首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chan A  Boulé JB  Zakian VA 《PLoS genetics》2008,4(10):e1000236
The catalytic subunit of yeast telomerase, Est2p, is a telomere associated throughout most of the cell cycle, while the Est1p subunit binds only in late S/G2 phase, the time of telomerase action. Est2p binding in G1/early S phase requires a specific interaction between telomerase RNA (TLC1) and Ku80p. Here, we show that in four telomerase-deficient strains (cdc13-2, est1Ä, tlc1-SD, and tlc1-BD), Est2p telomere binding was normal in G1/early S phase but reduced to about 40–50% of wild type levels in late S/G2 phase. Est1p telomere association was low in all four strains. Wild type levels of Est2p telomere binding in late S/G2 phase was Est1p-dependent and required that Est1p be both telomere-bound and associated with a stem-bulge region in TLC1 RNA. In three telomerase-deficient strains in which Est1p is not Est2p-associated (tlc1-SD, tlc1-BD, and est2Ä), Est1p was present at normal levels but its telomere binding was very low. When the G1/early S phase and the late S/G2 phase telomerase recruitment pathways were both disrupted, neither Est2p nor Est1p was telomere-associated. We conclude that reduced levels of Est2p and low Est1p telomere binding in late S/G2 phase correlated with an est phenotype, while a WT level of Est2p binding in G1 was not sufficient to maintain telomeres. In addition, even though Cdc13p and Est1p interact by two hybrid, biochemical and genetic criteria, this interaction did not occur unless Est1p was Est2p-associated, suggesting that Est1p comes to the telomere only as part of the holoenzyme. Finally, the G1 and late S/G2 phase pathways for telomerase recruitment are distinct and are likely the only ones that bring telomerase to telomeres in wild-type cells.  相似文献   

2.
3.
4.
5.
The Saccharomyces cerevisiae Pif1p helicase is a negative regulator of telomere length that acts by removing telomerase from chromosome ends. The catalytic subunit of yeast telomerase, Est2p, is telomere associated throughout most of the cell cycle, with peaks of association in both G1 phase (when telomerase is not active) and late S/G2 phase (when telomerase is active). The G1 association of Est2p requires a specific interaction between Ku and telomerase RNA. In mutants lacking this interaction, telomeres were longer in the absence of Pif1p than in the presence of wild-type PIF1, indicating that endogenous Pif1p inhibits the active S/G2 form of telomerase. Pif1p abundance was cell cycle regulated, low in G1 and early S phase and peaking late in the cell cycle. Low Pif1p abundance in G1 phase was anaphase-promoting complex dependent. Thus, endogenous Pif1p is unlikely to act on G1 bound Est2p. Overexpression of Pif1p from a non-cell cycle-regulated promoter dramatically reduced viability in five strains with impaired end protection (cdc13–1, yku80Δ, yku70Δ, yku80–1, and yku80–4), all of which have longer single-strand G-tails than wild-type cells. This reduced viability was suppressed by deleting the EXO1 gene, which encodes a nuclease that acts at compromised telomeres, suggesting that the removal of telomerase by Pif1p exposed telomeres to further C-strand degradation. Consistent with this interpretation, depletion of Pif1p, which increases the amount of telomere-bound telomerase, suppressed the temperature sensitivity of yku70Δ and cdc13–1 cells. Furthermore, eliminating the pathway that recruits Est2p to telomeres in G1 phase in a cdc13–1 strain also reduced viability. These data suggest that wild-type levels of telomere-bound telomerase are critical for the viability of strains whose telomeres are already susceptible to degradation.  相似文献   

6.
7.
8.
9.
The telomerase ribonucleoprotein in Candida albicans is presumed to contain at least three Est proteins: CaEst1p, CaEst2p/TERT and CaEst3p. We constructed mutants missing each of the protein subunit of telomerase and analyzed overall telomere dynamics and single-stranded telomere overhangs over the course of many generations. The est1-ΔΔ mutant manifested abrupt telomere loss and recovery, consistent with heightened recombination. Both the est2-ΔΔ and est3-ΔΔ mutant exhibited progressive telomere loss, followed by the gradual emergence of survivors with long telomeres. In no case was telomere loss accompanied by severe growth defects, suggesting that cells with short telomeres can continue to proliferate. Furthermore, the amount of G-strand terminal overhangs was greatly increased in the est2-ΔΔ mutant, but not others. Our results suggest that in addition to their well-characterized function in telomere elongation, both CaEst1p and CaEst2p mediate some aspects of telomere protection in Candida, with the former suppressing excessive recombination, and the latter preventing excessive C-strand degradation.  相似文献   

