首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
The phosphatidylcholine transfer protein (PC-TP) from bovine liver has a binding site for phosphatidylcholine (PC). Structural and molecular characteristics of this site were investigated by binding PC-analogues carrying photolabile, fluorescent and short-chain fatty acids. Analysis of the photolabeled PC/PC-TP adduct showed that the hydrophobic peptide segment Val171-Phe-Met-Tyr-Tyr-Phe-Asp177 is part of the lipid binding site for the 2-acyl chain. This site was further studied by binding PC carrying cis-parinaric acid at the sn-2-position. Time resolved fluorescence anisotropy measurements indicated that the 2-acyl chain was immobilized following the rotation of PC-TP. Similar experiments with PC carrying cis-parinaric acid at the sn-1-position demonstrated that the 1-acyl chain was immobilized as well but at a site distinctly different from that of the 2-acyl chain. Binding sites for the 1- and 2-acyl chain were then explored by use of PC-isomers carrying decanoic, lauric and myristic acid at the sn-1- (or sn-2-)-position and oleic acid at the sn-2- (or sn-1-)-position. Incubation with vesicles prepared of these PC-species indicated that binding to PC-TP diminished with decreasing acyl chain length but more so for species with short-chain fatty acids on the sn-2-position than on the sn-1-position. Transfer experiments confirmed that PC-TP discriminates between PC-isomers of apparently equal hydrophobicity favouring the transfer of these species carrying oleic acid at the sn-2-position.  相似文献   

2.
The specificities of a human plasma and bovine liver phospholipid transfer protein were studied using a fluorescence assay based on the transfer of pyrenyl phospholipids. This method was used previously to determine the mechanism of spontaneous transfer of phospholipids between model lipoproteins (Massey, J.B., Gotto, A.M., Jr. and Pownall, H.J. (1982) Biochemistry 21, 3630-3636). The pyrenyl phospholipids varied in the headgroup moiety; pyrenyl phosphatidylcholines contained different fatty acyl chains in the sn-1 position. Model high-density lipoproteins (R-HDL) consisting of apolipoprotein A-I and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC) were used as donor and acceptor particles. As previously shown, the bovine liver protein mediated the transfer of only phosphatidylcholine. In contrast, the human plasma protein transferred all species studied which included a phosphatidylserine, phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, phosphatidic acid, sphingomyelin, galactosylcerebroside, and a diacylglycerol. The activity of these transfer proteins was only slightly affected by changes in the acyl chain composition of the transferring lipid. Pyrenyl and radioactive ([3H]POPC) phospholipids were transferred with equal rates by the human transfer protein, suggesting that this protein has similar binding characteristics for pyrenyl and natural phospholipids. Spontaneous phospholipid transfer occurs by the aqueous diffusion of monomeric lipid where the rate is highly dependent on fatty acyl chain composition. In this study, no correlation between the rate of spontaneous transfer and protein-mediated transfer was found. The apparent Km values for R-HDL and low-density lipoprotein (LDL), when used as acceptors, were similar when based on the number of acceptor particles. The apparent Vmax for the bovine liver protein was identical for R-HDL and LDL but for the plasma protein Vmax was slightly higher for R-HDL. These results suggest that, like the bovine liver protein, the plasma protein functions as a phospholipid-binding carrier that exchanges phospholipids between membrane surfaces. The assay of lipid transfer proteins by pyrenyl-labeled lipids is faster and easier to perform than other current methods, which require separation of donor and acceptor particles, and is suitable for studies on the function and mechanism of action of lipid transfer proteins.  相似文献   

3.
We have identified phosphatidylethanolamine as one of the major phospholipids of Clostridium perfringens by two dimensional thin layer chromatography of the intact lipids and of their deacylation products and by liquid chromatography followed by mass spectrometry of the intact neutral phospholipid fraction. The principal fatty acids of phosphatidylethanolamine are myristic acid (14:0), lauric acid (12:0), and palmitic acid (16:0) and the major molecular species are 14:0,14:0 (26.3%); 12:0,14:0 (19.0%); 14:0,16:0 (22.4%) and 16:0,16:0 (17.6%). A similar distribution of molecular species was found in the other major phospholipid, O-alanyl phosphatidylglycerol.  相似文献   

