首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Arbuscular mycorrhizas (AM) are the most widespread mycorrhiza in nature and form two morphologies, Arum- and Paris-type. The determining factors defining the two different morphologies are not well understood. In this study, the distribution of Arum- and Paris-type AM was determined in a mixed pine forest. A total of 35 plant species belonging to 20 families and 32 genera were identified and examined for AM colonization and morphological types. AM morphological types in 14 families were confirmed as follows: Arum-type in Rosaceae, Oleaceae, Lauraceae, Vitaceae and Compositae, Paris-type in Aquifoliaceae, Ulmaceae, Araliaceae, Theaceae, Magnoliaceae, Rubiaceae and Dioscoraceae, and both and/or intermediate types in Caprifoliaceae and Gramineae. Plant families whose AM morphological status was previously unknown were clarified as follows: Polygonaceae and Commelinaceae showed Arum-type morphology; Celastraceae, Menispermaceae and Elaeagnaceae had typical Paris-type morphology. The proportion of Arum-type to Paris-type species decreased in the following order: annuals > perennials > deciduous species > evergreen species, and pioneer group > early successional group > late successional group. Evergreen plants had a higher tendency to form Paris-type AM than annuals, perennials and deciduous plants. The results indicate that environmental changes, such as shade during plant succession, control the distribution of plant growth forms in mixed pine forest and may also play a part in the distribution of Arum- and Paris-type morphology. The identity of the plant seems to strongly influence AM morphology, though control by the fungal genome cannot be ruled out.  相似文献   

2.
Succession of bee communities on fallows   总被引:4,自引:0,他引:4  
Wild bee communities were studied on one- to five-year-old set-aside fields with naturally developed vegetation (n = 20). and old orchard meadows (n = 4) to analyse effects of secondary succession on species diversity, resource use and associated life history traits. General theory predicts a steady increase of species richness with age of succession. In contrast, we found a first maximum in species richness of bees on two-year-old set-aside fields and a second on old meadows. Successional changes of bee communities were related to changes of vegetation. The transition from pioneer successional stages, dominated by annuals, to early successional stages, dominated by perennials, resulted in the highest species richness of flowering plants in the second year within the first five years of succession. Species richness of flowering plants was the best predictor variable for species richness of bees, whereas the cover of flowering plants correlated with the abundance of bees. Annual plants were visited more often and perennials less often than expected from their flower cover. Halictidae tended to prefer flowers of annuals, whereas Megachilidae. Apidae and Anthophoridae significantly preferred perennials. In departure from successional theory, body size, proportion of specialised bees and proportion of parasitic bees did not significantly increase with successional age, but number of generations and the proportion of soil-nesting bees decreased with successional age. Comparison of different management types showed that set-aside fields with naturally developed vegetation supported much more specialised and endangered bee species than set-aside fields sown with Phacelia tanacetifolia.  相似文献   

3.
Species performance depends on ecological strategies, revealed by suites of traits, conferring different relative ecological advantages in different environments. Although current knowledge on plant strategies along successional gradients is derived from studies conducted in situ, actually quantifying these strategies requires disentangling the effects of environmental factors from intrinsic differences between species.Here we tested whether allocation strategies and seed traits differ among successional stages and nitrogen levels. To this aim, we assessed biomass and nitrogen allocations and seed traits variations for 18 species, differing in life history and belonging to three stages of a Mediterranean old-field succession. These species were grown as monocultures in an experimental garden under limiting and non-limiting nitrogen supply.Early successional species allocated allometrically more nitrogen and proportionally more biomass to reproduction, and set more seeds than later successional species. Seed mass increased with successional status and was negatively related to seed number. Early successional species thus produced more but less-provisioned seeds, suggesting better colonization abilities. These patterns were not the sole consequence of the replacement of annuals by perennials along the successional gradient, since comparable trends were also observed within each life history. Allocation patterns were generally not altered by nitrogen supply and the higher nitrogen content in vegetative organs of plants grown under high nitrogen supply was not retranslocated from leaves to seeds during seed development.We therefore conclude that differences in plant ecological strategies in species characteristics from contrasting successional stages appear to be intrinsic properties of the studied species, and independent from environmental conditions.  相似文献   

