首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The effects exerted by the new complex cis-dichloro-1,2-propylenediaminetetraacetato ruthenium (III), H[RuCl(2)(PDTA-H(2))] [1, RAP], on DNA and cultured tumor cells (ovarian carcinoma TG cell line) were studied. The comparative study of circular dichroism (CD) spectra obtained from DNA and RAP-DNA system evidences the interaction of the complex with DNA. Compound 1 also interacted with tumor TG cells to slow their proliferation rate. BrdU incorporation was enhanced in cells treated with compound 1, as evidenced by a single-cell electrophoresis method (comet assay), in accordance with RAP-induced DNA damage. DNA migration of compound 1-treated cells was similar to that induced by noxious agents other than cross-linking chemicals. The stability of [RuCl(2)(PDTA-H(2))]-DNA binding is suggested by the high degree of damage that persisted after removal of compound 1 from the culture medium.  相似文献   

2.
A novel palladium(II) complex has been synthesized with hexyldithiocarbamate (Hex-dtc) and 1,10-phenanthroline (phen) by the reaction of [Pd(phen)(H(2)O)(2)](NO(3))(2) with sodium salt of hexyldithiocarbamate and a complex of type [Pd(Hex-dtc) (phen)]NO(3) has been obtained. The complex has been characterized by elemental analysis, molar conductance, (1)H NMR, IR and electronic spectroscopic studies. The dithiocarbamate ligand acts in bidentate fashion. This water-soluble complex was screened against chronic myelogenous leukemia cell line, K562, for cytotoxic effects and showed significant antitumor activity much lower than that of cisplatin. The interaction of this complex with calf thymus DNA (ctDNA) was extensively investigated by a variety of spectroscopic techniques. Absorbance titration experiments imply the interaction of 4 Pd(II) complex molecules per 1000 nucleotides on DNA with positive cooperativity in the binding process and the complex denature the DNA at very low concentration (~14.3 μM). Fluorescence titration spectra and fluorescence Scatchard plots suggest that the Pd(II) complex intercalate in DNA. The gel chromatograms obtained from Sephadex G-25 column experiments showed that the binding of metal complex with DNA is so strong that it does not readily break. Furthermore, some thermodynamic and binding parameters found in the process of UV-Visible studies are described. They may provide specificity of the compound with ctDNA.  相似文献   

3.
Speit G  Schütz P 《Mutation research》2008,655(1-2):22-27
The DNA-replication inhibitors aphidicolin (APC) and hydroxyurea (HU) were tested for their ability to induce effects on DNA in the in vitro alkaline comet assay with V79 cells. APC concentrations up to 15 microM and HU concentrations up to 500 microM did not significantly increase the extent of DNA migration after treatment during 4h. Treatment for 18 h, however, led to inconsistently significant increase in DNA migration. These increases in DNA migration were accompanied by severe cell-cycle disturbances, cytotoxic effects (reduced population doubling and reduced mitotic index) and increased frequencies of cells with chromosome aberrations. The results indicate that substances with such secondary effects on DNA (in contrast to agents that directly damage DNA) only induce effects in the comet assay after prolonged exposure, together with cytotoxic effects. We conclude that slight inhibition of DNA replication and cell-cycle delay per se do not cause significant effects in the in vitro comet assay under standard test conditions. Furthermore, the in vitro comet assay seems to be less sensitive towards this type of secondary DNA effects than the in vitro chromosome aberration test.  相似文献   

4.
Using the comet assay, we showed that nickel chloride at 250-1000 microM induced DNA damage in human lymphocytes, measured as the change in comet tail moment, which increased with nickel concentration up to 500 microM and then decreased. Observed increase might follow from the induction of strand breaks or/and alkali-labile sites (ALS) by nickel, whereas decrease from its induction of DNA-DNA and/or DNA-protein cross-links. Proteinase K caused an increase in the tail moment, suggesting that nickel chloride at 1000 microM might cross-link DNA with nuclear proteins. Lymphocytes exposed to NiCl(2) and treated with enzymes recognizing oxidized and alkylated bases: endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), displayed greater extent of DNA damage than those not treated with these enzymes, indicating the induction of oxidized and alkylated bases by nickel. The incubation of lymphocytes with spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and PBN decreased the extent of DNA damage, which might follow from the production of free radicals by nickel. The pre-treatment with Vitamin C at 10 microM and Vitamin E at 25 microM decreased the tail moment of the cells exposed to NiCl(2) at the concentrations of the metal causing strand breaks or/and ALS. The results obtained suggest that free radicals may be involved in the formation of strand breaks or/and ALS in DNA as well as DNA-protein cross-links induced by NiCl(2). Nickel chloride can also alkylate DNA bases. Our results support thesis on multiple, free radicals-based genotoxicity pathways of nickel.  相似文献   