4.
The origin of myristic acid in mammalian cells and the regulation of its endogenous cellular low concentration are not known. Another intriguing question is the potential metabolic properties of endogenous myristic acid as compared with exogenous myristic acid. In the present paper, we hypothesised and demonstrated that, in liver cells, in addition to the usual fatty acid synthase (FAS) pathway that produces predominantly palmitic acid and minor amounts of myristic acid, part of endogenous cellular myristic acid also comes from a shortening of palmitic acid, likely by peroxisomal β-oxidation and from lauric acid by elongation. From a nutritional point of view, C16:0 is universally found in natural fats and its shortening to myristic acid could contribute to a non-negligible source of this fatty acid (FA) in the organism. Then, we measured the distribution of endogenously synthesised myristic acid in lipid species and compared it with that of exogenous myristic acid. Our results do not support the hypothesis of different metabolic fates of endogenous and exogenous myristic acid and suggest that whatever the origin of myristic acid, its cellular concentration and lipid distribution are highly regulated.  相似文献   

5.
J E Ferrell  K J Lee  W H Huestis 《Biochemistry》1985,24(12):2857-2864
The rate of phospholipid transfer from sonicated phospholipid vesicles to human erythrocytes has been studied as a function of membrane concentration and lipid acyl chain composition. Phospholipid transfer exhibits saturable first-order kinetics with respect to both cell and vesicle membrane concentrations. This kinetic behavior is consistent either with transfer during transient contact between cell and vesicle surfaces (but only if the fraction of the cell surface susceptible to such interaction is small) or with transfer of monomers through the aqueous phase. The acyl chain composition of the transferred phospholipid affects the transfer kinetics profoundly; for homologous saturated phosphatidylcholines, the rate of transfer decreases exponentially with increasing acyl chain length. This behavior is consistent with passage of phospholipid monomers through a polar phase, which might be the bulk aqueous phase( as in the monomer transfer model) or the hydrated head-group regions of a cell-vesicle complex (transient collision model). Collisional transfer also predicts that intercell transfer of phospholipids should be slow compared to cell-vesicle transfer, as surface charge and steric effects should prevent close apposition of donor and acceptor membranes. This is not found; dilauroylphosphatidylcholine transfers rapidly between red cells. Thus, the observed relationship between acyl chain length and intermembrane phospholipid transfer rates likely reflects the energetics of monomer transfer through the aqueous phase.  相似文献   

6.
The kinetics and thermodynamics of the transmembrane movement (flip-flop) of fluorescent analogs of phosphatidic acid (PA), phosphatidylglycerol (PG), phosphatidylcholine (PC), and phosphatidylethanolamine (PE) were investigated to determine the contributions of headgroup composition and acyl chain length to phospholipid flip-flop. The phospholipid derivatives containing n-octanoic, n-decanoic or n-dodecanoic acid in the sn-1 position and 9-(1-pyrenyl)nonanoic acid in the sn-2 position were incorporated at 3 mol% into sonicated single-bilayer vesicles of 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (POPC). The kinetics of diffusion of the pyrene-labeled phospholipids from the outer and inner monolayers of the host vesicles to a large pool of POPC acceptor vesicles were monitored by the time-dependent decrease of pyrene excimer fluorescence. The observed kinetics of transfer were biexponential, with a fast component due to the spontaneous transfer of pyrenyl phospholipids in the outer monolayer of labeled vesicles and a slower component due to diffusion of pyrenyl phospholipid from the inner monolayer of the same vesicles. Intervesicular transfer rates decreased approx. 8-fold for every two carbons added to the first acyl chain. Correspondingly, the free energy of activation for transfer increased approx. 1.3 kcal/mol. With the exception of PE, the intervesicular transfer rates for the different headgroups within a homologous series were nearly the same, with the PC derivative being the fastest. Transfer rates for the PE derivatives were 5-to 7-fold slower than the rates observed for PC. Phospholipid flip-flop, in contrast, was strongly dependent on headgroup composition with a smaller dependence on acyl chain length. At pH 7.4, flip-flop rates increased in the order PC less than PG less than PA less than PE, where the rates for PE were at least 10-times greater than those of the homologous PC derivative. Activation energies for flip-flop were large, and ranged from 38 kcal/mol for the longest acyl chain derivative of PC to 25 kcal/mol for the PE derivatives. Titration of the PA headgroup at pH 4.0 produced an approx. 500-fold increase in the flip-flop rate of PA, while the activation energy decreased 10 kcal/mol. Increasing acyl chain length reduced phospholipid flip-flop rates, with the greatest change observed for the PC analogs, which exhibited an approx. 2-fold decrease in flip-flop rate for every two methylene carbons added to the acyl chain at the sn-1 position.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
The effects of free fatty acids on hemoglobin conversion and lipid peroxidation were studied in hemoglobin-containing liposomes (hemosomes) formed from an equimolar mixture of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). It was shown that in hemosomes oxyhemoglobin is converted into hemichrome by the interaction of saturated fatty acids (arachidic, stearic, palmitic, myristic and lauric). This is accompanied by accumulation of primary and secondary products of lipid peroxidation. All fatty acids, except for lauric acid, have a stabilizing effect on lipid peroxidation in liposomes prepared from an equimolar mixture of PC and PE. The formation of lipid peroxidation products is inhibited by superoxide dismutase, D-alpha-tocopherol, D-mannitol and thiourea. The relationships between hemoglobin conversion and lipid peroxidation in hemosomes under effects of fatty acids were studied. The mechanisms of these reactions are discussed.  相似文献   