4.
Aims Alien species are commonly considered as harmful weeds capable of decreasing native biodiversity and threatening ecosystems. Despite this assumption, little is known about the long-term patterns of the native–alien relationships associated with human disturbed managed landscapes. This study aims to elucidate the community dynamics associated with a successional gradient in Chilean Mediterranean grasslands, considering both native and alien species.Methods Species richness (natives and aliens separately) and life-form (annuals and perennials) were recorded in four Chilean post-agricultural grazed grasslands each covering a broad successional gradient (from 1 to 40 years since crop abandonment). A detrended correspondence analysis (DCA), mixed model effects analyses and correlation tests were conducted to assess how this temporal gradient influenced natives and aliens through community dynamics.Important findings Our results show different life-form patterns between natives and aliens over time. Aliens were mainly represented by annuals (especially ruderals and weeds), which were established at the beginning of succession. Annual aliens also predominated at mid-successional stages, but in old grasslands native species were slightly more representative than alien ones within the community. In the late successional states, positive or no correlations at all between alien and native species richness suggested the absence of competition between both species groups, as a result of different strategies in occupation of the space. Community dynamics over time constitute a net gain in biodiversity, increasing natives and maintaining a general alien pool, allowing the coexistence of both. Biotic interactions including facilitation and/or tolerance processes might be occurring in Chilean post-agricultural grasslands, a fact that contradicts the accepted idea of the alien species as contenders.  相似文献   

5.
Annuals represent a significant component of the vegetation of coastal salt marshes and sand dunes. From many points of view, the two habitats might appear to have little in common. Yet both are characterized by episodes of low water potential, marked spatial and temporal heterogeneity and a zonation which, within certain limits, reflects successional change.There are also similarities of distribution. Annuals are dominant usually in the pioneer stages; the Salicornia-dominated low marsh areas are perhaps analogues with strandline ephemeral populations (e.g. Cakile maritima) on the fore-dunes. In mature stages, annuals are associated with small gaps in the matrix of perennials, at least some of these arising from drought or disturbance. Nevertheless populations can reach very high densities.The most striking contrast is phenological; only summer annuals are found on marshes, whereas winter annuals predominate on dunes (except for the strandline). Similarly there is a difference in species richness. Rather few species of annual are typical of marshes while a great many are found on dunes.Properties of the seed bank, survival, reproduction and population regulation are compared in marsh and dune annuals, with special reference to Cakile, Salicornia, Rhinanthus and Vulpia. Interpretations are suggested which take account of environmental predictability and heterogeneity. Finally, the general applicability of simple mathematical models of these populations in the different coastal habitats is considered.Nomenclature follows Clapham, Tutin & Warburg (1981) except where otherwise stated.  相似文献   

6.
Rex G. Cates 《Oecologia》1981,48(3):319-326
Summary Host plant preferences for 34 insect herbivore species are reported. Most polyphagous herbivores feeding on annuals, herbaceous perennials, and woody perennials show distinct preferences for the least abundant plant species among their various host plants. In addition, some populations of widely distributed polyphagous species are much more specialized in their diet than host plant lists alone would suggest. The high level of polyphagy on annuals and herbaceous perennials is suggested to be strongly influenced by the unpredictability of the host plant that is, in turn, controlled by environmental variability. Oligophagous herbivores preferred the least abundant woody perennials on the study sites. Ten of the 22 monophagous herbivores preferred the rarest of all the plant species on the same sites.  相似文献   

