首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human erythrocyte nucleoside-diphosphate kinase (NDP kinase) is a hexameric enzyme consisting of two kinds of polypeptide chains, A and B. By random association (A6, A5B...AB5, B6) these polypeptides form isoenzymes differing in their isoelectric point. Chains A and B of NDP kinase were purified by ion-exchange chromatography under denaturing conditions. Upon mixing and renaturation, the isozymic pattern of NDP kinase obtained by conventional methods was restored. Antibodies raised against purified chains showed significant cross-reactivity, both in immunoblot experiments and activity inhibition studies. Sequence determination showed that both chains consisted of 152 amino acid residues corresponding to Mr or 17,143 (chain A) and 17,294 (chain B), respectively. There was high homology between the two sequences (88% identity). The phosphorylation site on the enzyme is located at His-118. Chain A was identical with human Nm23 protein, which has been reported as a potential suppressor protein in tumor metastasis and chain B was identical with Nm23-H2 protein.  相似文献   

2.
Nucleoside diphosphate kinase (NDP kinase) from Paramecium was purified to homogeneity. The native enzyme was 80 kDa (by gel filtration), with subunits of 18 and 20 kDa. Near the amino terminus, 15 of 20 residues were identical with those in human NDP kinase, and 17 of 20 with the awd gene product from Drosophila. NDP kinase bound α-labeled ATP and GTP, and a photoreactive GTP analog labeled both subunits. Purified NDP kinase underwent autophosphorylation on a histidine and a serine residue using either ATP or GTP as a substrate. The enzyme also catalyzed acid-stable phosphorylation of casein and phosvitin. This protein kinase activity is distinct from the histidine phosphorylation that is part of the NDP kinase catalytic cycle. Antiserum against the purified protein from Paramecium cross-reacted with 16- to 20-kDa proteins in most species tested, and with a larger protein (44 kDa) in Paramecium, Xenopus, and two human lines. The multiple forms (20 and 44 kDa) of the NDP kinase in Paramecium and its protein kinase activity, suggest that the protein is more than a housekeeping enzyme; it may have regulatory roles such as those of the NDP kinase-like awd protein of Drosophila and Nm23 protein of humans.  相似文献   

3.
A cDNA clone for cytosolic nucleoside diphosphate (NDP) kinase was isolated from a cDNA library of rat skeletal muscle using synthetic oligonucleotides as probes. The clone constitutes a 621-base pair cDNA sequence including the 456-base pair coding region and 137-base pair 3'-untranslated one with polyadenylation site. The complete primary structure of NDP kinase was deduced from the coding sequence. An NH2-terminal amino acid sequence analysis suggested that the translated enzyme protein suffered proteolytic cleavage followed by modification at the alpha-NH2 group of the newly produced NH2-terminal amino acid residue. Taking this into account, it was tentatively concluded that the mature NDP kinase consists of 147 amino acid residues with a molecular weight of 16,724. Northern blot hybridization analysis showed that NDP kinase mRNA could be detected in total RNA fractions of brain, spleen, heart, lung, liver, kidney, testis as well as skeletal muscle, and that there was no difference in the size of mRNAs from these tissues. Tissue distribution of the mRNA nearly paralleled those of protein moiety and activity of the enzyme.  相似文献   

4.
An ATP-binding protein from the haloalkaliphilic archaeon Natronobacterium magadii was purified and characterized by affinity chromatography on ATP-agarose and by fast protein liquid chromatography (FPLC) on a Mono Q column. The N-terminal 20 amino acid sequence of the kinase showed a strong sequence similarity of this protein with nucleoside diphosphate (NDP) kinases from different organisms and, accordingly, we believe that this protein is a nucleoside diphosphate kinase, an enzyme whose main function is to exchange γ-phosphates between nucleoside triphosphates and diphosphates. Comparison of the molecular weights of the NDP kinase monomer determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (23 000) and of the oligomer determined by sedimentation equilibrium experiments (125 000) indicated that the oligomer is a hexamer. The enzyme was autophosphorylated in the presence of [γ-32P]ATP, and Mg2+ was required for the incorporation of phosphate. The kinase preserved the ability to transfer γ-phosphate from ATP to GDP in the range of NaCl concentration from 90 mM to 3.5 M and in the range of pH from 5 to 12. It was found and confirmed by Western blotting that this kinase is one of the proteins that bind specifically to natronobacterial flagellins. NDP kinase from haloalkaliphiles appeared to be simple to purify and to be a suitable enzyme for studies of structure and stability compared with NDP kinases from mesophilic organisms. Received: December 3, 1997 / Accepted: January 29, 1998  相似文献   

