and specific production rates reached their highest values at 30 h HRT and at 25 degrees C. Further increase in HRT (at 25 degrees C) or decrease in temperature (at an HRT of 30 h) resulted in lower amounts of VFA and COD produced. All parameters related to VFA and COD production were significantly higher in the industrial-municipal reactor than in the municipal-only reactor. The VFA:COD ratios were very high, with values ranging from about 0.8 to 1.0 indicating that hydrolysis was the rate-limiting step. Degradation of proteins (measured by ammonia production) was inhibited by the starch-rich wastewater in the industrial-municipal reactor, while no evidence of inhibition was found in the municipal-only reactor. This study revealed that VFA production was feasible at low temperatures (down to 8 degrees C), particularly in the presence of the industrial waste. Ultimately, the amount VFA produced was adequate, in most cases, to support subsequent biological nutrient removal (BNR) processes.  相似文献   

4.
The potential of various biomasses for the production of green chemicals is currently one of the key topics in the field of the circular economy. Volatile fatty acids (VFAs) are intermediates in the methane formation pathway of anaerobic digestion and they can be produced in similar reactors as biogas to increase the productivity of a digestion plant, as VFAs have more varying end uses compared to biogas and methane. In this study, the aim was to assess the biogas and VFA production of food waste (FW) and cow slurry (CS) using the anaerobic biogas plant inoculum treating the corresponding substrates. The biogas and VFA production of both biomasses were studied in identical batch scale laboratory conditions while the process performance was assessed with chemical and microbial analyses. As a result, FW and CS were shown to have different chemical performances and microbial dynamics in both VFA and biogas processes. FW as a substrate showed higher yields in both processes (435 ml CH4/g VSfed and 434 mg VFA/g VSfed) due to its characteristics (pH, organic composition, microbial communities), and thus, the vast volume of CS makes it also a relevant substrate for VFA and biogas production. In this study, VFA profiles were highly dependent on the substrate and inoculum characteristics, while orders Clostridiales and Lactobacillales were connected with high VFA and butyric acid production with FW as a substrate. In conclusion, anaerobic digestion supports the implementation of the waste management hierarchy as it enables the production of renewable green chemicals from both urban and rural waste materials.  相似文献   

5.
Recirculation of the leachate in the acidogenic reactor was proposed to enhance anaerobic digestion of food waste in the hybrid anaerobic solid–liquid (HASL) system. Recirculation of the leachate in the acidogenic reactor provided better conditions for extraction of organic matter from the treated food waste and buffering capacity to prevent excessive acidification in the acidogenic reactor. It ensured faster supply of nutrients in the methanogenic reactor in experiment. The highest dissolved COD and VFA concentrations in the leachate from the acidogenic reactor were reached for shorter time and were 16,670 mg/l and 9450 mg/l in control and 18,614 mg/l and 11,094 mg/l in experiment, respectively. Recycling of the leachate in the acidogenic reactor intensified anaerobic digestion of food waste and diminished time needed to produce the same quantity of methane by 40% in comparison with anaerobic digestion of food waste without recirculation.  相似文献   

6.
Degradation of diesel oil in soil using a food waste composting process   总被引:1,自引:0,他引:1  
Joo HS  Shoda M  Phae CG 《Biodegradation》2007,18(5):597-605
We investigated the simultaneous degradation of diesel oil in soil and the organic matter in food waste by composting in 8 l reactors. Using a 0.5 l/min air flow rate, and 0.5-1% diesel oil concentrations together with 20% food waste, high composting temperatures (above 60°C) were attained due to the efficient degradation of the food waste. Petroleum hydrocarbons were degraded by 80% after only 15 days composting in the presence of food waste. In a 28 l reactor scale-up experiment using 1% oil, 20% food waste and 79% soil, removal efficiencies of petroleum hydrocarbons and food waste after 15 days were 79% and 77%, respectively.  相似文献   

7.
Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 °C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 °C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 °C led to slight improvements in the reactor performance; these did not persist at 75 °C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 °C, altered by the temperature increase in the LBR. At an LBR temperature of 55 °C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 °C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas.  相似文献   

