首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study was carried out to optimize selected parameters for decolorization of a triarylmethane dye, such as crystal violet by white rot fungus, Pycnoporus sanguineus, pellets. The parameters studied were initial dye concentration (ppm), agitation speed (rpm), and process time (days) and were optimized using response surface methodology (RSM). It is shown that process time, agitation speed, and their interactions have significant effects on the decolorization process. Following the optimization, the decolorization study was extended to a stirred tank reactor (STR) process. Effects of different geometry of impellers on the decolorization process and power consumption were studied. Novel impeller geometries, such as 180° curved blade and 60° angled blade impellers, were used in the STR. The application of 180° curved blade impeller resulted in higher percentage of decolorization at a relatively less power consumption as compared with 60° angled blade impeller.  相似文献   

2.
The effects of the impeller configuration, aeration rate, and agitation speed on oxygen transfer coefficient K(L)a were studied in a newly designed centrifugal impeller bioreactor (5-L). The oxygen transfer rates in the novel bioreactor were also compared with those in a cell-lift bioreactor with comparable dimensions. The cell-lift impeller produced much higher surface oxygen transfer rates than the centrifugal one at an agitation speed over 200 rpm. This result was in good agreement with our observation that the cell-lift impeller produced much higher unfavorable turbulence. In addition, the experiments using granulated agar particles as pseudo plant cells indicated that the K(L)a value decreased steadily with an increase in agar particle concentration, and the centrifugal impeller still demonstrated a larger K(L)a than the cell lift up to a high pseudo cell concentration of 19.5 g dry weight (DW)/L (under 150 rpm and 0.20 vvm) or 22.3 g DW/L (under 200 rpm and 0.20 vvm). Furthermore, the correlation between power number and impeller Reynolds number for both the centrifugal and the cell-lift impellers was successfully obtained, which could be used for predicting the power input required by each impeller. From the results obtained, the centrifugal impeller bioreactor is expected to have great potential in its application to shear-sensitive biological systems.  相似文献   

3.
Thirteen agitator configurations were investigated at low speed in stirred-tank reactors (STRs) to determine if improved crude bacterial nanocellulose (BNC) productivity can be achieved from glucose-based media while maintaining high BNC quality using Komagataeibacter xylinus ATCC 23770 as a model organism. A comparison of five single impellers showed the pitched blade (large) was the optimal impeller at 300 rpm. The BNC production was further increased by maintaining the pH at 5.0. Among the single helical ribbon and frame impellers and the combined impellers, the twin pitched blade provided the best results. The combined impellers at 150 rpm performed better than the single impellers, and after optimizing the agitation conditions, the twin pitched blade (large) and helical ribbon impellers performed the best at 100 rpm. The performances of different agitators at low speed during BNC production were related to how efficiently the agitators improved the oxygen mass transfer coefficient. The twin pitched blade (large) was verified as providing the optimum performance by an observed crude BNC production of 1.97 g (L×d)−1 and a BNC crude yield of consumed glucose of 0.41 g g−1, which were 2.25 and 2.37 times higher than the initial values observed using the single impeller respectively. Further characterization indicated that the BNC obtained at 100 rpm from the STR equipped with the optimal agitator maintained high degree of polymerization and crystallinity.  相似文献   

4.
Biotin production by fermentation of recombinant Sphingomonas sp./pSP304 was investigated. A complex medium containing 60g/l of glycerol and 30g/l of yeast extract was suitable for biotin production. Biotin was produced in the late logarithmic or stationary phase after glycerol starvation. The optimum pH value for biotin production was 7.0. When the dissolved oxygen concentration (DO) was controlled at a constant level, the biotin concentration produced after 120h was significantly lower than that obtained in a test tube culture. Therefore, a batchwise jar-fermentor culture with a constant agitation speed and without DO control was conducted for investigating the effect of agitation conditions on biotin production. Six types of impeller were tested: turbine-blade type, turbo-lift type, rotating mesh type (EGSTAR((R))), screw with draft tube type, Maxblend((R))type, and anchor type. With some impellers, agitation speed was also changed. Both the maximum cell concentration and biotin production varied depending on agitation conditions. Relatively high cell concentrations were attained with four of the impeller types, turbine-blade type, rotating mesh type, Maxblend((R)) type, and anchor type. Among these impellers, the turbine-blade impeller with sintered sparger was suitable for biotin production. After 120h, the cell concentration reached an OD(660) of 43 and a biotin concentration of 66mg/l was obtained, which was comparable with the results from the test tube culture. Morphological variation was also observed depending on the agitation conditions: oval-shaped, rod-shaped, and elongated-shaped cells. Biotin production was relatively high in slightly long rod-shape cells but low in elongated cells. The difference in morphology appeared to depend on the shear stress. It was found that biotin production was strongly correlated with cell length and the oxygen transfer coefficient (k(L)a); cell lengths in the range 4-7μm and k(L)a values in the range 1.5-2.0/min were found to be suitable for biotin production in jar-fermentor culture.  相似文献   

