首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
This is the first report on the ultrastructural pattern of distribution of nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in endothelial cells, using the rabbit aorta, and its colocalization with the neuronal isoform (type I) of nitric oxide synthase. About 30% of the endothelial cells showed a positive reaction for NADPH-d compared to about 6% for nitric oxide synthase immunoreactivity. Simultaneous double histochemical-immunocytochemical labelling procedures indicate that all of the cells displaying nitric oxide synthase-positive reactivity also contained NADPH-d; the remainder of NADPH-d-positive endothelial cells were negative for this isoform of nitric oxide synthase. Nitric oxide synthase-immunogold labelling was mostly associated with free ribosomes, while NADPH-d activity was distributed largely in patches in the cytoplasm and in association with the cell membrane.  相似文献   

2.
By means of NADPH-diaphorase (NADPH-d) histochemistry and nitric oxide synthase (NOS) immunohistochemistry, we demonstrate that considerable numbers of NADPH-d-positive neurons are distributed throughout the canine superior cervical ganglion (SCG). These neurons also show NOS immunoreactivity. This finding indicates that NADPH-d histochemistry, a simple and reliable technique, can be used as a reliable marker of NOS activity in the sympathetic innervation of canine head and neck. The present findings suggest that the participation of nitric oxide in the SCG differs greatly between species.  相似文献   

3.
There is strong evidence that NADPH-diaphorase can be used as a marker for neurones that employ nitric oxide as a messenger molecule. In the present study, the NADPH-diaphorase activity of intracardiac neurones and nerve terminals in whole-mount stretch preparations and sections of the newborn and adult guinea-pig atria and interatrial septum has been examined histochemically. Together with epicardial, endothelial and endocardial cells, which displayed some NADPH-diaphorase staining, a subpopulation of intracardiac neurones exhibited moderate-heavy labelling for NADPH-diaphorase, while the majority of neurones were only lightly stained or negative. Intracardiac ganglia containing positive neuronal cell bodies were located between the epicardial cells and atrial myocytes in four main regions: in association with the superior and inferior vena cavae, the points of entry of the pulmonary veins, and within the interatrial septum. Nerve terminals exhibiting NADPH-diaphorase activity were seen throughout the atrial tissue, forming basket-like endings around intracardiac neuronal cell bodies; varicose terminals were also observed on atrial myocytes and other non-neuronal structures. A proportion of the nerve fibres was clearly of intrinsic origin, other terminals may well have originated from neuronal cell bodies present outside the heart.  相似文献   

4.
A histochemical investigation of age-related changes that occur with respect to the localization of NADPH-diaphorase in the ganglionated plexus of the guinea-pig gallbladder was carried out. In all age groups examined (embryonic stages day 34 and 52, 2 to 4-day old, 6-month old and 2-year old), the mean percentage of NADPH-diaphorase-positive neurons per ganglion was obtained by taking the number of neurons that were immunoreactive to protein gene product 9.5 (a general neuronal marker) as 100%. In addition, the possible co-existence of NADPH-diaphorase and nitric oxide synthase in the ganglionated plexus of 2 to 4-day old and 6-month old guinea-pig gallbladder was investigated. NADPH-diaphorase was not present in the ganglionated plexus of the gallbladder at embryonic day 34. At embryonic day 52, all the protein gene product 9.5-immunoreactive neurons showed positive staining to NADPH-diaphorase; this dropped to a minimum at 2–4 days (26.7%), rose slightly at 6 months (33.6%), and finally returned close to the 100% value at 2 years. In the gallbladders of 2-year old guinea-pigs, some (3 out of 10) ganglia were devoid of protein gene product 9.5-immunoreactive neurons, but NADPH-diaphorase-stained granules were found within the ganglia. However, all those neurons that were immunopositive to protein gene product 9.5 also expressed NADPH-diaphorase. Moreover, NADPH-diaphorase-positive neurons in the gallbladder of 2 to 4-day-old and 6-month-old guinea-pigs were found to express nitric oxide synthase.  相似文献   

5.
Summary Adenylate cyclase activity was localized in various tissues of the early chick embryo using an ultrastructural histochemical technique. Reaction product was deposited on the lateral plasma membrane of all cells, but with a preferential localization at the apical terminal complex in the epiblast. There was no activity associated with the free surfaces of these or other cells in the embryo. Intracellular deposits were found in all cells associated with the endoplasmic reticulum, nuclear envelope and Golgi bodies. In the last organelle, the deposit was sometimes observed to be distributed through the stack in a non-uniform way, with the heaviest deposits occurring at the forming face. No clear difference could be detected between the cytochemical activity associated with cells in various regions of the embryo, or with embryos at different stages of early development.  相似文献   