8.
R Bandyopadhyay  M K Basu 《Biochimie》1988,70(12):1841-1847
Total phospholipids were extracted from the heart, hepatopancreas, and hemolymph of the Indian horseshoe crab Carcinoscorpius rotundicauda by the conventional method. Characteristic group reaction and 2-dimensional thin-layer chromatography on silica gel were used for identification of different phospholipids. The phospholipid profile obtained from hemolymph and 2 major organs are comparable and show phosphatidyl choline (PC) and phosphatidyl ethanolamine to be the major phospholipids. A phospholipid has been consistently detected migrating immediately below the PC in the thin-layer chromatogram of lipids extracted from the hepatopancreas. When mixed methyl esters of this slower moving PC are resolved on a silica gel plate ran in hexane ether:acetic acid 80:20:1, with appropriate controls, an additional spot is seen just below the normal methyl ester, indicating a difference between the fatty acid compositions of 2 PC (e.g., regular and slower). The slower mixed methyl esters were found to comprise mainly the 4 saturated fatty acids: lauric, myristic, palmitic, and stearic. The slow moving PC seems to consist mainly of molecular species with the above-mentioned saturated fatty acids at both Sn 1 and Sn 2 positions.  相似文献   

9.
B Mütsch  N Gains  H Hauser 《Biochemistry》1986,25(8):2134-2140
The kinetics of lipid transfer from small unilamellar vesicles as the donor to brush border vesicles as the acceptor have been investigated by following the transfer of radiolabeled or spin-labeled lipid molecules in the absence of exchange protein. The labeled lipid molecules studied were various radiolabeled and spin-labeled phosphatidylcholines, radiolabeled cholesteryl oleate, and a spin-labeled cholestane. At a given temperature and brush border vesicle concentration similar pseudo-first-order rate constants (half-lifetimes) were observed for different lipid labels used. The lipid transfer is shown to be an exchange reaction leading to an equal distribution of label in donor and acceptor vesicles at equilibrium (time t----infinity). The lipid exchange is a second-order reaction with rate constants being directly proportional to the brush border vesicle concentration. The results are only consistent with a collision-induced exchange of lipid molecules between small unilamellar phospholipid vesicles and brush border vesicles. Other mechanisms such as collision-induced fusion or diffusion of lipid monomers through the aqueous phase are negligible at least under our experimental conditions.  相似文献   