5.
The efficiency of O transfer by a novel centrifugal impeller was higher than that of a conventional flat-bladed turbine impeller at an agitation speed lower than 300 rpm. In addition, at the same agitation speed (200 and 300 rpm), the centrifugal impeller possessed smaller shear stress than the flat-bladed turbine impeller as evaluated by the changes in size distribution of granulated agar particles which were sheared with those two types of impeller.  相似文献   

6.
Engkabang fat esters were produced via alcoholysis reaction between Engkabang fat and oleyl alcohol, catalyzed by Lipozyme RM IM. The reaction was carried out in a 500 ml Stirred tank reactor using heptane and hexane as solvents. Response surface methodology (RSM) based on a four-factor-five-level Central composite design (CCD) was applied to evaluate the effects of synthesis parameters, namely temperature, substrate molar ratio (oleyl alcohol: Engkabang fat), enzyme amount and impeller speed. The optimum yields of 96.2% and 91.4% were obtained for heptane and hexane at the optimum temperature of 53.9 °C, impeller speeds of 309.5 and 309.0 rpm, enzyme amounts of 4.82 and 5.65 g and substrate molar ratios of 2.94 and 3.39:1, respectively. The actual yields obtained compared well with the predicted values of 100.0% and 91.5%, respectively. Meanwhile, the properties of the esters show that they are suitable to be used as ingredient for cosmetic applications.  相似文献   

7.
Pellet growth of Aspergillus terreus ATCC 20542 in submerged batch fermentations in stirred bioreactors was used to examine the effects of agitation (impeller tip speed u(t) of 1.01-2.71 ms(-1)) and aeration regimens (air or an oxygen-enriched mixture containing 80% oxygen and 20% nitrogen by volume) on the fungal pellet morphology, broth rheology and lovastatin production. The agitation speed and aeration methods used did not affect the biomass production profiles, but significantly influenced pellet morphology, broth rheology and the lovastatin titers. Pellets of approximately 1200 microm initial diameter were reduced to a final stable size of approximately 900 microm when the agitation intensity was >/=600 rpm (u(t)>/=2.03 ms(-1)). A stable pellet diameter of approximately 2500 microm could be attained in less intensely agitated cultures. These large fluffy pellets produced high lovastatin titers when aerated with oxygen-enriched gas but not with air. Much smaller pellets obtained under highly agitated conditions did not attain high lovastatin productivity even in an oxygen-enriched atmosphere. This suggests that both an upper limit on agitation intensity and a high level of dissolved oxygen are essential for attaining high titers of lovastatin. Pellet size in the bioreactor correlated equally well with the specific energy dissipation rate and the energy dissipation circulation function. The latter took into account the frequency of passage of the pellets through the high shear regions of the impellers. Pellets that gave high lovastatin titers produced highly shear thinning cultivation broths.  相似文献   

8.
Summary The effect of impeller speed on citric acid production and selected enzyme activities of the TCA cycle was studied. The highest yield of citric acid (28 g/l) was obtained in culture agitated at lower speed (300 rpm). The activity of citrate synthase decreased with the increase of speed of agitation, while the activity of aconitase and isocitrate dehydrogenase increased with the increase in agitation speed.  相似文献   

9.
Three dimensional particle tracking velocimetry (3-D PTV) was used to characterize the flow fields in the impeller region of three microcarrier reactor vessels. Three typical cell culture bioreactors were chosen: 250 ml small-scale spinner vessels, 3 L bench-scale reactor, and 20 L medium-scale reactor. Conditions studied correspond to the actual operating conditions in industrial setting and were determined based on the current scale-up paradigm: the Kolmogorov eddy length criterion. In this paper we present characterization of hydrodynamics on the basis of flow structures produced because of agitation. Flow structures were determined from 3-D mean velocity results obtained using 3-D PTV. Although the impellers used in 3 L and 20 L reactors were almost identical, the flow structures produced in the two reactors differed considerably. Results indicate that near geometric scale up does not necessarily amount to scale-up of flow patterns and indicates that intensity as well as distribution of energy may vary considerably during such a scale-up.  相似文献   