8.
A start-up experiment was performed in a laboratory-scale, upflow anaerobic sludge blanket (UASB) reactor using seed sludge from a domestic waste treatment plant at 3.8-33.3gCODl(-1)day(-1) loading rates. Analysis over the height of the reactor with time showed that the VSS in the reactor was initially differentiated into active and non-active biomass at increasing gas production and upflow velocities, and specific update rates of the volatile fatty acids (VFA) components were pronounced at the bottom 10% of the reactor. During start-up, specific methanogenic activity and chemical oxygen demand (COD) uptake rate increased from 0.075 to 0.75gCOD-CH(4)(gVSS)(-1)day(-1) and from 0.08 to 0.875gCOD removed (gVSS)(-1)day(-1), respectively. When seed sludge from a distillery waste treatment plant was used, improved performance due to a predominance of active biomass was evident when the loading rate was increased from 9.4 to 28.7gCODl(-1)day(-1). The proposed start-up evaluation is an effective tool to successfully monitor performance of UASB reactors.  相似文献   

9.
The effects of leachate recirculation and the recirculation rate on the anaerobic treatment of domestic solid waste was investigated in three simulated landfill anaerobic bioreactors. A single pass reactor was operated without leachate recirculation while the other two reactors were operated with leachate recirculation. The leachate recirculation rate was 9 l/day (13% of the reactor volume) in Reactor9, while the recirculation rate was 21 l/day (30% of the reactor volume), in Reactor21. pH, chemical oxygen demand (COD), volatile fatty acids (VFA), ammonium–nitrogen (NH4–N) total and methane gas measurements in leachate samples were regularly monitored. After 220 days of anaerobic incubation, it was observed that the pH, COD, VFA concentrations, methane gas productions and methane percentages in Reactor9 were better than the single pass reactor and Reactor21. When the leachate recirculation rate was increased to three times a decrease in pH, and an increase in VFA and COD concentrations were observed in Reactor21. The COD values were measured as 47 000, 39 000 and 52 000 mg/l while the VFA concentrations were 15 000, 13 000 and 21 000 mg/l, respectively, in single pass, Reactor9 and Reactor21 after 220 days of anaerobic incubation. The values of pH were 5.89, 6.44 and 6.16, respectively, after anaerobic incubation. The mean methane percentages of single pass reactor, Reactor9 and Reactor21 were 30, 50 and 40%, respectively, after 50 days of incubation. Leachate recirculation reduced the waste stabilization time and was effective in enhancing methane gas production and improving leachate. However, leachate recirculation was not effective in removing ammonia from the leachate. The amounts of COD recovered by methane were 62.9, 162.3 and 94.6 g for single pass, Reactor9 and Reactor21, respectively, at the end of 220 days of anaerobic incubation.  相似文献   

10.

Background

Food waste is a large bio-resource that may be converted to biogas that can be used for heat and power production, or as transport fuel. We studied the anaerobic digestion of food waste in a staged digestion system consisting of separate acidogenic and methanogenic reactor vessels. Two anaerobic digestion parameters were investigated. First, we tested the effect of 55 vs. 65 °C acidogenic reactor temperature, and second, we examined the effect of reducing the hydraulic retention time (HRT) from 17 to 10 days in the methanogenic reactor. Process parameters including biogas production were monitored, and the microbial community composition was characterized by 16S amplicon sequencing.

Results

Neither organic matter removal nor methane production were significantly different for the 55 and 65 °C systems, despite the higher acetate and butyrate concentrations observed in the 65 °C acidogenic reactor. Ammonium levels in the methanogenic reactors were about 950 mg/L NH4 + when HRT was 17 days but were reduced to 550 mg/L NH4 + at 10 days HRT. Methane production increased from ~ 3600 mL/day to ~ 7800 when the HRT was decreased. Each reactor had unique environmental parameters and a correspondingly unique microbial community. In fact, the distinct values in each reactor for just two parameters, pH and ammonium concentration, recapitulate the separation seen in microbial community composition. The thermophilic and mesophilic digesters were particularly distinct from one another. The 55 °C acidogenic reactor was mainly dominated by Thermoanaerobacterium and Ruminococcus, whereas the 65 °C acidogenic reactor was initially dominated by Thermoanaerobacterium but later was overtaken by Coprothermobacter. The acidogenic reactors were lower in diversity (34–101 observed OTU0.97, 1.3–2.5 Shannon) compared to the methanogenic reactors (472–513 observed OTU0.97, 5.1–5.6 Shannon). The microbial communities in the acidogenic reactors were > 90% Firmicutes, and the Euryarchaeota were higher in relative abundance in the methanogenic reactors.

