首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-affinity nickel transport in Alcaligenes eutrophus H16 is mediated by a function designated hoxN. hoxN lies within the hydrogenase gene cluster of megaplasmid pHG1. An insertional mutation at the hoxN locus led to an increased nickel requirement. In this mutant (strain HF260) both autotrophic growth on hydrogen and wild-type level of urease, a nickel-containing enzyme, were dependent on high concentration of nickel in the medium. Studies with a heterologous in vivo expression system revealed that the hoxN locus encodes two proteins with Mr = 30,000 and 28,000. Only the larger polypeptide was essential for nickel transport. The hoxN locus was cloned on a 2.2-kilobase pair fragment. Nucleotide sequence analysis of the hoxN locus revealed an open reading frame with a coding capacity for a protein of 33.1 kDa. The insertion leading to the Nic- phenotype of strain HF260 maps within this open reading frame indicating that it does in fact have coding function. The deduced amino acid sequence of the hoxN gene has several features typical of a hydrophobic integral membrane protein. Alkaline phosphatase fusion proteins produced by insertion of the transposon TnphoA into hoxN gave significant levels of alkaline phosphatase activity indicating that protein HoxN contains periplasmic domains. Taken together, our results suggest that gene hoxN encodes the high-affinity nickel transporter of A. eutrophus.  相似文献   

2.
A gene bank of the 450-kilobase (kb) megaplasmid pHG1 from the hydrogen-oxidizing bacterium Alcaligenes eutrophus H16 was constructed in the broad-host-range mobilizable vector pSUP202 and maintained in Escherichia coli. hox DNA was identified by screening the E. coli gene bank for restoration of hydrogenase activity in A. eutrophus Hox mutants. Hybrid plasmids that contained an 11.6-kb EcoRI fragment restored soluble NAD-dependent hydrogenase activity when transferred by conjugation into one class of Hos- mutants. An insertion mutant impaired in particulate hydrogenase was partially restored in Hop activity by an 11-kb EcoRI fragment. A contiguous sequence of two EcoRI fragments of 8.6 and 2.0 kb generated Hox+ recombinants from mutants that were devoid of both hydrogenase proteins. hox DNA was subcloned into the vector pVK101. The resulting recombinant plasmids were used in complementation studies. The results indicate that we have cloned parts of the structural genes coding for Hos and Hop activity and a complete regulatory hox DNA sequence which encodes the thermosensitive, energy-dependent derepression signal of hydrogenase synthesis in A. eutrophus H16.  相似文献   

3.
The plasmid-encoded hydrogenase gene cluster in Alcaligenes eutrophus   总被引:1,自引:0,他引:1  
Abstract Alcaligenes eutrophus strain H16 harbors a 450 kilobase pairs (kb) conjugative plasmid which codes for the ability of the organism to grow lithoautotrophically on hydrogen and carbon dioxide (reviewed in [1]). The genes for hydrogen oxidation, designated hox , are clustered on plasmid pHG1 in a DNA region of approximately 100-kb in size ([2], Fig. 1). The hox genes and their organization have been analyzed by isolation of Hox-deficient mutants, by complementation analysis, by cloning of hox genes, identification of hox -encoded polypeptides and, most recently, by DNA sequencing. The hox cluster is flunked by the two structural gene regions, hoxS and hoxP ; it contains a regulatory locus, hoxC , and additional genes like hoxN and hoxM whose products play a role in the formation of catalytically active hydrogenase proteins. Of four indigenous 1.3-kb insertion elements, two copies of IS491 map in the hox gene cluster. These elements may be involved in rearrangements and deletions which occur particularly frequently in this region of the megaplasmid (Schwartz, Kortlüke and Friedrich, unpublished).  相似文献   

4.
Alcaligenes eutrophus strain CH34, which was isolated as a bacterium resistant to cobalt, zinc, and cadmium ions, shares with A. eutrophus strain H16 the ability to grow lithoautotrophically on molecular hydrogen, to form a cytoplasmic NAD-reducing and a membrane-bound hydrogenase, and most metabolic attributes; however, it does not grow on fructose. Strain CH34 contains two plasmids, pMOL28 (163 kilobases) specifying nickel, mercury, and cobalt resistance and pMOL30 (238 kilobases) specifying zinc, cadmium, mercury, and cobalt resistance. The plasmids are self-transmissible in homologous matings, but at low frequencies. The transfer frequency was strongly increased with IncP1 plasmids RP4 and pUZ8 as helper plasmids. The phenotypes of the wild type, cured strains, and transconjugants are characterized by the following MICs (Micromolar) in strains with the indicated phenotypes: Nic+, 2.5; Nic-, 0.6; Cob+A, 5.0; Cob+B, 20.0; Cob-, less than 0.07; Zin+, 12.0; Zin-, 0.6; Cad+, 2.5; and Cad-, 0.6. Plasmid-free cells of strain CH34 are still able to grow lithoautotrophically and to form both hydrogenases, indicating that the hydrogenase genes are located on the chromosome, in contrast to the Hox structural genes of strain H16, which are located on the megaplasmid pHG1 (450 kilobases).  相似文献   