7.
We studied the effect of clipping on above- and below-ground production in different plant communities through a factorial experiment. We designed five pasture systems with different species composition, perennials/annuals ratio and soil water availability, recreating different altitudinal locations, and simulated a gradient of grazing intensity by clipping with different heights and frequencies. Response patterns of above- and below-ground production were similar, increasing with the higher clipping frequency and decreasing with altitude. These results suggest that high grazing intensity stimulate above-ground production, but only in certain situations of species composition, density, diversity, perennials/annuals ratio and water availability. This stimulus, however, is unsustainable over time, and the lower clipping frequencies are those that favour the maintenance of production.  相似文献   

8.
Fifty-two populations of fifty species of wildflowers characteristic of either field or deciduous forest were analyzed to determine pattens of biomass allocation to component organs. These populations' allocation patterns were used to determine generalized allocation patterns of the herb component of earlier (field) and later (deciduous forest) secondary successional communities. The following patterns were determined: (1) The proportion of dry matter allocated to seed reproductive organs was greater in field populations than in woods populations; (2) The herbs of woodland habitats allocated a greater proportion of their resources to leaves and belowground organs than field habitat herbs; (3) The field annuals allocated a greater proportion of their resources to reproduction than field perennials; (4) Introduced species showed a higher reproductive allocation than native species of fields; (5) Regression analysis showed strong correlations of component organ biomass to total biomass and belowground biomass to shoot biomass.  相似文献   

9.
Seven annual-perennial pairs of grass species (six congeneric and one pair taken at random) were grown under productive conditions in the laboratory in order to investigate which plant characters were responsible for the higher relative growth rate (RGR) of annuals as compared to perennials under these conditions. The nitrogen and carbon concentrations of shoot organs and of the whole plant were higher in annuals than in perennials. This was also the case for the specific absorption rate for nitrate and nitrogen productivity (on whole plant and leaf basis). The range of RGR displayed by the 14 species was large enough (0.15–0.33d−1) to examine the general relationships between RGR and the various parameters measured in the present study. RGR was positively related to plant, leaf blade and sheath nitrogen concentrations, but there was no relationship between RGR and any of the carbon concentrations. RGR also strongly correlated with specific absorption rate for nitrate and with nitrogen productivity. A new factorization of this latter parameter led to the definition of the ‘leaf nitrogen productivity’ (NLP), which is likely to depend on photosynthetic nitrogen use efficiency. RGR was shown to be strongly correlated with NLP, but not with the second term of the factorization, namely the proportion of plant nitrogen allocated to the leaves.  相似文献   

10.
Early succession of butterfly and plant communities on set-aside fields   总被引:9,自引:0,他引:9  
 Hypotheses on secondary succession of butterfly and plant communities were tested using naturally developed 1- to 4-year-old set-aside fields (n = 16), sown fields (n = 8) and old meadows (n = 4) in 1992 in South Germany. Pioneer successional fields (1st and 2nd year of succession, dominated by annuals) and early successional fields (3rd and 4th year of succession where perennials, especially grasses became dominant) had fewer plant species than mid-successional fields (old meadows). In contrast to established hypotheses, mean number of plant species decreased from 1- to 4-year-old set-aside fields. Species richness of butterfly communities did not change during the first four years of succession, but species composition changed greatly. Pioneer successional fields were characterized by (1) specialized butterflies depending on annual pioneer foodplants (e.g. Issoria lathonia), and (2) species preferring the pioneer successions despite their host plants being more abundant on early and mid-successional fields (e.g. Papilio machaon). The variability in butterfly species richness was best explained by flower abundance which was closely correlated with plant species richness. Species whose abundance was correlated with habitat connectivity were significantly smaller than species which correlated with flower abundance. Numbers of caterpillar species were correlated with numbers of adult butterfly species. Life-history features of butterflies changed significantly from pioneer to early and mid-successional fields. We found decreasing body size and migrational ability, decreasing numbers of species hibernating as imago, decreasing numbers of generations and increasing larval stage duration with age of succession, but, contrary to expectation, host plant specialization, numbers of egg-cluster laying species and egg diameter did not change with successional age. Received 18 September 1995 / Accepted: 17 July 1996  相似文献   