5.
Two types of nucleoside diphosphate kinase (NDP kinase I and NDP kinase II) have been purified from spinach leaves to electrophoretic homogeneity. The enzymes were copurified with apparent [35S]GTP-gamma S-binding activities. NDP kinase I, which was not adsorbed to a hydroxyapatite column, and NDP kinase II, which was adsorbed, had molecular weights of 16,000 and 18,000, respectively, as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weights determined by gel filtration were 92,000 and 110,000, respectively, suggesting that both enzymes are composed of six identical subunits. Minor differences in some amino acids between NDP kinase I and NDP kinase II were observed when both enzymes were analyzed for amino acid composition. The apparent [35S]GTP gamma S-binding activity of purified NDP kinase I and NDP kinase II was found to be due to the formation of a [35S]thiophosphorylated enzyme, which is the intermediate of the NDP kinase reaction.  相似文献   

6.
The primary structure of nucleoside diphosphate (NDP) kinase from spinach leaves has been deduced from its cDNA sequence. A lambda gt 11 cDNA library derived from spinach leaves was screened using an antibody against NDP kinase I, which we previously purified to electrophoretic homogeneity (T. Nomura, T. Fukui, and A. Ichikawa, 1991, Biochim. Biophys. Acta 1077, 47-55). The cDNA sequences of positive clones contained the amino acid coding region (444 base pairs) for NDP kinase I as well as 5' and 3' noncoding regions of 33 and 361 base pairs, respectively. The cDNAs hybridized to a 1.1-kb mRNA. NDP kinase I contains 148 amino acid residues with a molecular mass of 16,305, which is in excellent agreement with that of the purified enzyme (16 kDa). Homology was found between the sequence of spinach NDP kinase I and those of the rat, Myxococcus xanthus, and Dictyostelium discoideum NDP kinases, as well as the human Nm23-gene product and the awd protein of Drosophila melanogaster.  相似文献   

7.
A low molecular mass (18 kD) phosphoprotein (pp18) was characterized and purified from cultured sugarcane (Saccharum officinarum L.) cell line H50-7209. Autophosphorylation assays were used to detect pp18 after separation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Only pp18 was detected by a brief in situ phosphorylation method, whereas additional putative protein kinases were detected by an extended method. pp18 was present in both microsomal membrane and soluble fractions and exhibited anomalous turnover of 32P label during in vitro phosphorylation experiments with highest levels present at shorter incubation times. Two major isoforms of the protein were identified in two-dimensional isoelectric focusing/SDS-PAGE of crude extracts and microsomal fractions. The levels of pp18 were enhanced approximately 4-fold by heat shock at 36 degrees C and the elevated pp18 decayed after heat shock was discontinued. pp18 was purified to apparent homogeneity, could be phosphorylated on serine residues, and also exhibited kinase-like activity toward histone H1. The amino acid sequence obtained from a cyanogen bromide digest was greater than 80% identical to nucleoside diphosphate (NDP) kinases from a variety of organisms. Biochemical analysis of the purified protein confirmed the identity as NDP kinase. Thus, NDP kinase appears to be modulated by heat shock in plants.  相似文献   

8.
We isolated a full-length cDNA encoding a nucleoside diphosphate (NDP) kinase from a Dunaliella tertiolecta cDNA library by homology cloning and rapid amplification of cDNA ends-PCR. The cDNA sequence, consisting of 840 bp, contained an open reading frame coding for a 221-amino acid protein. The predicted 24-kDa protein was named DtNDK1. It possesses all the residues involved in nucleotide binding and catalysis and, in its long N-terminus, contains putative mitochondrial targeting peptides. The full-length pre-protein expressed in Escherichia coli as a recombinant N-terminally His-tagged protein was retained in inclusion bodies, totally devoid of NDP kinase activity. Upon expression in yeast cells, the full-length protein His-tagged at the C-terminus was found processed in a soluble form that was lacking the first 67 amino acids from the N-terminus. The mature protein, which was purified by affinity chromatography to near homogeneity, showed NDP kinase activity. Confocal microscopy on yeast cells expressing the recombinant protein revealed the specific mitochondrial localization of DtNDK1 labeled at the C-terminus with green fluorescent protein.  相似文献   

