首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
We have indentified a novel gene (AtB) encoding a previously uncharacterized isoform of the B regulatory subunit of the type 2A serine/threonine protein phosphatase (PP2A) of Arabidopsis, and show that mRNA derived from the AtB gene accumulates in all Arabidopsis organs. In addition, we examined the expression of the three genes encoding the A regulatory subunit of Arabidopsis PP2A and show these genes are expressed in all organs as well. Taken together, our results suggest a myriad of PP2A subunit combinations, possibly with distinct substrate specificities, may occur within each Arabidopsis cell.  相似文献   

2.
3.
A 2225 bp cDNA, designated RPA1, was isolated from an Oryza sativa cDNA library. Analysis revealed a 1761 bp coding sequence with 15 non-identical repeat units. The ORF encoded the A regulatory subunit of protein phosphatase 2A (PP2A-A) as ascertained by complementation of the yeast tpd3 mutant defective in this gene. The corresponding genomic DNA from a rice genome BAC library revealed that the gene contains eleven introns. The rice genome contains only a single copy of this gene as judged by Southern blot analysis. The PP2A protein is highly conserved in nature; the rice protein shows 88% amino acid identity with its counterparts in Arabidopsis or Nicotiana tabacum.  相似文献   

4.
5.
We have recently reported the existence of multiple isoforms of the catalytic subunit of protein phosphatase 2A (PP2A) in Arabidopsis thaliana and the molecular cloning of cDNAs encoding three of these proteins (PP2A-1, PP2A-2, PP2A-3). The reported cDNA encoding PP2A-3 was truncated at the 5 terminus, lacking a short fragment of the N-terminal coding sequence. We have now isolated a near full-length cDNA encoding the entire PP2A-3 protein (313 residues). The clone includes 188 nucleotides of 5-untranslated region, where a 44 bp long poly(GA) track is found. We also describe the cloning of a cDNA encoding a fourth isoform of PP2A (PP2A-4). The polypeptide contains 313 residues being 98% identical to PP2A-3 and only 80% identical to both PP2A-1 and PP2A-2. The mRNA for PP2A-4 is 1.4 kb in length and, although predominantly expressed in roots, it is also found in other organs. It is concluded that in A. thaliana the isoforms of PP2A can be grouped in two extremely conserved subfamilies.  相似文献   

6.
A cDNA encoding for a 68 kDa GTP-binding protein was isolated from Arabidopsis thaliana (aG68). This clone is a member of a gene family that codes for a class of large GTP-binding proteins. This includes the mammalian dynamin, yeast Vps1p and the vertebrate Mx proteins. The predicted amino acid sequence was found to have high sequence conservation in the N-terminal GTP-binding domain sharing 54% identity to yeast Vps1p, 56% amino acid identity to rat dynamin and 38% identity to the murine Mx1 protein. The northern analysis shows expression in root, leaf, stem and flower tissues, but in mature leaves at lower levels. Southern analysis indicates that it may be a member of a small gene family or the gene may contain an intron.  相似文献   

7.
Teruya T  Simizu S  Kanoh N  Osada H 《FEBS letters》2005,579(11):2463-2468
According to the chemical genetic approach, small molecules that bind directly to proteins are used to analyze protein function, thereby enabling the elucidation of complex mechanisms in mammal cells. Thus, it is very important to identify the molecular targets of compounds that induce a unique phenotype in a target cell. Phoslactomycin A (PLMA) is known to be a potent inhibitor of protein Ser/Thr phosphatase 2A (PP2A); however, the inhibitory mechanism of PP2A by PLMA has not yet been elucidated. Here, we demonstrated that PLMA directly binds to the PP2A catalytic subunit (PP2Ac) in cells by using biotinylated PLMA, and the PLMA-binding site was identified as the Cys-269 residue of PP2Ac. Moreover, we revealed that the Cys-269 contributes to the potent inhibition of PP2Ac activity by PLMA. These results suggest that PLMA is a PP2A-selective inhibitor and is therefore expected to be useful for future investigation of PP2A function in cells.  相似文献   