10.
Hsu M  Yu EY  Singh SM  Lue NF 《Eukaryotic cell》2007,6(8):1330-1338
Telomerase is an RNA-protein complex responsible for extending one strand of the telomere terminal repeats. Analysis of the telomerase complex in budding yeasts has revealed the presence of one catalytic protein subunit (Est2p/TERT) and at least two noncatalytic components (Est1p and Est3p). The TERT subunit is essential for telomerase catalysis, while the functions of Est1p and Est3p have not been precisely elucidated. In an earlier study, we showed that telomerase derived from a Candida est1-null mutant is defective in primer utilization in vitro; it exhibits reduced initiation and processivity on primers that terminate in two regions of the telomere repeat. Here we show that telomerase derived from a Candida est3-null mutant has nearly identical defects in primer utilization and processivity. Further analysis revealed an unexpected mutual dependence of Est1p and Est3p in their assembly into the full telomerase complex, which accounts for the similarity between the mutant enzymes. We also developed an affinity isolation and an in vitro reconstitution protocol for the telomerase complex that will facilitate future mechanistic studies.  相似文献   

11.
Def1p is involved in telomere maintenance in budding yeast   总被引:3,自引:0,他引:3  
Saccharomyces Rrm3p, a member of Pif1 5'-3' DNA helicase subfamily, helps replication forks traverse protein-DNA complexes, including the telomere. Here we have identified an Rrm3p interaction protein known to be Def1p. In def1 mutants, telomeres were approximately 200-bp shorter than that in wild-type cells. DEF1 is also required for the stable maintenance of mitochondrial DNA, and the telomere shortening phenotype seen in def1 cells is not a secondary consequence of the mitochondrion defect. A combination of DEF1 null mutation with deletion of EST2 or EST3 resulted in an accelerated senescence phenotype, suggesting that Def1p is not involved in the telomerase recruitment pathway. In the absence of telomerase, cells escape senescence by either amplifying Y' regions or TG-telomeric repeats to generate type I or type II survivors, respectively. Only type I survivors were recovered from both def1Delta est2Delta and def1Delta est3Delta double mutant cells, further suggesting that the function of Def1p in telomere maintenance is specific. Our novel findings of the functions of Def1p in telomere and mitochondria suggested that Def1p plays multiple roles in yeast.  相似文献   

12.
13.
Telomerase is a multisubunit enzyme that maintains genome stability through its role in telomere replication. Although the Est3 protein is long recognized as an essential telomerase component, how it associates with and functions in the telomerase complex has remained enigmatic. Here we provide the first evidence of a direct interaction between Saccharomyces cerevisiae Est3p and the catalytic protein subunit (Est2p) by demonstrating that recombinant Est3p binds the purified telomerase essential N-terminal (TEN) domain of Est2p in vitro. Mutations in a small cluster of amino acids predicted to lie on the surface of Est3p disrupt this interaction with Est2p, reduce assembly of Est3p with telomerase in vivo, and cause telomere shortening and senescence. We also show that recombinant Est3p stimulates telomerase activity above basal levels in vitro in a manner dependent on the Est2p TEN domain interaction. Together, these results define a direct binding interaction between Est3p and Est2p and reconcile the effect of S. cerevisiae Est3p with previous experiments showing that Est3p homologs in related yeast species influence telomerase activity. Additionally, it contributes functional support to the idea that Est3p is structurally related to the mammalian shelterin protein, TPP1, which also influences telomerase activity through interaction with the Est2p homolog, TERT.  相似文献   

14.
15.

Background

Telomere/telomerase system has been recently recognized as an attractive target for anticancer therapy. Telomerase inhibition results in tumor regression and increased sensitivity to various cytotoxic drugs. However, it has not been fully established yet whether the mediator of these effects is telomerase inhibition per se or telomere shortening resulting from inhibition of telomerase activity. In addition, the characteristics and mechanisms of sensitization to cytotoxic drugs caused by telomerase inhibition has not been elucidated in a systematic manner.

Methodology/Principal Findings

In this study we characterized the relative importance of telomerase inhibition versus telomere shortening in cancer cells. Sensitization of cancer cells to cytotoxic drugs was achieved by telomere shortening in a length dependent manner and not by telomerase inhibition per se. In our system this sensitization was related to the mechanism of action of the cytotoxic drug. In addition, telomere shortening affected also other cancer cell functions such as migration. Telomere shortening induced DNA damage whose repair was impaired after administration of cisplatinum while doxorubicin or vincristine did not affect the DNA repair. These findings were verified also in in vivo mouse model. The putative explanation underlying the phenotype induced by telomere shortening may be related to changes in expression of various microRNAs triggered by telomere shortening.