10.
Hemolymph lipoproteins (lipophorins) of adult Manduca sexta are disinct from larval forms in density, lipid content, composition, and the presence of a third, low molecular weight apoprotein. Generally, only one lipoprotein species exists in M. sexta hemolymph during any given life stage. Progression through the life cycle results in alterations of existing lipoproteins to produce new forms, without new protein synthesis. The observed alterations in lipoprotein density could result from facilitated lipid transfer in insect hemolymph. An in vitro assay of facilitated lipid transfer was developed which employs a high density lipophorin from the wandering larva (density = 1.18 g/ml) as acceptor and adult low density lipophorin (density = 1.03 g/ml) as donor. Adult lipophorin-deficient hemolymph was shown to catalyze a time-dependent equilibration of the starting lipoproteins to produce a new intermediate lipophorin, Lp-I. Hydrodynamic experiments on the donor, acceptor, and product lipoproteins excluded fusion as the mechanism whereby Lp-I is produced. Thus, it is concluded that Lp-I results from facilitated net lipid transfer from low to high density lipoprotein. Furthermore, experiments conducted with radioiodinated donor and radioiodinated acceptor lipoproteins demonstrated that apoprotein exchange does not occur during the lipid transfer reaction. When donor lipoprotein was labeled in the lipid moiety with carbon-14, evidence of diacylglycerol and phospholipid exchange was obtained. Partial characterization of the lipid transfer factor revealed a relationship between incubation time, donor concentration, acceptor concentration, lipophorin-deficient hemolymph concentration, and transfer activity, as measured by Lp-I production. It is concluded that lipophorin-deficient hemolymph contains one or more factor(s) that catalyze net lipid transfer as well as diacylglycerol and phospholipid exchange between lipophorins to produce a single form at equilibrium.  相似文献   

11.
Lipid components obtained from Salmonella typhosa O-901 endotoxin by acid hydrolysis were separated into neutral, polar-I and polar-II lipid fractions by silica gel column chromatography. These lipids were further separated by silica gel column and/or thin-layer chromatography. The subfractions were analyzed by thin-layer chromatography, gas chromatography and infrared spectrophotometry. Seven subfractions obtained from the neutral lipid fraction contained lauric, myristic, palmitic, 3-OH-myristic acid, artificial products of 3-OH-myristic acid, or a small amount of two unidentified fatty acids. These fatty acids and glucosamine were commonly detected in six subfractions obtained from the polar-I lipid fraction. Fatty acids, glucosamine, and O-phosphorylethanolamine were detected in all of the 13 subfractions obtained from the polar-II lipid fraction. Chick embryo lethal activity, rabbit pyrogenicity and in vitro interferon inducing activity were found in three polar-I lipid subfractions and five polar-II lipid subfractions, but not in neutral lipids. The activities were highest in a polar-II lipid subfraction, which contained smaller amounts of O-phosphorylethanolamine and glucosamine than the other subfractions. However, no particular chemical constituent (s) related to the biological activities could be found. Prolonged acid hydrolysis of the polar-II lipids gave rise to neutral and polar-I lipids. Chemical and biological aspects of the lipid constituents of endotoxin are discussed.  相似文献   

12.
This study was designed to examine the metabolic fate of exogenous lauric acid in cultured rat hepatocytes, in terms of both lipid metabolism and acylation of proteins. Radiolabeled [14C]-lauric acid at 0.1 mM in the culture medium was rapidly taken up by the cells (94.8 +/- 2.2% of the initial radioactivity was cleared from the medium after a 4 h incubation) but its incorporation into cellular lipids was low (24.6 +/- 4.2% of initial radioactivity after 4 h), due to the high beta-oxidation of lauric acid in hepatocytes (38.7 +/- 4.4% after the same time). Among cellular lipids, lauric acid was preferentially incorporated into triglycerides (10.6 +/- 4.6% of initial radioactivity after 4 h). Lauric acid was also rapidly converted to palmitic acid by two successive elongations. Protein acylation was detected after metabolic labeling of the cells with [11,12-3H]-lauric acid. Two-dimensional electrophoresis separation of the cellular proteins and autoradiography evidenced the incorporation of radioactivity into 35 well-resolved proteins. Radiolabeling of several proteins resulted from covalent linkage to the precursor [11,12-3H]-lauric acid or to its elongation product, myristic acid. The covalent linkages between these proteins and lauric acid were broken by base hydrolysis, indicating that the linkage was of the thioester or ester-type. Endogenous myristic acid produced by lauric acid elongation was used for both protein N-myristoylation and protein S-acylation. Therefore, these results show for the first time that, although it is rapidly metabolized in hepatocytes, exogenous lauric acid is a substrate for the acylation of liver proteins.  相似文献   