8.
Interaction of nucleoredoxin with protein phosphatase 2A   总被引:1,自引:0,他引:1  
A trimeric protein phosphatase 2A (PP2A(T55)) composed of the catalytic (PP2Ac), structural (PR65/A), and regulatory (PR55/B) subunits was isolated from rabbit skeletal muscle by thiophosphorylase affinity chromatography, and contained two additional proteins of 54 and 55 kDa, respectively. The 54 kDa protein was identified as eukaryotic translation termination factor 1 (eRF1) and as a PP2A interacting protein. The 55 kDa protein is now identified as nucleoredoxin (NRX). The formation of a complex between GST-NRX, PP2A(C) and PP2A(D) was demonstrated by pull-down experiments with purified forms of PP2A, and by immunoprecipitation of HA-tagged NRX expressed in HEK293 cells complexed endogenous PP2A subunits. Analysis of PP2A activity in the presence of GST-NRX showed that NRX competed with polycations for both stimulatory and inhibitory effects on different forms of PP2A.  相似文献   

9.
Complementary DNA sequences were isolated from a library of cloned Arabidopsis leaf mRNA sequences in gt10 that encoded a 21.7 kDa polypeptide (CaBP-22), which shared 66% amino acid sequence identity with Arabidopsis calmodulin. The putative Ca2+-binding domains of CaBP-22 and calmodulin, however, were more conserved and shared 79% sequence identity. Ca2+ binding by CaBP-22, which was inferred from its amino acid sequence similarity with calmodulin, was demonstrated indirectly by Ca2+-induced mobility shifting of in vitro translated CaBP-22 during SDS-polyacrylamide gel electrophoresis. CaBP-22 is encoded by a ca. 0.9 kb mRNA that was detected by northern blotting of leaf poly(A)+ RNA; this mRNA was slightly larger than the 809 bp CaBP-22 cDNA insert, indicating that the deduced amino acid sequence of CaBP-22 is near full-length. CaBP-22 mRNA was detected in RNA fractions isolated from leaves of both soil-grown and hydroponically grown Arabidopsis, but below the limits of detection in RNA isolated from roots, and developing siliques. Thus, CaBP-22 represents a new member of the EF-hand family of Ca2+-binding proteins with no known animal homologue and may participate in transducing Ca2+ signals to a specific subset of response elements.  相似文献   

10.
Variable regulatory subunits of protein phosphatase 2A (PP2A) modulate activity, substrate selectivity and subcellular targeting of the enzyme. We have cloned a novel member of the B type regulatory subunit family, Bδ, which is most highly related to Bα. Bδ shares with Bα epitopes previously used to generate subunit-specific antibodies. Like Bα, but unlike Bβ and Bγ which are highly brain-enriched, Bδ mRNA and protein expression in tissues is widespread. Bδ is a cytosolic subunit of PP2A with a subcellular localization different from Bα and may therefore target a pool of PP2A holoenzymes to specific substrates.  相似文献   

11.
The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56 gamma. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 gamma and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 gamma first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.  相似文献   

12.
Protein phosphatase regulatory subunits are increasingly recognized as promising drug targets. In the absence of an existing drug, inducible degradation provides a means of predicting candidate targets. Here auxin‐inducible degradation of Saccharomyces cerevisiae PP2A regulatory subunit Cdc55 in combination with quantitative phosphoproteomics is employed. A prevalence of hyperphosphorylated phosphopeptides indicates that the approach successfully identified direct PP2ACdc55 targets. PRM follow up of data‐dependent acquisition results confirmed that vacuolar amino acid transporters are among the proteins most strongly affected by Cdc55 depletion.  相似文献   