9.
Incubation of a partially purified protein tyrosine kinase from rat lung with Mg2+ and ATP resulted in about 10-15-fold activation of the enzyme activity as judged by the phosphorylation of poly(Glu:Tyr,4:1), an exogenous substrate. The activation was time dependent and was associated with the phosphorylation of a single protein band of 50 kDa. Phosphoamino acid analysis of the phosphorylated protein indicated that tyrosine was the amino acid being phosphorylated. Upon gel filtration on a Sephacryl S-200 column, the phosphorylated protein co-eluted with protein tyrosine kinase and ATP-binding activities, suggesting that all three activities are part of the same protein. In addition, pretreatment of the partially purified protein tyrosine kinase with alkaline phosphatase inhibited its enzyme activity which could be restored by reincubation with Mg2+ and ATP. These data suggest that a temporal relationship exists between the phosphorylation and the activation states of rat lung protein tyrosine kinase, and that the phospho- and dephospho- forms represent the active and inactive (or less active) forms, respectively, of the enzyme.  相似文献   

10.
The major components of the mitosis-specific histone H1 kinase are CDC2 kinase and cyclin and the consensus amino acid sequence for phosphorylation by this enzyme has been proposed. We have noted the presence of such sequences in six sites of the tumor suppressor gene RB protein and determined whether or not RB protein is in fact phosphorylated by this kinase. Highly purified enzyme was used for this purpose. HeLa cell extracts immunoprecipitated with anti-RB antiserum as well as RB proteins expressed in E. coli cells were shown to be phosphorylated by this kinase in vitro. Synthetic peptides for the six expected sites were also phosphorylated. These results suggest the possibility that the function of RB protein is regulated by CDC2 kinase.  相似文献   

11.
Recently we reported the phosphoenolpyruvate (PEP)-dependent phosphorylation of a 55-kilodalton protein of Streptococcus faecalis catalyzed by enzyme I and histidine-containing protein (HPr) of the phosphotransferase system (J. Deutscher, FEMS Microbiol. Lett. 29:237-243, 1985). The purified 55-kilodalton protein was found to exhibit dihydroxyacetone kinase activity. Glycerol was six times more slowly phosphorylated than dihydroxyacetone. The Kms were found to be 0.7 mM for ATP, 0.45 mM for dihydroxyacetone, and 0.9 mM for glycerol. PEP-dependent phosphorylation of dihydroxyacetone kinase stimulated phosphorylation of both substrates about 10-fold. Fructose 1,6-diphosphate at concentrations higher than 2 mM inhibited the activity of phosphorylated and unphosphorylated dihydroxyacetone kinase in a noncompetitive manner. The rate of PEP-dependent phosphorylation of dihydroxyacetone kinase was about 200-fold slower than the phosphorylation rate of III proteins (also called enzyme III or factor III), which so far have been considered the only phosphoryl acceptors of histidyl-phosphorylated HPr. P-Dihydroxyacetone kinase was found to be able to transfer its phosphoryl group in a backward reaction to HPr. Following [32P]PEP-dependent phosphorylation and tryptic digestion of dihydroxyacetone kinase, we isolated a labeled peptide composed of 37 amino acids, as determined by amino acid analysis. The single histidyl residue of this peptide most likely carries the phosphoryl group in phosphorylated dihydroxyacetone kinase.  相似文献   

12.
Nucleoside-diphosphate kinase is an enzyme which catalyzes the phosphorylation of nucleoside diphosphates into the corresponding triphosphates for nucleic acid biosynthesis. In this communication, we describe the purification and characterization of nucleoside-diphosphate kinase from yeast. The purified protein appears to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel analysis, with a molecular weight of about 17,000-18,000. An estimate from the fast protein liquid chromatography Superose 12 gel filtration shows a native molecular weight of about 68,000 to 70,000. The results suggest that yeast nucleoside-diphosphate kinase is composed of four subunits. Substrate specificity studies show that the relative activity of nucleoside diphosphates (NDP) as phosphate acceptors is in the order of dTDP greater than CDP greater than UDP greater than dUDP greater than GDP greater than or equal to dGDP greater than dCDP greater than dADP greater than ADP; and the relative activity of triphosphate donors is in the order of UTP greater than dTTP greater than CTP greater than dCTP greater than dATP greater than ATP greater than or equal to dGTP greater than GTP. The Km and Vm of dTDP, dGDP, dCDP, dUDP, CDP, and UDP have been determined. The rate constant studies indicate that the purified NDP kinase prefers using, to a slight extent, dTDP (approximately 800 min-1) as the substrate rather than other tested deoxyribo- and ribonucleotides (350-450 min-1). The broad substrate specificity and kinetic data suggest that the enzyme is involved in both DNA and RNA metabolism.  相似文献   