6.
7.
Recently, we showed that Paramecium primaurelia synthesizes molecules functionally related to the cholinergic system and involved in modulating cell-cell interactions leading to the sexual process of conjugation. It is known that nitric oxide (NO) plays a role in regulating the release of transmitter molecules, such as acetylcholine, and that the NO biosynthetic enzyme, nitric oxide synthase (NOS), shows nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity. In this work, we detected the presence of NADPH-d activity in P. primaurelia. We characterized this activity histochemically by examining its specificity for beta-NADPH and alpha-NADH co-substrates, and sensitivity both to variations in chemico-physical parameters and to inhibitors of enzymes showing NADPH-d activity. Molecules immunologically related to NOS were recognized by the anti-rat brain NOS (bNOS) antibody. Moreover, bNOS immunoreactivity and NADPH-d activity sites were found to be co-localized. The non-denaturing electrophoresis, followed by exposure to beta-NADPH or alpha-NADH co-substrates, revealed the presence of a band of apparent molecular mass of about 124 kDa or a band of apparent molecular mass of about 175 kDa, respectively. In immunoblot experiments, the bNOS antibody recognized a single band of apparent molecular mass of about 123 kDa.  相似文献   

8.
Summary The ultrastructural changes in the wing bud afterapical ectodermal ridge (A.E.R.) removal was studied to re-examine the issue of distal mesenchymal cell death. The A.E.R. of the right wing bud was removed microsurgically from chick embryos of stages 18 to 22 (HH 1951). The wing buds were examined at three hour intervals up to twelve hours after the operation with light, transmission and scanning electron microscopy. The main findings were:(1) Immediate and temporary shrinkage of the mesenchymal extracellular space 100 to 150 m and chromatin condensation in the cells 50 to 75 m from the wound. (2) Death of ectodermal and mesenchymal cells in the immediate vicinity of the wound. (3) Formation of a single squamous-like layer of mesenchymal cells to cover the wound. (4) Occasional evidence of cell death in the distal mesenchyme at later times after the operation.The pattern of cell death observed suggests only a traumatic etiology, and gives little evidence for the postulated developmental significance of cell death following A.E.R. removal.  相似文献   

9.
The distributions of neuronal nitric oxide synthase immunoreactivity (NOS-IR) and NADPH-diaphorase (NADPH-d) activity were compared in the cat spinal cord. NOS-IR in neurons around the central canal, in superficial laminae (I and II) of the dorsal horn, in the dorsal commissure, and in fibers in the superficial dorsal horn was observed at all levels of the spinal cord. In these regions, NOS-IR paralleled NADPH-d activity. The sympathetic autonomic nucleus in the rostral lumbar and thoracic segments exhibited prominent NOS-IR and NADPH-d activity, whereas the parasympathetic nucleus in the sacral segments did not exhibit NOS-IR or NADPH-d activity. Within the region of the sympathetic autonomic nucleus, fewer NOS-IR cells were identified compared with NADPH-d cells. The most prominent NADPH-d activity in the sacral segments occurred in fibers within and extending from Lissauer's tract in laminae I and V along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus. These afferent projections did not exhibit NOS-IR; however, NOS-IR and NADPH-d activity were demonstrated in dorsal root ganglion cells (L7-S2). The results of this study demonstrate that NADPH-d activity is not always a specific histochemical marker for NO-containing neural structures.  相似文献   