Conclusions/Significance

To our best knowledge this is the first study characterizing the relative impact of telomerase inhibition and telomere shortening on several aspects of cancer cell phenotype, especially related to sensitivity to cytotoxic drugs and its putative mechanisms. The microRNA changes in cancer cells upon telomere shortening are novel information. These findings may facilitate the development of telomere based approaches in treatment of cancer.  相似文献   

16.
17.
Telomerase, the enzyme that maintains telomeres, preferentially lengthens short telomeres. The S. cerevisiae Pif1 DNA helicase inhibits both telomerase-mediated telomere lengthening and de novo telomere addition at double strand breaks (DSB). Here, we report that the association of the telomerase subunits Est2 and Est1 at a DSB was increased in the absence of Pif1, as it is at telomeres, suggesting that Pif1 suppresses de novo telomere addition by removing telomerase from the break. To determine how the absence of Pif1 results in telomere lengthening, we used the single telomere extension assay (STEX), which monitors lengthening of individual telomeres in a single cell cycle. In the absence of Pif1, telomerase added significantly more telomeric DNA, an average of 72 nucleotides per telomere compared to the 45 nucleotides in wild type cells, and the fraction of telomeres lengthened increased almost four-fold. Using an inducible short telomere assay, Est2 and Est1 no longer bound preferentially to a short telomere in pif1 mutant cells while binding of Yku80, a telomere structural protein, was unaffected by the status of the PIF1 locus. Two experiments demonstrate that Pif1 binding is affected by telomere length: Pif1 (but not Yku80) -associated telomeres were 70 bps longer than bulk telomeres, and in the inducible short telomere assay, Pif1 bound better to wild type length telomeres than to short telomeres. Thus, preferential lengthening of short yeast telomeres is achieved in part by targeting the negative regulator Pif1 to long telomeres.  相似文献   

18.
Reactive oxygen species (ROS) are proposed to play a major role in telomere length alterations during aging. The mechanisms by which ROS disrupt telomeres remain unclear. In Saccharomyces cerevisiae, telomere DNA consists of TG(1–3) repeats, which are maintained primarily by telomerase. Telomere length maintenance can be modulated by the expression level of telomerase subunits and telomerase activity. Additionally, telomerase‐mediated telomere repeat addition is negatively modulated by the levels of telomere‐bound Rap1‐Rif1‐Rif2 protein complex. Using a yeast strain defective in the major peroxiredoxin Tsa1 that is involved in ROS neutralization, we have investigated the effect of defective ROS detoxification on telomere DNA, telomerase, telomere‐binding proteins, and telomere length. Surprisingly, the tsa1 mutant does not show significant increase in steady‐state levels of oxidative DNA lesions at telomeres. The tsa1 mutant displays abnormal telomere lengthening, and reduction in oxidative exposure alleviates this phenotype. The telomere lengthening in the tsa1 cells was abolished by disruption of Est2, subtelomeric DNA, Rap1 C‐terminus, or Rif2, but not by Rif1 deletion. Although telomerase expression and activity are not altered, telomere‐bound Est2 is increased, while telomere‐bound Rap1 is reduced in the tsa1 mutant. We propose that defective ROS scavenging can interfere with pathways that are critical in controlling telomere length homeostasis.  相似文献   