5.
6.
7.
8.
Denitrification by Alcaligenes eutrophus H16 is genetically linked to megaplasmid pHG1. Unexpectedly, the gene encoding the nitrite reductase (nirS) was identified on chromosomal DNA. The nirS product showed extensive homology with periplasmic nitrite reductases of the heme cd1-type. Disruption of nirS abolished nitrite-reducing ability, indicating that NirS is the enzyme essential for denitrification in A.eutrophus.  相似文献   

9.
10.
Denitrification by Alcaligenes eutrophus is plasmid dependent.   总被引:9,自引:5,他引:4       下载免费PDF全文
Curing of the hydrogenase-specifying megaplasmid pHG indigenous to strains of the facultative lithoautotrophic bacterium Alcaligenes eutrophus was correlated with a loss of denitrifying ability (Nitd). The retransfer of plasmid pHG1 reconstituted the Nitd phenotype. Plasmid-free mutants were still capable of converting some nitrate to nitrite, but they did not metabolize nitrite under anaerobic conditions.  相似文献   

11.
In Alcaligenes eutrophus H16 a pleiotropic DNA-region is involved in formation of catalytically active hydrogenases. This region lies within the hydrogenase gene cluster of megaplasmid pHG1. Nucleotide sequence determination revealed five open reading frames with significant amino acid homology to the products of the hyp operon of Escherichia coli and other hydrogenase-related gene products of diverse organisms. Mutants of A. eutrophus H16 carrying Tn5 insertions in two genes (hypB and hypD) lacked catalytic activity of both soluble (SH) and membrane-bound (MBH) hydrogenase. Immunological analysis showed that the mutants contained SH-and MBH-specific antigen. Growing the cells in the presence of 63Ni2+ yielded significantly lower nickel accumulation rates of the mutant strains compared to the wild-type. Analysis of partially purified SH showed only traces of nickel in the mutant protein suggesting that the gene products of the pleiotropic region are involved in the supply and/or incorporation of nickel into the two hydrogenases of A. eutrophus.  相似文献   

12.
HoxN, an integral membrane protein with seven transmembrane helices and a molecular mass of 33.1 kDa, is involved in high-affinity nickel transport in Alcaligenes eutrophus H16. From genetic analyses, it has been concluded that HoxN is a single-component ion carrier. To investigate this assumption, hoxN was introduced into Escherichia coli. The recombinant strain showed significantly enhanced nickel uptake in a short-interval assay. Likewise, growth in the presence of 63NiCl2 yielded a more than 15-fold-increased cellular nickel content. The HoxN-based nickel transport activity could also be demonstrated in a physiological assay: an E. coli strain coexpressing hoxN and the urease operon of Klebsiella aerogenes exhibited urease activity 10-fold greater than that in the strain lacking a functional hoxN. These results strongly suggest that HoxN is sufficient to operate as a nickel permease. Multiple sequence alignment of HoxN and four other bacterial membrane proteins implicated in nickel metabolism revealed two conserved signatures which may play a role in the nickel translocation process.  相似文献   

13.
Summary Plasmids carrying hydrogenase genes in Alcaligenes eutrophus wild type H 16 and in two transposon Tn5 —induced mutants have been investigated by electron microscopy. Besides the pHG1 megaplasmid (458±27 kb) carrying genes coding for structural and regulatory properties of hydrogenases, small plasmids of unknown significance have been detected. The sizes of EcoRI fragments obtained from pHG1 were measured from electron micrographs. They were significantly different from sizes determined previously by agarose gel electrophoresis.Plasmid pHG1 isolated from the wild type H 16 was shown to contain two inverted repeats (IR 16-1 and IR 16-2) with sizes similar to known transposons.From electron microscopic hybridization studies, it was deduced that the sites of insertion of Tn5 into a regulation gene on pHG1 for both soluble and membrane-bound hydrogenase, and of Tn5-Mob into the gene coding for structural properties of the soluble hydrogenase, are about 67.2 kb apart. One of the inverted repeats (IR 16-1) was localized in between these sites.  相似文献   

14.
Alcaligenes eutrophus grew well autotrophically with molecular hydrogen at 30 degrees C, but failed to grow at 37 degrees C (Hox Ts). At this temperature the strain grew well heterotrophically with a variety of organic compounds and with formate as an autotrophic substrate, restricting the thermolabile character to hydrogen metabolism. The soluble hydrogenase activity was stable at 37 degrees C. The catalytic properties of the wild-type enzyme were identical to those of a mutant able to grow lithoautotrophically at 37 degrees C (Hox Tr). Soluble hydrogenase was not rapidly degraded at elevated temperatures since the preformed enzyme remained stable for at least 5 h in resting cells or was diluted by growth, as shown in temperature shift experiments. Immunochemical studies revealed that the formation of the hydrogenase proteins was temperature sensitive. No cross-reactivity was detected above temperatures of 34 degrees C. The genetic information of Hox resides on a self-transmissible plasmid in A. eutrophus. Using Hox Tr mutants as donors of hydrogen-oxidizing ability resulted in Hox+ transconjugants which not only had recovered plasmid pHG1 and both hydrogenase activities but also were temperature resistant. This is evidence that the Hox Tr phenotype is coded by plasmid pHG1.  相似文献   