10.
Nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase histochemistry, which indicates the presence of neural nitric oxide synthase, the enzyme responsible for the generation of nitric oxide, was used in combination with retrograde labelling methods to determine, in whole-mounts and sections of rat major pelvic ganglia, whether neurons destined for the penile corpora cavernosa were able to produce nitric oxide. In whole-mount preparations of pelvic ganglia, among the 607±106 retrogradely labelled neurons innervating the penile corpora cavernosa, 84±7% were NADPH-diaphorase-positive, 30±7% of which were intensely histochemically stained. In serial sections of pelvic ganglia, out of a mean count of 451 retrogradely labelled neurons, 65% stained positively for NADPH-diaphorase. An average of 1879±363 NADPH-diaphorase positive cell bodies was counted in the pelvic ganglion. In the major pelvic ganglion, neurons both fluorescent for Fluorogold or Fast Blue and intensely stained for NADPH-diaphorase were consistently observed in the dorso-caudal part of the ganglia in the area close to the exit of the cavernous nerve and within this nerve. This co-existence was much less constant in other parts of the ganglion. In the rat penis, many NADPH-diaphorase-positive fibres and varicose terminals were observed surrounding the penile arteries and running within the wall of the cavernous spaces. This distribution of NADPH-diaphorase-positive nerve cells and terminals is consistent with the idea that the relaxation of the smooth muscles of the corpora cavernosa and the dilation of the penile arterial bed mediated by postganglionic parasympathetic neurons is attributable to the release of nitric oxide and that nitric oxide plays a crucial role in penile erection. Moreover, the existence in the pelvic ganglion of a large number of NADPH-diaphorase-positive neurons that are not destined for the corpora cavernosa suggests that nitric oxide is probably also involved in the function of other pelvic tissues.  相似文献   

11.
Nitric oxide (NO), a highly reactive free radical is involved in vasodilation, neurotransmission, hormone secretion, and reproduction. Since all known nitric oxide synthase (NOS) isoforms possess NADPH-diaphorase (NADPH-d) activity, NADPH-d histochemistry was used as a commonly accepted procedure for NOS identification. The aim of our study was to determine the cellular localization of NADPH-d, eNOS, and iNOS in the porcine uterus and the correlation between NADPH-d and NOS activity in the early, middle, late luteal, and follicular phase of the estrous cycle. Light-microscopic observations of the sections revealed the differential expression of the NADPH-d in the analyzed stages of the estrous cycle. The most intense staining was observed in the luminal epithelium in the late luteal phase and in some groups of the endometrial glands in all studied stages. Positive reaction was also found in the endothelial cells of blood vessels and in the myometrium itself. Immunostaining for eNOS was observed in the luminal and glandular epithelium in all studied stages, but no clear fluctuations were observed. The endothelium of both endometrial and myometrial blood vessels displayed pronounced eNOS immunostaining. Strong iNOS staining was observed in the luminal epithelium in the late luteal and follicular phase and in selected groups of endometrial glands. Thus, only NADPH-d and iNOS undergo cyclic changes in the studied stages of the estrous cycle. The differential expression of NADPH-d/NOS in the porcine uterine horn during the estrous cycle suggests a role for NO in modulating uterine function.  相似文献   

12.
Colocalization of vasoactive intestinal peptide, neuropeptide Y, calcitonin gene-related peptide, substance P, and tyrosine hydroxylase, respectively, with NADPH-diaphorase staining in rat adrenal gland was investigated using the double labelling technique. All vasoactive intestinal peptide- and some neuropeptide Y-immunoreactive intrinsic neuronal cell bodies seen in the gland were double stained with NADPH-diaphorase. Double labelling also occurred in some nerve fibres immunoreactive to vasoactive intestinal peptide and neuropeptide Y in the medulla and cortex. No colocalization of calcitonin gene-related peptide, substance P or tyrosine hydroxylase immunoreactivity with NADPH-diaphorase staining was observed. However, nerve fibres with varicosities immunoreactive for all the neuropeptides examined were closely associated with some of the NADPH-diaphorase-stained neuronal cell bodies. Thus, in rat adrenal gland, nitric oxide is synthesized in all ganglion cells containing vasoactive intestinal peptide and in some containing neuropeptide Y, but not in those containing calcitonin gene-related peptide, substance P or tyrosine hydroxylase.  相似文献   