Conclusions

The digestion systems had similar biogas production and COD removal rates, and hence differences in temperature, NH4 + concentration, and pH in the reactors resulted in distinct but similarly functioning microbial communities over this range of operating parameters. Consequently, one could reduce operational costs by lowering both the hydrolysis temperature from 65 to 55 °C and the HRT from 17 to 10 days.
  相似文献   

11.
《Process Biochemistry》2007,42(3):466-471
The present study is an attempt to investigate if a long-term acclimation of digester contents to low-temperatures would improve wastewater treatment at low-temperatures similar to mesophilic ranges. The feasibility of low-temperature (15 °C) anaerobic treatment of synthetic wastewater in an upflow anaerobic sludge blanket reactor was studied using inoculum from a cattle manure digester adapted to 15 °C. The effect of varying hydraulic retention time was studied by decreasing the retention time from 7 days to 1 day. Under a constant temperature of 15 °C with a hydraulic retention time of 1 day and a corresponding loading rate of 7.2 g-chemical oxygen demand (COD)/l/day, 90–95% removal efficiency was achieved. The methane production of 250 l/kg-COD removed at standard temperature pressure (STP) is a major highlight of the study complementing the high treatment efficiency achieved. Loading rates >5 g-COD/l/day was accompanied by increase in effluent volatile fatty acids (VFA) concentrations. Due to the presence of a high concentration of active granular sludge in the lower compartment of the reactor, 80% reduction of COD occurred within the granular bed of the reactor. Treatment of low strength wastewater for a short period showed 70–75% removal efficiencies with methane yield of 300 l/kg-COD removed. Specific methanogenic activity profiles of the anaerobic biomass revealed low-temperature (15 °C) optima, indicating selection of cold-active microorganisms during the acclimation process. The SMA assays also indicate the development of a putatively psychrophilic acetoclastic methanogenic community and biogas analysis showed 75% efficiency in energy recovery as methane.  相似文献   

12.
A pilot-scale (1,000 L) continuous flow microbial electrolysis cell was constructed and tested for current generation and COD removal with winery wastewater. The reactor contained 144 electrode pairs in 24 modules. Enrichment of an exoelectrogenic biofilm required ~60 days, which is longer than typically needed for laboratory reactors. Current generation was enhanced by ensuring adequate organic volatile fatty acid content (VFA/SCOD ≥ 0.5) and by raising the wastewater temperature (31 ± 1°C). Once enriched, SCOD removal (62 ± 20%) was consistent at a hydraulic retention time of 1 day (applied voltage of 0.9 V). Current generation reached a maximum of 7.4 A/m3 by the planned end of the test (after 100 days). Gas production reached a maximum of 0.19 ± 0.04 L/L/day, although most of the product gas was converted to methane (86 ± 6%). In order to increase hydrogen recovery in future tests, better methods will be needed to isolate hydrogen gas produced at the cathode. These results show that inoculation and enrichment procedures are critical to the initial success of larger-scale systems. Acetate amendments, warmer temperatures, and pH control during startup were found to be critical for proper enrichment of exoelectrogenic biofilms and improved reactor performance.  相似文献   

