首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
The stromal tissue, made of extracellular matrix and mesenchymal cells, is vital for the functional design of all complex tissues. Fibroblasts are key components of stromal tissue and play a crucial role during organ development, wound repair, angiogenesis and fibrosis. We have previously reported the identification of a novel WD-domain protein, STRAP1 that inhibits transforming growth factor-β (TGF-β) signaling and enhances tumorigenicity via TGF-β-dependent and TGF-β-independent mechanisms. Here, we report, for the first time, that deletion of STRAP from Mouse Embryonic Fibroblasts (MEFs) results in a loss of mesenchymal morphology. These cells lose their spindle shape and exhibit features of an epithelial morphology. Gene expression profiling has confirmed that deletion of STRAP affects expression of sets of genes important for diverse functions including cell–cell adhesion and cell polarization, and upregulates E-cadherin expression leading to the formation of adherens junctions, subsequent localization of β-catenin to the cell membrane and downregulation of the mesenchymal markers like LEF1 (lymphoid enhancer-binding factor 1). Upregulation of WT1 (Wilms tumor homolog 1) in STRAP null MEFs plays a role in E-cadherin induction. Finally, stable expression of STRAP in these cells results in a loss of WT1 and E-cadherin expressions, and a reversal from epithelial to the mesenchymal morphology. Thus, these results provide a novel TGF-β-independent function of STRAP and describe a mechanism for the role of STRAP in the maintenance of mesenchymal morphology.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Turn me on: regulating HIF transcriptional activity   总被引:1,自引:0,他引:1  
  相似文献   

20.
In all retroviruses analyzed to date (except for the spumaretroviruses), the Zn(2+)-coordinating residues of nucleocapsid (NC) perform or assist in crucial reactions necessary to complete the retrovirus life cycle. Six replication-defective mutations have been engineered in the two NC Zn(2+) fingers (ZFs) of simian immunodeficiency virus [SIV(Mne)] that change or delete specific Zn(2+)-interacting Cys residues and were studied by using electron microscopy, reversed-phase high-performance liquid chromatography, immunoblotting, and RNA quantification. We focused on phenotypes of produced particles, specifically morphology, Gag polyprotein processing, and genomic RNA packaging. Phenotypes were similar among viruses containing a point or deletion mutation involving the same ZF. Mutations in the proximal ZF (ZF1) resulted in near-normal Gag processing and full-length genomic RNA incorporation and were most similar to wild-type (WT) virions with electron-dense, conical cores. Mutation of the distal ZF, as well as point mutations in both ZFs, resulted in more unprocessed Gag proteins than a deletion or point mutation in ZF1, with an approximate 30% reduction in levels of full-length genomic RNA in virions. These mutant virions contained condensed cores; however, the cores typically appeared less electron dense and more rod shaped than WT virions. Surprisingly, deletion of both ZFs, including the basic linker region between the ZFs, resulted in the most efficient Gag processing. However, genomic RNA packaging was approximately 10% of WT levels, and those particles produced were highly abnormal with respect to size and core morphology. Surprisingly, all NC mutations analyzed demonstrated a significant loss of processed NC in virus particles, suggesting that Zn(2+)-coordinated NC is protected from excessive proteolytic cleavage. Together, these results indicate that Zn(2+) coordination is important for correct Gag precursor processing and NC protein stability. Additionally, SIV particle morphology appears to be the result of proper and complete Gag processing and relies less on full-length genomic RNA incorporation, as dictated by the Zn(2+) coordination in the ZFs of the NC protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号