15.
16.
Mutants defective in chemolithoautotrophic growth (Aut-) have been isolated from Alcaligenes eutrophus strains H16, N9A, G27, and TF93. Spontaneous Aut- mutants were obtained only with strain TF93. Mutants of the other strains were selected after conventional mutagenesis or treatment with mitomycin. Most of the mutants, including the spontaneous Aut- strains, lacked hydrogenase activity (Hox-) but possessed the ability to fix carbon dioxide (Cfx+). Agar mating of A. eutrophus H16 with Hox- mutants of the various strains resulted in transconjugants which had recovered the ability to grow autotrophically and to express activity of hydrogenase as examined by enzymatic and immunochemical analysis. Transfer of hydrogen-oxidizing ability occurred in the absence of a mobilizing plasmid such as Rp4. The transfer frequency was particularly high (ca. 10(-2) per donor) when the spontaneous Hox- mutants of strain TF93 were used as recipients. These strains proved to be plasmid free, whereas donors, transconjugants, and the mutagen-treated Hox- mutants contained a large plasmid (molecular weight, 270 +/- 10 X 10(6) revealed by agarose gel electrophoresis. The results allow the conclusion that A. eutrophus H16 harbors a self-transmissible plasmid designated pHG1, which carries information for hydrogen-oxidizing ability.  相似文献   

17.
18.
Alcaligenes eutrophus hydrogenase genes (Hox)   总被引:20,自引:18,他引:2       下载免费PDF全文
Mutants of Alcaligenes eutrophus H16 lacking catalytically active soluble hydrogenase (Hos-) grew very slowly lithoautotrophically with hydrogen. Mutants devoid of particulate hydrogenase activity (Hop-) were not affected in growth with hydrogen. The use of Hos- and Hop- mutants as donors of hydrogen-oxidizing ability in crosses with plasmid-free recipients impaired in both hydrogenases (Hox-) resulted in transconjugants which had inherited the plasmid and the phenotype of the donor. This indicates that the structural genes which code for the hydrogenases reside on plasmid pHG1. The Hox function of one class of Hox- mutants could not be restored by conjugation. These mutants exhibited a pleiotropic phenotype since they were unable to grow with hydrogen and also failed to grow heterotrophically with nitrate (Hox- Nit-). Nitrate was scarcely utilized as electron acceptor or as nitrogen source. Hox- Nit- mutants did not act as recipients but could act as donors of the Hox character. Transconjugants derived from those crosses were Hox+ Nit+, indicating that the mutation which leads to the Hox- Nit- phenotype maps on the chromosome. Apparently, the product of a chromosomal gene is involved in the expression of plasmid-encoded Hox genes. We observed that the elimination of plasmid pHG1 coincided with the occurrence of multiple resistances to various antibiotics. Since Hox+ transconjugate retained the antibiotic-resistant phenotype, we conclude that this property is not directly plasmid associated.  相似文献   

19.
Alcaligenes eutrophus H16 harbors seven hyp genes (hypA, B, F, C, D, E, and X) as part of the hydrogenase gene cluster on megaplasmid pHG1. Here we demonstrate that three of the hyp genes (hypA, B, and F) are duplicated in A. eutrophus, which explains the lack of a phenotypic change in single-site mutants impaired in one of the two copies. Mutants with lesions in both copies showed clear alterations in hydrogenase activities. Deletions in hypF1 and hypF2 completely abolished activities of the soluble hydrogenase and of the membrane-bound hydrogenase, mutations in hypA1 and hypA2 totally blocked the membrane-bound hydrogenase activity, while residual soluble hydrogenase activity accounted for the extremely slow growth of the strain on H2. Both hydrogenase activities of mutants defective in hypB1 and hypB2 were partially restored by elevating the concentration of nickel chloride in the medium. Reduction of hydrogenase activities in the double mutants correlated with varying degrees of maturation deficiency based upon the amount of unprocessed nickel-free hydrogenase precursor. Despite a high identity between the two copies of hyp gene products, substantial structural differences were identified between the two copies of hypF genes. HypF1, although functionally active, is a truncated version of HypF2, whose structure resembles HypF proteins of other organisms. Interestingly, the N-terminus of HypF2, which is missing in the HypF1 counterpart, contains a putative acylphosphatase domain in addition to a potential metal binding site. Received: 15 June 1998 / Accepted: 5 August 1998  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号