13.
Slurries containing 20% (w/v) coffee waste solids were treated anaerobically in one- and two-phase thermophilic methane fermentation systems (53°C) with or without pH control. In one-phase methane fermentation using a roller bottle reactor, the maximum gas evolution rate of 0.87 l/l·d was achieved during treatment for 91 d. However, this one-phase methane fermentation did not yield reproducible data. In a two-phase methane fermentation system consisting of a completely stirred tank reactor type (CSTR-type) liquefaction reactor without pH control and an anaerobic fluidized bed type gasification reactor, three-repetitions of treatment were conducted. Each treatment was very stable and the average gas evolution rate per volume of the gasification reactor was about 2.4 l/l·d. Two-repetitions of treatment were then done while controlling pH in the liquefaction at more than 6. The average gas evolution rate per volume of gasification reactor was found to have increased to 10.2 l/l·d, a value which corresponded to 0.84 l/l·d per total volume, including the liquefaction reactor. It was observed that treatment in a two-phase methane fermentation could be repeated in a stable fashion even in the closed system without discharging anything but the coffee waste residues.  相似文献   

14.
The marine coccolithophore, Emiliania huxleyi, grown in the laboratory was subjected to vacuum pyrolysis at various temperatures from 100 to 500 °C. The highest yield of pyrolytic gases (183 mL g−1 dry cells) was obtained at 400 °C. The amount of total hydrocarbon gas produced at 400 °C was 129 mL, about 10 times higher than at 300 °C. CH4 was the major component at the high gas-production stage (400–500 °C). The great increase in hydrocarbon gases at 400 °C was accompanied by a marked decrease in liquid saturates and aromatics. The results indicate that the liquid hydrocarbons (oil) produced by pyrolysis at lower temperature is a direct source for the formation of the hydrocarbon gases. Due to its large potential for the production of biomass and hydrocarbons with low energy input, E. huxleyi is suggested as one of candidates for the production of renewable fuels. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In the first part of this paper, we introduced a modified rotating biological contactor (RBC) for the biological treatment of waste gas, and demonstrated its feasibility by applying the process to the biodegradation of toluene in a 91-liter reactor containing 20 biofilm support discs with a diameter of 40 cm [1]. We showed that the proposed system allows the unlimited growth of the biofilm to be suppressed, hence eliminating the risk of clogging associated with other biological waste gas treatment systems. Furthermore, we observed stationary long-term performance for more than one year under typical standard operating conditions. In this part of our work, we investigate experimentally the influence of the main process parameters, i.e., gas flow rate, inlet gas concentration, and rotational speed of the biofilm supports on process performance for the same system. Experimental results indicate that the modified RBC system is mass transfer limited for toluene loadings below 150 g/m(3)h, whereas at higher inlet concentrations of the pollutant, it becomes limited by the biodegradation reaction inside the biofilm. Surprisingly, the disc rotational speed is found to have no major effect on process performance for the system under investigation. A time-independent mathematical model of the process is also presented, and predictions are compared with experimental degradation data. In the range of the investigation process parameters, good agreement between the experimental data and simulation results is obtained.  相似文献   

16.
The aim of this study was to select a support medium for an anaerobic biofilm fluidized bed reactor (AFBR) for waste water treatment. Six materials, shale, pumice, porous glass, quartz sand, activated carbon and anthracite were used as carriers for the biofilm. The reactors were operated in parallel for several months with vapour condensate from a sulfite cellulose process as feed. The criteria used for the evaluation were: a) Reproducibility of the reactor performance, b) performance of the different carriers under various loading rates, c) stability against toxic shock loadings using 2,4,6-trichlorophenol (TCP) as toxicant, d) recovery capacity after intoxication and starvation, e) adsorption/desorption behavior of the carriers.A comparison between four runs showed good reproducibility of the steady state removal rates. The performance of the reactors and the stability of the degradation rates were tested for a range of loading conditions. Unbuffered, buffered and pH controlled conditions were compared. The pumice carrier was best with respect to the degradation rate achieved per carrier mass. The response of the reactors to massive TCP step loadings was tested. Loadings less than 1.5 kg TCP/m3d resulted in initially normal gas production rates for all the systems, except the activated carbon, whose gas production was partially inhibited from the start. After increasing the load to 1.5 kg TCP/m3d the gas production rates of all the other reactors fell abruptly to zero. Restarting after 2 months, all reactors showed methanogenic activity without requiring new inoculum.Adsorption and desorption experiments with TCP showed that only the anthracite and activated carbon adsorbed appreciable amounts. The activated carbon had the greatest adsorption capacity but did not release the TCP by desorption, as did the anthracite.A bicomponent (pumice and anthracite) carrier mixture was compared in biological experiments with pumice and anthracite carrier alone, with and without TCP loading. The pumice and the carrier-mix performed equally well under non-toxic-loading conditions. With TCP toxic loading, the performance of the anthracite was superior. The anthracite carrier could be regenerated, owing mainly to its capacity for desorption.  相似文献   