13.
Phospholipids and fatty acids of Neisseria gonorrhoeae.   总被引:9,自引:4,他引:5       下载免费PDF全文
The phospholipids and fatty acids of two strains of Neisseria gonorrhoeae of different penicillin susceptibilities were examined. The phospholipids, which comprise about 8% of the dry weight of the cells, consisted of phosphatidylethanolamine (70%) and phosphatidylglycerol (20%); small amounts of phosphatidylcholine and traces of cardiolipin were also present. Growing and stationary-phase cells were similar in content and composition of phospholipids except for phosphatidylcholine, which increased two- to fivefold in the stationary-phase cells. The fatty acids of the phospholipids were characterized by two major acids, palmitic and a C16:1, with myristic and a C18:1 acid present in smaller amounts. The fatty acids present in purified phospholipid fractions varied considerably in relative proportions from fraction to fraction. No significant difference in the composition of phospholipids from the two strains was evident. Large amounts of beta-hydroxy lauric acid were detected only after saponification of the organisms. Differences in the lipid composition between the gonococcus and other gram-negative bacteria are discussed.  相似文献   

14.
A simple protocol employing lipid transfer proteins was developed to label human low density lipoprotein (LDL) in a controlled manner with parinaroyl and pyrenyl phosphatidylcholines. In order to study the lipid fluidity in the surface lipid layer of LDL, the temperature-dependence of both polarization (parinaroyl probes) and excimer to monomer (E/M) intensity ratio (pyrenyl probes) were analyzed. A series of pyrenyl phosphatidylcholines containing a pyrenyl fatty acid varying from 6 to 14 carbons in length at the sn-2 position were inserted into LDL to investigate the lateral distribution of different phosphatidylcholines in the lipoprotein surface at 37 degrees C. Both polarization and E/M vs. temperature plots displayed discontinuities in the region of 22-32 degrees C, which coincides with the melting of the neutral lipid core, indicating that the latter induces an ordered to more disordered phase transition in the surface lipid layer. Determination of the E/M intensity ratio as a function of pyrene lipid concentration in LDL showed a linear relationship for the pyrenyl hexanoate and octanoate species, whereas a slope discontinuity was observed for the lipids containing a longer pyrenyl chain. These data suggest that two lipid domains with distinct properties exist in the surface layer and secondly, pyrenyl lipids partition between these domains in a chainlength-dependent manner. This is consistent with measurement of the tryptophan to pyrene energy transfer efficiency vs. pyrenyl lipid concentration, which showed a biphasic relationship for the long-chain pyrenyl lipids. These measurements further indicate that two surface lipid domains correspond to the protein-lipid boundary and the bulk lipid phase, respectively. The fact that relatively small changes in chainlength have a marked influence on the partitioning of pyrenyl lipids between the boundary and the bulk phase suggests also that native phospholipid species may not be randomly distributed in the surface lipid layer of LDL.  相似文献   

15.
Total phospholipids were extracted from the heart, hepatopancreas, and hemolymph of the Indian horseshoe crab Carcinoscorpius rotundicauda by the conventional method. Characteristic group reaction and 2-dimensional thin-layer chromatography on silica gel were used for identification of different phospholipids. The phospholipid profile obtained from hemolymph and 2 major organs are comparable and show phosphatidyl choline (PC) and phosphatidyl ethanolamine to be the major phospholipids. A phospholipid has been consistently detected migrating immediately below the PC in the thin-layer chromatogram of lipids extracted from the hepatopancreas. When mixed methyl esters of this slower moving PC are resolved on a silica gel plate ran in hexane ether:acetic acid 80:20:1, with appropriate controls, an additional spot is seen just below the normal methyl ester, indicating a difference between the fatty acid compositions of 2 PC (e.g., regular and slower). The slower mixed methyl esters were found to comprise mainly the 4 saturated fatty acids: lauric, myristic, palmitic, and stearic. The slow moving PC seems to consist mainly of molecular species with the above-mentioned saturated fatty acids at both Sn 1 and Sn 2 positions.  相似文献   