13.
In tobacco (Nicotiana tabacum), hyperosmotic stress induces rapid activation of a 42-kD protein kinase, referred to as Nicotiana tabacum osmotic stress-activated protein kinase (NtOSAK). cDNA encoding the kinase was cloned and, based on the predicted amino acid sequence, the enzyme was assigned to the SNF1-related protein kinase type 2 (SnRK2) family. The identity of the enzyme was confirmed by immunoprecipitation of the active kinase from tobacco cells subjected to osmotic stress using antibodies raised against a peptide corresponding to the C-terminal sequence of the kinase predicted from the cloned cDNA. A detailed biochemical characterization of NtOSAK purified from stressed tobacco cells was performed. Our results show that NtOSAK is a calcium-independent Ser/Thr protein kinase. The sequence of putative phosphorylation sites recognized by NtOSAK, predicted by the computer program PREDIKIN, resembled the substrate consensus sequence defined for animal and yeast (Saccharomyces cerevisiae) AMPK/SNF1 kinases. Our experimental data confirmed these results, as various targets for AMPK/SNF1 kinases were also efficiently phosphorylated by NtOSAK. A range of protein kinase inhibitors was tested as potential modulators of NtOSAK, but only staurosporine, a rather nonspecific protein kinase inhibitor, was found to abolish the enzyme activity. In phosphorylation reactions, NtOSAK exhibited a preference for Mg(2+) over Mn(2+) ions and an inability to use GTP instead of ATP as a phosphate donor. The enzyme activity was not modulated by 5'-AMP. To our knowledge, these results represent the first detailed biochemical characterization of a kinase of the SnRK2 family.  相似文献   

14.
Fructose-6-phosphate,2-kinase:fructose-2,6-bis-phosphatase from rat skeletal muscle has been purified to homogeneity, and its structure and kinetic properties have been determined. The Mr of the native enzyme was 100,000 and the subunit Mr was 54,000. The apparent Km values of fructose-6-P,2-kinase for Fru-6-P and ATP were 56 and 48 microM, respectively. The apparent Km value for Fru-2,6-P2 of fructose-2,6-bis-phosphatase was 0.4 microM, and the Ki for Fru-6-P was 12.5 microM. The enzyme was bifunctional, and the phosphatase activity was 2.5 times higher than the kinase activity. The enzyme was not phosphorylated by cAMP-dependent protein kinase. The amino acid composition of the skeletal muscle enzyme was similar to that of the rat liver enzyme, and the carboxyl terminus sequence (His-Tyr) was the same as that of the liver enzyme. The tryptic peptides generated from the liver and skeletal muscle enzymes were identical except for two peptides. A peptide corresponding to nucleotides 14-28 of the rat liver enzyme was not detected in the skeletal muscle enzyme. A peptide whose amino acid sequence was Thr-Ala-Ser-Ile-Pro-Gln-Phe-Thr-Asn-Ser-Pro-Thr-Met-Val-Ile-Met-Val-Gly-Leu-Pro - Ala-Arg was also isolated. This peptide was the same as that of rat liver enzyme (nucleotides 31-52) containing the phosphorylation site except in the muscle enzyme two amino terminus amino acids, Gly-Ser(P), have been altered to Thr-Ala. Thus, the rat skeletal muscle enzyme is very similar in structure to the rat liver enzyme except for the lack of possibly one peptide and the lack of a phosphorylation site by the substitution of the target Ser with Ala.  相似文献   

15.
Nucleoside diphosphate kinase from Escherichia coli.   总被引:4,自引:3,他引:1       下载免费PDF全文
Nucleoside diphosphate (NDP) kinase from Escherichia coli was purified to homogeneity and was crystallized. Gel filtration analysis of the purified enzyme indicated that it forms a tetramer. The enzyme was phosphorylated with [gamma-32P]ATP, and the pH stability profile of the phosphoenzyme indicated that two different amino acid residues were phosphorylated. Both a histidine residue and serine residues, including Ser-119 and Ser-121, appear to be phosphorylated. A Ser119Ala/Ser121Ala double mutant (i.e., with a Ser-to-Ala double mutation at positions 119 and 121), as well as Ser119Ala and Ser121Ala mutants, was isolated. All of these retained NDP kinase activity; also, both the Ser119Ala and Ser121Ala mutants could still be autophosphorylated. In the case of the double mutant, a slight autophosphorylation activity, which was resistant to acid treatment, was still detected, indicating that an additional minor autophosphorylation site besides His-117 exists. These results are discussed in light of the recent report of N. J. MacDonald et al. on the autophosphorylation of human NDP kinase (J. Biol. Chem. 268:25780-25789, 1993).  相似文献   