10.
Cultivation of plant cells in a stirred vessel: effect of impeller design   总被引:2,自引:0,他引:2  
Suspension cultures of Nicotiana tabacum were grown in a batch fermentor using different agitation systems. The effects of the impeller type, size, and agitation speed on the productivity of cell mass and secondary metabolites (phenolics) have been investigated. The use of a large, flat-bladed impeller (diameter 7.6 cm; width 14.0 cm) improved culture growth significantly over systems using a regular, flat-bladed impeller (diameter 5.6 cm; width 1.5 cm). An impeller of the same dimensions as the 14.0-cm-wide, large, flat-bladed impeller with sail cloth blades yielded a higher maximum growth rate in the exponential phase but resulted in a longer lag phase. Overall (intracellular and extracellular) phenolics concentration showed a direct relationship to culture growth rate whereas extracellular concentrations were a function of agitation conditions. Power consumption and flow pattern studies were also completed to further characterize the different impellers tested.  相似文献   

11.
Summary The amount of polymer recovered during lab-scale batch production of curdlan-type polysaccharide byAlcaligenes faecalis (ATCC 31749) was increased by 46% through the manipulation of the vessel configuration. When standard turbine impellers were used to provide mixing and agitation the specific rate of production, Qp, decreased significantly after 40–50 hours elapsed fermentation time, EFT. The Qp remained at a high level throughout the entire time course of production (90 hours) when (i) a propeller was substituted for a flat-blade turbine impeller in a conventional baffled stirred tank reactor, or (ii) agitation and mixing were accomplished in a non-rotary vibro-fermenter.  相似文献   

12.
Esterification of adipic acid and oleyl alcohol in a solvent-free system featuring a stirred tank reactor containing commercially immobilized Candida antarctica lipase B was performed. The process was carried out using an artificial neural network (ANN) trained by the Levenberg-Marquardt (LM) algorithm. The effects of four operative variables, temperature, time, amount of enzyme, and impeller speed, on the reaction yield were studied. By examining different ANN configurations, the best network was found to consist of seven hidden nodes using a hyperbolic tangent sigmoid transfer function. The values of the coefficient of determination (R2) and root mean squared error (RMSE) between the actual and predicted responses were determined to be 1 and 0.0058178 for training and 0.99467 and 0.622540 for the testing datasets, respectively. These results imply that the developed model was capable of predicting the esterification yield. The operative variables affected the yield, and their order of contribution was as follows: time > amount of enzyme > temperature > impeller speed. A high percentage of yield (95.7%) was obtained using a low level of enzyme (2.5% w/w), and the temperature, time, and impeller speed were 66.5°C, 354 min (about 6 h), and 500 rpm, respectively. A simple protocol for efficient substrate conversion in a solvent-free system evidenced by high enzyme stability is indicative of successful ester synthesis.  相似文献   

13.
14.
Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60°C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.  相似文献   

15.
Blend times and power consumptions were determined for different arrangements of two equal diameter impellers, a high efficiency A310 and a “Dumbo Ear” impeller with three large, “elephant ear” blades designed for low shear agitation. A 9 l round-bottomed, unbaffled bioreactor was used in these studies. Blend times were taken as the time for the disappearance of the pink color of a basic solution of phenolphthalein on neutralization by excess acid, and the power consumption was obtained from torque measurements. The mixing results show that the Dumbo Ear impeller gives shorter blend times than the A310?at equal rotational speeds for most of the conditions studied. As expected, the Dumbo Ear impeller consumes more power than the A310?at the same rotational speed, due to its large area blades. However, the Dumbo Ear impeller also gives shorter blend times than the A310?at equal power consumptions.  相似文献   

16.
The influence of impeller type and stirring frequency on the performance of a mechanically stirred anaerobic sequencing batch reactor containing immobilized biomass on an inert support (AnSBBR - Anaerobic Sequencing Batch Biofilm Reactor) was evaluated. The biomass was immobilized on polyurethane foam cubes placed in a stainless-steel basket inside a glass cylinder. Each 8-h batch run consisted of three stages: feed (10 min), reaction (460 min) and discharge (10 min) at 30 °C. Experiments were performed with four impeller types, i.e., helical, flat-blade, inclined-blade and curved-blade turbines, at stirring frequencies ranging from 100 to 1100 rpm. Synthetic wastewater was used in all experiments with an organic-matter concentration of 530 ± 37 mg/L measured as chemical oxygen demand (COD). The reactor achieved an organic-matter removal efficiency of around 87% under all investigated conditions. Analysis of the four impeller types and the investigated stirring frequencies showed that mass transfer in the liquid phase was affected not only by the applied stirring frequency but also by the agitation mode imposed by each impeller type. The best reactor performance at all stirring frequencies was obtained when agitation was provided by the flat-blade turbine impeller.  相似文献   