16.
Nutritive assessment of pejibaye (Bactris gasipaes) meals included proximal composition of the lipid and nitrogenous fractions. Caloric values obtained as true metabolizable energy (TME) indicate that the pejibaye has a higher content of energy than corn and that it is not necessary to separate the seeds from the fruits in animal feeds; the level of indispensable aminoacids is considerably low, especially methionine, which is lower than in corn; thin layer chromatography shows that most of the free fatty acids are present in a ratio of 2:1 in unsaturated to saturated acids. The predominant fatty acids in whole pejibaye meal are oleic and palmitic acids with adequate levels of linoleic acid. Saturated fatty acids are predominant in the seed, with a very high content of lauric and myristic acids.  相似文献   

17.
Free flow electrophoresis was shown to be a useful tool to enrich for mutants conditionally defective in lipid A synthesis. The method was based on the observation that electrophoretic mobility of bacterial cells is dependent on the structure of lipopolysaccharides and is influenced by lesions in the synthesis of the O-specific chains as well as by lesion in the synthesis of the complete 3-deoxy-D-manno-octulosonic acid (dOclA) lipid A region. Using this procedure a new mutant conditionally defective in dOclA-8-P synthesis was isolated (mutant Ts5). Following a shift to nonpermissive conditions it accumulates a mixture of at least two equally represented lipid A precursor structures. One is made up of glucosamine, phosphate and 3-hydroxymyristic acid in a molar ratio 1.0:1.0:2.0 and lacks dOclA and the nonhydroxylated fatty acids lauric, myristic and palmitic acid. The precursor preparation derived from mutant Ts5 thus differs from previously described lipid A intermediates by the relatively high substitution by palmitic acid. The implications of the above findings to the biosynthesis of lipid A are discussed.  相似文献   

18.
Nonspecific lipid transfer proteins (nsLTPs) facilitate the transfer of phospholipids, glycolipids, fatty acids and steroids between membranes, with wide-ranging binding affinities. Three crystal structures of rice nsLTP1 from Oryza sativa, complexed with myristic (MYR), palmitic (PAL) or stearic acid (STE) were determined. The overall structures of the rice nsLTP1 complexes belong to the four-helix bundle folding with a long C-terminal loop. The nsLTP1-MYR and the nsLTP1-STE complexes bind a single fatty acid while the nsLTP1-PAL complex binds two molecules of fatty acids. The C-terminal loop region is elastic in order to accommodate a diverse range of lipid molecules. The lipid molecules interact with the nsLTP1-binding cavity mainly with hydrophobic interactions. Significant conformational changes were observed in the binding cavity and the C-terminal loop of the rice nsLTP1 upon lipid binding.  相似文献   

19.
Changes in the fatty acid composition of S. dysenteriae 1 lipid A after the treatment of lipopolysaccharide (LPS) with hydrosylamine hydrochloride (HH) and 4 degrees C, 37 degrees C and 56 degrees C were studied with the use of gas-liquid chromatographicmass-spectrometry. The treatment with HH led to a decrease in the toxicity of LPS, but produced no changes in the content of the main fatty acid components of lipid A (lauric, myristic, oxymyristic and palmitic acids). At the same time the total number of minor fatty acid derivatives decreased from 11 (in the original LPS) to 5 in LPS treated with HH at 56 degrees C.  相似文献   

20.
Bile salts and phospholipids from bile of chicken, dog, sheep, rat, ox, pig, guinea-pig and man were analyzed by high-performance liquid chromatography. Bile salts showed marked differences in their hydrophilic properties, owing to hydroxyl structure and type of conjugation. Phospholipids were generally similar, containing 90-95% of phosphatidylcholine which was made of molecular species containing palmitic acid in the sn-1 position. The comparative analysis of bile salts and phosphatidylcholines profile demonstrated that bile salts hydrophilicity influences the quantity of phosphatidylcholine in bile but not the quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号