11.
ABSTRACT

Relationships between plant communities and the physical environment during primary succession on recently deglaciated glacier forelands were studied in 3 areas of the Italian Alps. The aim of the research was to relate traditional phytosociological data with environmental variables. Twenty-eight phytosociological relevés were performed, each associated with twenty-six environmental variables; quantitative parameters of richness and diversity were also calculated. Species/relevés, environmental variables/relevés and species/environmental variables matrices were analyzed by cluster analysis, PCA and Spearman correlation coefficient. Three main stages of succession were identified by floristic composition and confirmed by environmental parameter evaluation. A complex of environmental variables seems to be closely correlated with terrain age and richness/diversity parameters, even though diversity decreases in late successional stages. The phytosociological significance of species is in accordance with their position in the context of succession.  相似文献   

12.
For a species to be able to respond to environmental change, it must either succeed in following its optimal environmental conditions or in persisting under suboptimal conditions, but we know very little about what controls these capacities. We parameterized species distribution models (SDMs) for 135 plant species from the Algerian steppes. We interpreted low false‐positive rates as reflecting a high capacity to follow optimal environmental conditions and high false‐negative rates as a high capacity to persist under suboptimal environmental conditions. We also measured functional traits in the field and built a unique plant trait database for the North‐African steppe. For both perennial and annual species, we explored how these two capacities can be explained by species traits and whether relevant trait values reflect species strategies or biases in SDMs. We found low false‐positive rates in species with small seeds, flowers attracting specialist pollinators, and specialized distributions (among annuals and perennials), low root:shoot ratios, wide root‐systems, and large leaves (perennials only) (R2 = .52–58). We found high false‐negative rates in species with marginal environmental distribution (among annuals and perennials), small seeds, relatively deep roots, and specialized distributions (annuals) or large leaves, wide root‐systems, and monocarpic life cycle (perennials) (R2 = .38 for annuals and 0.65 for perennials). Overall, relevant traits are rarely indicative of the possible biases of SDMs, but rather reflect the species' reproductive strategy, dispersal ability, stress tolerance, and pollination strategies. Our results suggest that wide undirected dispersal in annual species and efficient resource acquisition in perennial species favor both capacities, whereas short life spans in perennial species favor persistence in suboptimal environmental conditions and flowers attracting specialist pollinators in perennial and annual species favor following optimal environmental conditions. Species that neither follow nor persist will be at risk under future environmental change.  相似文献   

13.
Abstract. Development of semi‐natural vegetation has recently been a primary concern of restoration efforts. A primary management question is whether active intervention is required or spontaneous secondary succession could suffice. We studied 54 old‐fields in central Hungary, which differed in time since abandonment but which had similar environmental conditions and management histories. The sites were grouped into four age groups according to the time elapsed since cultivation abandonment: 1–5, 6–10, 11–23 and 24–33 yr. In each old‐field we recorded the species and estimated their abundances. We grouped species in two ways: according to life form (annuals, biennials, perennials, woody plants) and according to coenological behaviour (weeds, sand and steppe generalists, specialists). We analysed the changes in species number and abundance in these categories as a function of site age. Contrary to other successional studies, the total number of species did not change significantly among the four age groups. A significant change was detected between the first two age groups as to life‐form composition. Species number and abundance of annuals decreased, while the perennials and woody plants increased. As to coenological behaviour, species number changed only in the first two age groups, while abundance changed in the first three. Weeds quickly disappeared and specialists established and spread, while the species number and abundance of generalists did not change significantly. We concluded that the basic shifts in species composition are almost completed within 10 yr. Most of the late successional species colonized and weeds disappeared. We conclude that there was no need for active intervention in this system: the spontaneous secondary succession leads to semi‐natural vegetation.  相似文献   