16.
17.
The site-specific phosphorylation of bovine histone H1 by protein kinase C was investigated in order to further elucidate the substrate specificity of protein kinase C. Protein kinase C was found to phosphorylate histone H1 to 1 mol per mol. Using N-bromosuccinimide and thrombin digestions, the phosphorylation site was localized to the globular region of the protein, containing residues 71-122. A tryptic peptide containing the phosphorylation site was purified. Modification of the phosphoserine followed by amino acid sequence analysis demonstrated that protein kinase C phosphorylated histone H1 on serine 103. This sequence, Gly97-Thr-Gly-Ala-Ser-Gly-Ser(PO4)-Phe-Lys105, supports the contention that basic amino acid residues C-terminal to the phosphorylation site are sufficient determinants for phosphorylation by protein kinase C.  相似文献   

18.
The PII protein in the cyanobacterium Synechococcus sp. strain PCC 7942 signals the cellular state of nitrogen assimilation relative to CO2 fixation by being phosphorylated at a seryl residue. In this study, we first determined the location of the phosphorylated seryl residue within the PII amino acid sequence. The phosphorylation site exhibits an RXS motif, a recognition sequence characteristic for cyclic AMP-dependent protein serine kinases from eukaryotes. We established an in vitro PII phosphorylation assay to further analyze the PII kinase activity in Synechococcus sp. strain PCC 7942. ATP was used specifically as a phosphoryl donor, and the PII kinase activity was shown to be stimulated by alpha-ketoglutarate. Unlike the PII-modifying uridylyltransferase- and uridylyl-removing enzyme characterized in proteobacteria, the activity of the PII kinase from the cyanobacterium did not respond to glutamine.  相似文献   

19.
Hormone-sensitive lipase is phosphorylated at a single site (site 2) in vitro by the AMP-activated protein kinase, without any direct effect on the activity of the enzyme. The amino acid sequence around this site has been determined. Ca2+/calmodulin-dependent protein kinase II also phosphorylates hormone-sensitive lipase predominantly at this site, whilst cyclic-GMP-dependent protein kinase phosphorylates exclusively the regulatory site (site 1) which is also phosphorylated by cyclic-AMP-dependent protein kinase. Phosphorylation of site 2 has been found to inhibit subsequent phosphorylation and activation of hormone-sensitive lipase by the cyclic-AMP-dependent and cyclic-GMP-dependent protein kinases, indicating that site-2 phosphorylation may have an antilipolytic role in vivo.  相似文献   

20.
Adenylate kinases are abundant nucleoside monophosphate kinases, which catalyze the phosphorylation of AMP by using ATP or GTP as phosphate donors. A previously cloned cDNA was named adenylate kinase 4 (AK4) based on its sequence similarity with known AKs but with no confirmed AK enzyme activity. In the present study the AK4 cDNA was expressed in Escherichia coli and the substrate specificity and kinetic properties of the recombinant protein were characterized. The enzyme catalyzed the phosphorylation of AMP, dAMP, CMP and dCMP with ATP or GTP as phosphate donors and AK4 also phosphorylated AMP with UTP as phosphate donor. The kinetic parameters of the enzyme were determined for AMP and dAMP with ATP as phosphate donor and for AMP with GTP as phosphate donor. AK4 showed its highest efficiency when phosphorylating AMP with GTP and a slightly lower efficiency for the phosphorylation of AMP with ATP. Among the three reactions for which kinetics were performed, dAMP was the poorest substrate. The AK4 mitochondrial localization was confirmed by expression of AK4 as a fusion protein with GFP in HeLa cells. The mitochondrial import sequence was shown to be located within the first N-terminal 11 amino acid residues, very close to the ATP-binding region of the enzyme. Import analysis suggested that the mitochondrial import sequence was not cleaved and thus the enzyme retained its activity upon entering the mitochondria. Site directed mutagenesis of amino acids Lys 4 and Arg 7 showed that these two residues were essential for mitochondrial import.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号