17.
为了研究操作条件对5。单磷酸胞苷(5′-CMP)晶体粒度分布的影响,分别采用不同形式的搅拌桨、搅拌速率以及反应液流加速率,并且运用激光粒度仪和扫描电镜对晶体粒度分布及形貌进行分析观测。结果显示:采用不同形式的搅拌桨形成的剪切力、颗粒聚集以及二次成核现象的差异导致了晶体粒度分布峰值数量不同;分别选取50、100和150r/min的搅拌速率以及1、3和6mL/h的流加速率时,晶体平均粒径在铆式搅拌桨作用下,在120.3—212.1μm范围内递减,而在45°斜角四折叶式搅拌桨作用下递减范围为3.17~150.2μm,且粒度分布更为均匀,为工业生产中的优化控制提供了一定的理论依据。  相似文献   

18.
Factorial design and response surface analyses were used to optimize the production of inulinase (2,1-β-d-fructan fructanohydrolase, EC 3.2.1.7) by Kluyveromyces marxianus ATCC 16045, using sucrose as carbon source. Effects of aeration, agitation and type of impeller (disk turbine, marine, pitched blade) were studied in a batch stirred reactor. Two factorial designs 22 were carried out. Agitation speed varied from 50 to 550 rpm (revolution per minute), aeration rate from 0.5 to 2.0 vvm (air volume/broth volume·minute). It has been shown that the enzyme production was strongly influenced by mixing conditions, while aeration rate was shown to be less significant. Additionally, the increase in the agitation speed is limited by the death rate, which increases drastically at high speeds, lowering the enzyme production. Also, the impeller type has significant influence in the production, the disk impeller at 450 rpm and aeration at 1.0 vvm led to an activity of 121 UI/mL, while the pitched blade was shown to be the best impeller for this process, leading to the best production, 176 UI/mL, at 450 rpm and 1.0 vvm. The maximum shear stress for inulinase production was about 0.22 Pa, since higher values cause higher cell death rates, affecting the enzyme production. The same results were confirmed with another microorganism, which was also sensible to shear stress. Therefore, it has been concluded that in some cases, mainly when the microorganism is sensible to shear stress, the interaction between mass transfer and mechanical stress should be considered in scale up processes.  相似文献   

19.
An immobilized enzyme bioreactor consisting of an agar gel-coated multidisk impeller was developed for the hydrolysis of highly viscous chitosan solutions, and the operating conditions for the production of physiologically active chitosan oligosaccharides (pentamers and hexamers) were investigated. Chitosanase was directly immobilized on the agar gel-coated multidisk impeller by a multipoint attachment method. The high stability of the immobilized enzyme was confirmed by means of five repetitions of a batch hydrolysis reaction. When the enzyme activity at the support surface was relatively high, the yield of the target products was higher at an impeller speed of 2 s−1 than at a speed of 1 s−1. However, no significant increase in yield was observed at impeller speeds higher than 2 s−1 in reactions at either of the two substrate concentrations tested (5 and 20 kg/m3). When the surface enzyme activity was low, the impeller speed did not affect the yield of the target products. The maximum yield of pentamers and hexamers increased as the surface enzyme activity decreased, and high yields (>30%) were obtained at activities below 160 U/m2. From the viewpoint of productivity, the optimal surface-enzyme activity was about 340 U/m2, and at that activity, the yield of target products was 22%. This yield was higher than that reported for conventional acid hydrolysis. To maximize both the productivity and the yield of the target products, the surface area for the immobilized enzyme should be increased. Our results suggest that it may be possible to obtain high yields of pentamers and hexamers of chitosan oligosaccharides from highly viscous chitosan solutions with this reactor.  相似文献   

20.
One of the major process bottlenecks for viable industrial production of second generation ethanol is related with technical–economic difficulties in the hydrolysis step. The development of a methodology to choose the best configuration of impellers towards improving mass transfer and hydrolysis yield together with a low power consumption is important to make the process cost-effective. In this work, four dual impeller configurations (DICs) were evaluated during hydrolysis of sugarcane bagasse (SCB) experiments in a stirred tank reactor (3 L). The systems tested were dual Rushton turbine impellers (DIC1), Rushton and elephant ear (down-pumping) turbines (DIC2), Rushton and elephant ear (up-pumping) turbines (DIC3), and down-pumping and up-pumping elephant ear turbines (DIC4). The experiments were conducted during 96 h, using 10 % (m/v) SCB, pH 4.8, 50 °C, 10 FPU/gbiomass, 470 rpm. The mixing time was successfully used as the characteristic parameter to select the best impeller configuration. Rheological parameters were determined using a rotational rheometer, and the power consumptions of the four DICs were on-line measured with a dynamometer. The values obtained for the energetic efficiency (the ratio between the cellulose to glucose conversion and the total energy) showed that the proposed methodology was successful in choosing a suitable configuration of impellers, wherein the DIC4 obtained approximately three times higher energetic efficiency than DIC1. Furthermore a scale-up protocol (factor scale-up 1000) for the enzymatic hydrolysis reactor was proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号