14.
Compared with our knowledge of senescence processes in annuals and biennials, relatively little is known about age-related changes in perennials. The study of aging in plants is very complex and there is no consensus in general concepts related to this topic. Furthermore, there is also a problem of scaling up, which makes us wonder whether cells, tissues/organs or whole organisms really age in plants. This is particularly interesting in the case of perennials, which have the ability to make new leaves every year and live for several years or even centuries or millennia. Recent studies indicate that physiological burdens, such as demands on water and nutrient supply, are responsible for reduced growth as plants age. Aside from the extrinsic factors, it is also possible that intrinsic changes in the shoot meristems could occur through repeated cell divisions and could be fixed during plant development, thereby affecting the physiology of leaves that originated from these cells. Additionally, the increased size associated with the aging of woody perennials (trees and shrubs) has also been proposed as a determining factor responsible for the age-related reductions in growth and photosynthetic rates in leaves. This review is aimed at compiling our current understanding of aging in perennials. After defining some fundamental questions and concepts, and introducing the model plants presently used in the study of aging in perennials, the major role meristems play in perenniality and how aging is manifested in the physiology of perennials (changes in phytohormones, water relations, photosynthesis and oxidative stress) are described. Finally, the causes underlying age-related changes in perennials are discussed in detail and a model based on plant plasticity to explain the aging phenomenon in perennials is presented.  相似文献   

15.

Background and Aims

Genome size is known to be correlated with a number of phenotypic traits associated with cell sizes and cell-division rates. Genome size was therefore used as a proxy for them in order to assess how common plant traits such as height, specific leaf area and seed size/number predict species regional abundance. In this study it is hypothesized that if there is residual correlation between genome size and abundance after these traits are partialled out, there must be additional ecological effects of cell size and/or cell-division rate.

Methods

Variation in genome size, plant traits and regional abundance were examined in 436 herbaceous species of central European flora, and relationships were sought for among these variables by correlation and path analysis.

Key Results

Species regional abundance was weakly but significantly correlated with genome size; the relationship was stronger for annuals (R2 = 0·145) than for perennials (R2 = 0·027). In annuals, genome size was linked to abundance via its effect on seed size, which constrains seed number and hence population growth rate. In perennials, it weakly affected (via height and specific leaf area) competitive ability. These relationships did not change qualitatively after phylogenetic correction. In both annuals and perennials there was an unresolved effect of genome size on abundance.

Conclusions

The findings indicate that additional predictors of regional abundance should be sought among variables that are linked to cell size and cell-division rate. Signals of these cell-level processes remain identifiable even at the landscape scale, and show deep differences between perennials and annuals. Plant population biology could thus possibly benefit from more systematic use of indicators of cell-level processes.  相似文献   

16.
Successful restoration of an invaded landscape to a diverse, invasion‐resistant native plant community requires determining the optimal native species mix to add to the landscape. We manipulated native seed mix (annuals, perennials, or a combination of the two), while controlling the growth of non‐native species to test the hypothesis that altering native species composition can influence native establishment and subsequent non‐native invasion. Initial survival of native annuals and perennials was higher when seeded in separate mixes than when combined, and competition between the native perennials and annuals led to lower perennial cover in year 2 of mixed‐seeded plots. The plots with the highest perennial cover had the highest resistance to invasion by Brassica nigra. To clarify interactions among different functional groups of natives and B. nigra, we measured competitive interactions in pots. We grew one native annual, one native perennial, and B. nigra alone or with different competitors and measured biomass after 12 weeks. Brassica nigra was the strongest competitor, limiting the growth of all native species, and was not impacted by competition with native annuals or perennial seedlings. Results from the potted plant experiment demonstrated the strong negative influence of B. nigra on native seedlings. Older native perennials were the strongest competitors against invasive species in the field, yet perennial seedling survival was limited by competition with native annuals and B. nigra. Management action that maximizes perennial growth in early years may lead to a relatively more successful restoration and the establishment of an invasion‐resistant community.  相似文献   