17.
Modeling solid waste decomposition   总被引:5,自引:0,他引:5  
The hydrolysis rate coefficients of sorted municipal waste were evaluated from the biochemical methane potential tests using non-linear regression. A distributed mathematical model of anaerobic digestion of rich (food) and lean (non-food) solid wastes with greatly different rates of polymer hydrolysis/acidogenesis was developed to describe the balance between the rates of hydrolysis/acidogenesis and methanogenesis. The model was calibrated using previously published experimental data [Biores. Technol. 52 (1995) 245] obtained upon various initial food waste loadings. Simulations of one- and two-stage digestion systems were carried out. The results showed that initial spatial separation of food waste and inoculum enhances methane production and waste degradation in a one-stage solid-bed digester at high waste loading. A negative effect of vigorously mixing at high waste loading reported in some papers was discussed. It was hypothesized that the initiation methanogenic centers developing in time and expanding in space under minimal mixing conditions might be a key factor for efficient anaerobic conversion of solid waste into methane.  相似文献   

18.
Gas fermentation has emerged as a technologically and economically attractive option for producing renewable fuels and chemicals from carbon monoxide (CO) rich waste streams. LanzaTech has developed a proprietary strain of the gas fermentating acetogen Clostridium autoethanogenum as a microbial platform for synthesizing ethanol, 2,3-butanediol, and other chemicals. Bubble column reactor technology is being developed for the large-scale production, motivating the investigation of multiphase reactor hydrodynamics. In this study, we combined hydrodynamics with a genome-scale reconstruction of C. autoethanogenum metabolism and multiphase convection–dispersion equations to compare the performance of bubble column reactors with and without liquid recycle. For both reactor configurations, hydrodynamics was predicted to diminish bubble column performance with respect to CO conversion, biomass production, and ethanol production when compared with bubble column models in which the gas phase was modeled as ideal plug flow plus axial dispersion. Liquid recycle was predicted to be advantageous by increasing CO conversion, biomass production, and ethanol and 2,3-butanediol production compared with the non-recycle reactor configuration. Parametric studies performed for the liquid recycle configuration with two-phase hydrodynamics showed that increased CO feed flow rates (more gas supply), smaller CO gas bubbles (more gas–liquid mass transfer), and shorter column heights (more gas per volume of liquid per time) favored ethanol production over acetate production. Our computational results demonstrate the power of combining cellular metabolic models and two-phase hydrodynamics for simulating and optimizing gas fermentation reactors.  相似文献   

19.
Sequencing batch reactors were used to study anaerobic ammonium oxidation (anammox) process under temperature shock. Both long-term (15–35 °C) and short-term (10–50 °C) temperature effects on nitrogen removal performance were performed. In reactor operation test, the results indicated that ammonium removal rate decreased from 0.35 kg/(m3 day) gradually to 0.059 kg/(m3 day) when temperature dropped from 35 to 15 °C. Although bacteria morphology was not modified, sludge settling velocity decreased with decreasing temperature. In batch test, apparent activation energy (Ea) increased with decreasing temperature, which suggested the activity decrease of anaerobic ammonium oxidizing bacteria (AAOB). Low temperature inhibited AAOB and weakened nitrogen removal performance. The cardinal temperature model with inflection was first used to describe temperature effect on anammox process. Simulated results revealed that anammox reaction could occur at 10.52–50.15 °C with maximum specific anammox activity of 0.50 kg/(kg day) at 36.72 °C. The cold acclimatization of AAOB could be achieved and glycine betaine could slightly improve nitrogen removal performance at low temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号