13.
Calcitonin gene-related peptide (CGRP)-immunoreactive afferent nerve fibers are abundant in the rat penis. In addition, NADPH-diaphorase, which stains for nitric oxide synthase, has been localized within both autonomic and sensory dorsal root ganglia (DRG) and may be part of an important biochemical pathway involved in penile tumescence. The purpose of this study was: 1) to examine the circuitry of afferent nerves that are CGRP immunoreactive from the L6 DRG, 2) to examine the possibility that there are NADPH-diaphorase-positive afferent fibers from the L6 DRG to the rat penis, and 3) to examine the localization and colocalization of CGRP and NADPH-diaphorase within L6 DRG afferent perikarya. Calcitonin gene-related peptide immunostaining in the penis was eliminated following a bilateral transection of the pudendal nerves, but was unchanged following a bilateral transection of the pelvic splanchnic or hypogastric nerves. The NADPH-diaphorase staining was not altered by any of the nerve transections. Injection of the retrograde axonal tracer fluorogold (FG) into the dorsum penis labeled perikarya in the L6 DRG. Although the majority of FG-labeled perikarya contained neither CGRP nor NADPH-diaphorase, small subpopulations of perikarya contained either CGRP immunoreactivity, NADPH-diaphorase, or both. A unilateral pudendal nerve transection virtually eliminated (>99%) FG labeling in the ipsilateral L6 DRG. These data suggest that NADPH-diaphorase and CGRP are present, either together or separately, within a subpopulation of penile afferent perikarya. In addition, CGRP-immunoreactive afferent nerve fibers reach the penis primarily via the pudendal nerves. Finally, NADPH-diaphorase-positive penile afferents may be another important source of nitric oxide (NO) for penile tumescence.  相似文献   

14.
The NMDA-sensitive glutamate receptor complex can be modulated by numerous drugs and endogenous substances such as polyamines. We studied the pathway of arginine/nitric oxide/cyclic GMP in cultured chick retina cells through NMDA receptor activation, seen as a function of both differentiation stages of culture and intracellular polyamine levels. In our experimental conditions, the nitric oxide synthase activity was stimulated by NMDA from three to four times between embryonic day (E) 8 plus 5 days in vitro (C) and E8C7. The NMDA response was blocked by MK-801 (10 microM) by >60% at stage E8C5. During culture differentiation, the NMDA-induced increase in nitric oxide synthase activity at the E8C5 stage was blocked by preliminary incubation (24 h) of the cells with alpha-difluoromethylornithine, the inhibitor of polyamine biosynthesis. This effect was assessed by a reduction of NMDA-evoked cyclic GMP formation in polyamine-depleted retina cells. Thus, intracellular polyamine levels are involved in NMDA-evoked nitric oxide production. Our results indicate that (a) the developmental pattern of polyamine levels can be associated with the modulation of NMDA-evoked events and (b) the NMDA-mediated effects have been reduced in alpha-difluoromethylornithine-treated cell cultures. These observations provide evidence for a physiological interaction between polyamines and NMDA-sensitive glutamate receptors during differentiation stages of cultured chick retina cells.  相似文献   

15.
Abstract: Nitric oxide synthase (NOS) in the snail Helix pomatia was characterized by biochemical and molecular biological techniques and localized by histochemical methods. Central ganglia contained particulate paraformaldehyde-sensitive and cytosolic paraformaldehyde-insensitive NADPH-diaphorase. The cytosolic NADPH-diaphorase activity coeluted with NOS activity. The activity of NOS was dependent on Ca2+ and NADPH and was inhibited by N G-nitro- l -arginine ( l -NNA). Proteins purified by 2',5'-ADP affinity chromatography were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and migrated at 150, 60, 40, and 30 kDa. An antibody to mammalian NOS exclusively labeled the 60-kDa protein. Characterization of the cDNA of the corresponding 60-kDa NOS-immunoreactive protein revealed no sequence homology with any known NOS isoform. The recombinant protein exhibited Ca2+- and NADPH-dependent NOS activity, which was partially inhibited by EGTA and l -NNA. Histochemistry showed NADPH-diaphorase activity in discrete regions of the central and peripheral nervous system. About 60% of the NADPH-diaphorase-positive neurons colocalize with immunoreactive material detected by antibodies to mammalian NOS. Comparison of organs showed the highest NADPH-diaphorase activity in the nervous system, whereas moderate activity was present in muscle tissue, digestive tract, and gonads. Our study suggests the presence of NOS and a putative NOS-associated/regulating protein in mollusk nervous tissue.  相似文献   