17.
Summary Sixteen annuals, biennials, and herbaceous and woody perennials characteristic of early and late successional old field ecosystems and upland and floodplain habitats were analyzed for their response of stomatal conductance to changes in night temperature. Early successional species that germinate in early spring when temperatures are low, but above freezing are insensitive to cool nights, i.e., their conductance in the following days is unaffected by low night temperature. Later spring and summer-emerging species' stomatal conductance is inhibited by low temperatures. Tree species show the same effects and in some an enhancement of stomatal conductance by low night temperatures was observed. However, adaptive differences in response to night temperatures appear related to both phenology of germination and growth and habitat types.  相似文献   

18.
Abstract. Vegetation samples from 15 successional seres in various disturbed habitats in the western part of the Czech Republic were analysed to detect possible trends. For particular seres, data on species cover were available from the onset to 10–76 yr of succession. All seres started on bare ground. Species which attained at least 1% cover in any sere in any year were used as input data for Canonical Correspondence Analysis, assessing the effect of time as the environmental variable, for Detrended Correspondence Analysis and TWINSPAN classification. Two distinct groups ofseres were distinguished: ‘ruderal’, occurring in agricultural, industrial or urban landscapes altered by men, usually on fertile sites; and ‘non‐ruderul’, occurring in less altered, mostly forested landscapes, usually on acid, nutrient‐poor and wetter soils. The former type of succession starts with ruderal annuals, being followed by ruderal perennials. In the latter case non‐ruderal clonal perennials prevail from the onset of succession. The landscape frame is emphasized, beside site environmental conditions, as influencing the type of succession. The character of species attaining dominance in succession, participation of dominant woody plants and the character of late successional stages, i.e. features important from the point of view of potential restoration of human‐disturbed habitats, are discussed.  相似文献   

19.
Many polypores are specialized in their requirements for substrate and environment, and they have been suggested to indicate the continuity of coarse woody debris or naturalness of a forest stand. However, the use of polypores as indicators of conservation value is restricted by the temporally limited appearance of annual fruit bodies. We studied whether the species richness of perennial polypores (perennials) can be used to predict the species richness of annual or annual red-listed polypores (annuals). Our data included 1471 separate datasets (sample plots or larger inventoried areas) in different parts of Finland and Russian Karelia, ranging from the southern to northern boreal zone. At the large scale (the whole area) the number of perennials explained about 70% of the variation in the number of annuals, and about 67% in the number of red-listed annuals. A minimum set of 40–60 perennial occurrences gave a reliable estimate on the species richness of annuals, and 60–80 occurrences on the species richness of red-listed annuals. The richness of perennials predicted the richness of annuals and, in particular, richness of red-listed annuals, better than the size of inventoried area. According to our results, perennial polypores can be used as a surrogate for overall polypore species richness in natural and seminatural boreal forests, but the predictive power is weaker in managed forests. In addition, the relationship between the perennial and annual species seems to differ in different vegetation zones, management types and forest types. Due to this variation direct application of the indicator values derived from different vegetation zones and management or forest types are not recommended. Since perennials are easier to identify than annuals, detectable throughout the year, and have much smaller year-to-year variation, their use as an indicator group seems to offer advantages regarding the timing and cost-efficiency of inventories.  相似文献   

20.
Two annual (Echinodorus rostratus (Nutt.) Engelm., Sagittaria calycina Engelm.) and 3 perennial (Alisma subcordatum Rat., S. brevirostra Mack & Bush, S. latifolia Wild.) species of Alismataceae were compared to determine differences in reproductive effort and timing. The annuals produce flowers and fruits earlier and later than the perennials and, under optimal conditions, the annuals also produce more (but smaller) seeds annually per plant. Populations of the annuals occur on exposed mud and are erratically abundant from year to year, while populations of the perennials are more stable. Seed viability of the annuals decreases more slowly over time. There is general congruence of these life-history attributes with the concepts of “r” and “K” strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号