13.
Summary Saccharomyces cerevisiae genomic clones that encode calmodulin-binding proteins were isolated by screening a λgt11 expression library using125I-labeled calmodulin as probe. Among the cloned yeast genes, we found two closely related genes (CMP1 andCMP2) that encode proteins homologous to the catalytic subunit of phosphoprotein phosphatase. The presumed CMP1 protein (62999 Da) and CMP2 protein (68496 Da) contain a 23 amino acid sequence very similar to those identified as calmodulin-binding sites in many calmodulin-regulated proteins. The yeast genes encode proteins especially homologous to the catalytic subunit of mammalian phosphoprotein phosphatase type 213 (calcineurin). The products of theCMP1 andCMP2 genes were identified by immunoblot analysis of cell extracts as proteins of 62000 and 64000 Da, respectively. Gene disruption experiments demonstrated that elimination of either or both of these genes had no effect on cell viability, indicating that these genes are not essential for normal cell growth.  相似文献   

14.
15.
16.
Human erythrocyte protein phosphatase 2A, which comprises a 34-kDa catalytic C subunit, a 63-kDa regulatory A subunit and a 74-kDa regulatory B″ (δ) subunit, was phosphorylated at serine residues of B″ in vitro by cAMP-dependent protein kinase (A-kinase). In the presence and absence of 0.5 μM okadaic acid (OA), A-kinase gave maximal incorporation of 1.7 and 1.0 mol of phosphate per mol of B″, respectively. The Km value of A-kinase for CAB″ was 0.17±0.01 μM in the presence of OA. The major in vitro phosphorylation sites of B″ were identified as Ser-60, -75 and -573 in the presence of OA, and Ser-75 and -573 in the absence of OA. Phosphorylation of B″ did not dissociate B″ from CA, and stimulated the molecular activity of CAB″ toward phosphorylated H1 and H2B histones, 3.8- and 1.4-fold, respectively, but not toward phosphorylase a.  相似文献   

17.
AtPTPA is a critical regulator for the holoenzyme assembling of protein phosphatase 2A (PP2A) in Arabidopsis. Characterization of AtPTPA improves our understanding of the function and regulation of PP2A in eukaryotes. Further analysis of AtPTPA-overexpressing plants indicates that AtPTPA increases PP2A activity by promoting PP2A''s AC dimer formation, thereby holoenzyme assembling. Plant hormone abscisic acid (ABA) reduces PP2A enzyme activity by negatively affects PP2A''s AC dimer formation. Therefore, AtPTPA is a positive factor that promotes PP2A holoenzyme assembly, and ABA is a negative factor that prevents PP2A holoenzyme assembly.  相似文献   

18.
A cDNA encoding a 70 kDa heat shock cognate protein (hsc70) was isolated fromArabidopsis thaliana by using a rat hsc70 cDNA as probe. Sequence analysis demonstrated the conservation of functional domains and important amino acid residues among hsc70s in plants and animals. The expression of this gene was stress-inducible, and was found at a substantial level during normal growth in root, stem, leaf and flower tissues, but not in siliques. Multiple copies of this gene exist in theArabidopsis genome.  相似文献   

19.
cAMP-dependent protein kinase (PKA) catalytic (C) and regulatory (R) subunits from Yarrowia lipolytica are encoded by single genes, TPK1 and RKA1, respectively. Here we performed the heterologous expression, purification and characterization of the R subunit from Y. lipolytica yeast cells, and explored the main biochemical features of the PKA. The purified recombinant R, active and capable to interact with C subunit was used to prepare highly specific polyclonal antiserum. Sucrose-gradient centrifugation and gel filtration analysis of both recombinant and native R revealed the monomeric nature of this subunit. Hydrodynamic parameters of the holoenzyme indicated that Y. lipolytica PKA is a dimer of 90 kDa composed of an R subunit of 42 kDa and a C subunit of 39 kDa. The identification of the N-terminal sequence was carried out by mass spectrometry analysis of the purified native R subunit. The differences between N-terminal sequences of R subunits from Y. lipolytica and other organisms, particularly a short linker that spans the inhibitory site, were discussed as the possible cause of the lack of dimerization. R was identified as a type II subunit since our results indicated that it was phosphorylated in vivo by C at S124 identified by anti-phospho-PKA substrate (RRXS/T) antibody.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号