16.
17.
Summary Sections of tissues from the adrenal medullae of young rats were subjected to radioautography after a single intravenous injection of L-leucine 4,5 3H to identify the sites of synthesis and follow the migration of newly-formed proteins in both adrenaline-storing (A) and noradrenaline-storing (N) cells. As early as 2 min after injection of leucine 3H, the label was highest in the rough endoplasmic reticulum (RER) of A and N cells, suggesting that cisternal ribosomes are sites of protein synthesis. By 5 and 10 min, much of the label had migrated from the RER into the Golgi complex of both cell types. Some label was already present over the secretory granule matrix (chromogranins) by 2 min but the peak was reached at 1 h in both A and N cells. By 4 h, the label over the secretory granules had diminished, indicating a release of newly-synthetized chromogranins outside the cells. The label over the hyaloplasm was relatively high at 2 min but it decreased rapidly to low levels. In contrast, the label over the cell surface continually increased to reach the highest levels among all organelles at 4 h in both cell types. The pattern of increment of the label over the cell surface suggests that the newly-formed proteins of these sites are also synthetized in the RER, pass through the Golgi complex and are transported in the hyaloplasm, before reaching the surface of A and N cells.Supported in part by the Quebec Heart Foundation, the Medical Research Council of Canada (Grant MT-1973), the J.-L. Levesque Foundation, the Ministry of Education of Quebec (Formation de Chercheurs et Action Concertée) and the Fond de l'Université de Montréal (Cafir)  相似文献   

18.
19.
Summary The effects of a single high dose (10mg/kg) of vinblastine (vb) sulfate (Velbe, Lilly) on the ultrastructure, catecholamine (CA) content and activity of CA-synthesizing enzymes of the rat adrenal medulla were studied for up to 120h after intravenous injection of the drug.By 1 h, microtubules were virtually absent from chromaffin cells and preganglionic cholinergic axons, and typical paracrystals had appeared inside the nerve fibers. By 16h microtubules were completely reconstituted and paracrystals had disappeared. From 16h onwards, there was an increasing depletion of storage granules from adrenaline (A) — producing cells, which coincided with biochemical determinations showing a reduction of adrenal A to about 40 % of control levels by 48 h, with noradrenaline (NA) remaining in the range of controls. Both A- and NA-storing cells showed an extensive proliferation of the rough endoplasmic reticulum (ER). Vb caused a marked increase in tyrosine hydroxylase (TH; +113%) and dopamine -hydroxylase (DBH; +82%) activities after 48 h. Splanchnicotomy completely abolished the vb-mediated increase in TH and DBH activities. A smaller increase (+ 47 %) in enzyme activity was observed with phenylethanolamine N-methyltransferase (PNMT). Vb (10–5M) had no apparent effect on granule content and the amount of rough ER in chromaffin cells, which were cultured for 48 h.The results demonstrate that a single high dose of vb has relatively little short-term effects on the rat adrenal medulla, but causes drastic long-term changes in CA-content and enzyme activities that are mediated by the preganglionic nerves. These changes could be interpreted as an effort to compensate for a loss of CA-stores in peripheral adrenergic nerves (cf. Cheney et al., 1973). The differential long-term effect of vb on adrenal NA and A might be due to the lower induction of PNMT as compared to TH and DBH activities and/or to a preferential release of A versus NA, which may occur at high frequencies of stimulation of the splanchnic nerves.Supported by grants from the Deutsche ForschungsgemeinschaftDedicated to Professor G. Petry in honor of his 65th birthday  相似文献   

20.
Summary The synthetic pathways of proteins and catecholamines in the rat adrenal medullary cells were compared systematically at the ultrastructural level, within a 24 h period, with 2 tracers, L-tyrosine 3,5-3H and L-3,4-dihydroxy [ring 2,5,6-3H] phenylalanine (L-dopa3H). Young rats were injected with either of these tracers and sacrificed in pairs at close time intervals. With L-tyrosine 3H, the label was about equal over rough endoplasmic reticulum (RER) and secretory granules at 2 min after injection and remained almost constant in intensity over the secretory granules throughout the period of observation. A peak of radioactivity was also observed in the Golgi complex between 5 and 20 min after injection. This indicates that L-tyrosine 3H participates in the synthesis of both granule proteins and catecholamines as confirmed by the results obtained after injection of L-dopa 3H. With this tracer, radioactivity over RER, Golgi complex, cytosol and cell surface remained very low at all times and was undetectable at several time intervals. In contrast, radioactivity over secretory granules was very high at all time intervals. The present results thus confirm that in both adrenaline- and noradrenaline-storing cells, the protein moiety of chromaffin granules is synthetized in the RER, packaged in the Golgi complex and rapidly found in newly formed secretory granules. Following either L-tyrosine 3H or L-dopa 3H injection, catecholamine synthesis occurs only in or in close vicinity to chromaffin granules in both cell types at all time intervals. Acknowledgements. This work was supported by a grant from the Medical Research Council of Canada to the Multidisciplinary Research Group of Hypertension of the Clinical Research Institute of Montreal and by the Canadian Heart Foundation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号