19.
TEL1 is important in Saccharomyces cerevisiae telomere maintenance, and its kinase activity is required. Tel1p associates with telomeres in vivo, is enriched at short telomeres, and enhances the binding of telomerase components to short telomeres. However, it is unclear how the kinase activity and telomere association contribute to Tel1p''s overall function in telomere length maintenance. To investigate this question, we generated a set of single point mutants and a double point mutant (tel1KD) of Tel1p that were kinase deficient and two Xrs2p mutants that failed to bind Tel1p. Using these separation-of-function alleles in a de novo telomere elongation assay, we found, surprisingly, that the tel1KD allele and xrs2 C-terminal mutants were both partially functional. Combining the tel1KD and xrs2 C-terminal mutants had an additive effect and resembled the TEL1 null (tel1Δ) phenotype. These data indicate that Tel1p has two separate functions in telomere maintenance and that the Xrs2p-dependent recruitment of Tel1p to telomeres plays an important role even in the absence of its kinase activity.The telomere is a highly ordered complex of proteins and DNA found at the ends of linear chromosomes that functions to protect the ends and prevents them from being recognized as double-strand DNA breaks (51). Telomeres shorten gradually due to incomplete replication (1, 20), and this shortening is counteracted by telomerase, which elongates telomeres (18, 19).Saccharomyces cerevisiae telomeres are composed of 300 ± 50 bp of the sequence TG1-3/C1-3A. The yeast telomerase complex consists of Est2p (catalytic subunit), the RNA component TLC1, and two accessory proteins, Est1p and Est3p (50). Cells deficient for any of these telomerase components undergo progressive telomere shortening and a simultaneous decrease in growth rate, described as senescence (24, 27). Typically, a small fraction of cells, termed survivors, escape senescence and maintain telomere length by utilizing RAD52-dependent recombination (24, 26).In addition to the telomerase complex, a number of yeast proteins are important in maintaining telomere length and integrity. These include Tel1p and Mec1p, the yeast homologues of mammalian ATM and ATR, respectively (39). While deletion of TEL1 results in short but stable telomeres, MEC1 deletion has little effect on average telomere length. However, cells lacking TEL1 that have a mutant mec1-21 allele undergo senescence, similar to telomerase null cells (36), suggesting that MEC1 plays a minor but essential role in telomere length maintenance in tel1Δ cells. It has been shown that the protein kinase activities of Tel1p and Mec1p are essential in telomere maintenance, since tel1KD cells have short telomeres and tel1Δ mec1KD cells undergo senescence (29).In current models, Tel1p acts to maintain telomere length by regulating the access of telomerase to short telomeres. TEL1 is required for the association of Est1p and Est2p with telomeres in the late S/G2 phase of the cell cycle (16), the time when telomeres are elongated (9, 31). Additionally, in both yeast and mammalian cells, telomerase preferentially elongates the shortest telomeres (22, 30, 47). Therefore, TEL1 seems to be required mainly for the association of telomerase to short telomeres in yeast. Indeed, Tel1p preferentially binds to short telomeres (4, 21, 38) and is essential for the increased association of Est1p and Est2p to short telomeres during late S/G2 (38). However, the kinase activity of Tel1p is not required for the telomere association (21). In addition to its role in telomerase recruitment, TEL1 may also regulate telomere length by enhancing the processivity of telomerase at short telomeres (7).The Mre11p, Rad50p, and Xrs2p (MRX) complex also plays important roles in telomere maintenance. Cells lacking any one of these components (mrxΔ) have short and stable telomeres. Since combining mrxΔ with tel1Δ has no synergistic effect on telomere shortening and mrxΔ mec1Δ cells undergo senescence, it was proposed that the MRX complex and Tel1p function in the same telomere maintenance pathway (37). In agreement with this model, the C-terminal region of Xrs2p is essential in recruiting Tel1p both to double-strand breaks (32) and to short telomeres (38). Interestingly, the mammalian functional homologue of Xrs2p, NBS1, interacts with ATM via its extreme C terminus (13), suggesting that the recruitment of Tel1p to telomeres and the recruitment of ATM to DNA damage sites are conserved.It remains a question what exact roles the kinase activity of Tel1p and its telomere binding play in telomere maintenance. Tel1p''s telomere maintenance function seems to be dependent on its kinase activity, since tel1KD cells have short telomeres (29). It has been proposed that Tel1p may regulate the recruitment of Est1p, and thus the rest of the telomerase complex (12, 23, 54), to telomeres by phosphorylating Cdc13p (3, 48). Other experiments suggest the association of Tel1p to the telomere plays a major role. The preferential binding of Tel1p to short telomeres is lost in xrs2-664 cells (38), which lack the C-terminal 190 amino acids of Xrs2p and have short telomeres, similar to xrs2Δ (41). It has been suggested that the association of Tel1p to telomeres is required for its substrate phosphorylation and, therefore, telomere length maintenance (3, 39).To further analyze the functions of Tel1p in telomere maintenance, we generated a novel kinase-dead allele of TEL1 and new alleles of XRS2 that do not interact with Tel1p. Through these separation-of-function mutants, we show that both sets of alleles are partially active in a de novo telomere elongation assay. However, combining both the tel1KD and either of the Tel1p interaction-deficient xrs2 alleles resulted in a phenotype resembling the tel1Δ phenotype, suggesting that Tel1p has kinase-dependent and kinase-independent, but telomere binding-dependent, functions in telomere maintenance.  相似文献   

20.
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1 to Est1 via a heterologous RNA-protein binding module. We find that Est1-tethering rescues in vivo function of telomerase RNA alleles missing nucleotides specifically required for Est1 binding, but not those missing the entire conserved region. Notably, however, telomerase function is restored for this condition by expressing the arm of TLC1 in trans. Mutational analysis shows that the Second Essential Est1-arm Domain (SEED) maps to an internal loop of the arm, which SHAPE chemical mapping and 3D modeling suggest could be regulated by conformational change. Finally, we find that the SEED has an essential, Est1-independent role in telomerase function after telomerase recruitment to the telomere. The SEED may be required for establishing telomere extendibility or promoting telomerase RNP holoenzyme activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号