5.
The induction of DNA damage by four known promutagens (cyclophosphamide (CP), benzo(a)pyrene (BP), dimethylbenz(a)anthracene and 2-acetylaminofluorene (2AAF) was investigated on Hep G2 using the alkaline single cell electroporesis (SCGE) test, most often referred as the "comet assay". After a 3-day incubation, lysed cells embedded in agarose were electrophoresed under alkaline conditions, dyed with a SYBRgold fluorogen and analysed by the Komet software. Among the comet parameters provided by the image analysis program, statistical analysis did not identify any in particular that could best represent the DNA damages. All promutagens, when compared with the control, caused a statistically significant increase in DNA migration as determined by different parameters such as Olive tail moment, tail extent moment, tail/head or tail length. The data demonstrated the ability and the sensitivity of the comet assay when performed on Hep G2 in the detection of DNA damage induced by promutagens, and its suitability in mutagenicity testing in in vitro short-term assays.  相似文献   

6.
Dihydroxo-bridged dicopper(II) complexes [(Cu(phen))(2)(mu-OH)(2)](ClO(4))(2) (1), [(Cu(dpq))(2)(mu-OH)(2)](ClO(4))(2) (2) and [(Cu(dppz)(DMF))(2)(mu-OH)(2)](PF(6))(2) (3), where phen, dpq and dppz are 1,10-phenanthroline, dipyridoquinoxaline and dipyridophenazine, respectively, are prepared and their DNA binding and cleavage properties studied. Complex 3 has been structurally characterized by X-ray crystallography. The complexes have a (Cu(2)(mu-OH)(2))(2+) core with an essentially planar arrangement of two CuN(2)O(2) basal planes. The complexes are avid binder to calf thymus DNA (K(app) value of 4.8 x 10(6) and 5.9 x 10(6) M(-1) for 2 and 3, respectively, from ethidium displacement assay) and exhibits significant cleavage of supercoiled (SC) pUC19 DNA in dark in presence of mercaptopropionic acid. Besides, the dpq and dppz complexes display photo-induced DNA cleavage on UV (312 nm) and red light (632.8 nm) irradiations in absence of any additives. Mechanistic investigations reveal minor groove binding for the phen and dpq complexes, and major groove preference for the dppz species. The oxidative DNA cleavage reactions in presence of mercaptopropionic acid as a reducing agent involve hydroxyl radicals. The photo-cleavage reactions at UV light involve singlet oxygen as the reactive species, while similar reactions on red light irradiation (632.8 nm) proceed through the formation of hydroxyl radical. The complexes show significant DNA hydrolase activity in absence of any additives under dark reaction conditions.  相似文献   

7.
Comet assay: rapid processing of multiple samples   总被引:10,自引:0,他引:10  
The present study describes modifications to the basic comet protocol that increase productivity and efficiency without sacrificing assay reliability. A simple technique is described for rapidly preparing up to 96 comet assay samples simultaneously. The sample preparation technique allows thin layers of agarose-embedded cells to be prepared in multiple wells attached to a flexible film of Gelbond, which improves the ease of manipulating and processing samples. To evaluate the effect of these modifications on assay sensitivity, dose-response curves are presented for DNA damage induced by exposure of TK6 cells to low concentrations of hydrogen peroxide (0-10 microM) and for exposure of human lymphocytes to X-irradiation (0-100 cGy). The limit of detection of DNA damage induced by hydrogen peroxide in TK6 cells was observed to be 1 uM for all parameters (tail ratio, tail moment, tail length and comet length) while the limit of detection of DNA damage in human lymphocytes was 10 cGy for tail and comet length parameters, but 50 cGy for tail ratio and tail moment parameters. These results are similar to those previously reported using the conventional alkaline comet assay. The application of SYBR Gold for detection of DNA damage was compared to that of propidium iodide. Measurements of matching samples for tail length and comet length were similar using both stains. However, comets stained with SYBR Gold persisted longer and were much brighter than those obtained with propidium iodide. SYBR Gold was found to be ideal for measuring tail length and comet length but, under present assay conditions, impractical for measuring tail ratio or tail moment due to saturation of staining in the head region of the comets.  相似文献   

8.
Lead is present in the natural and occupational environment and is reported to interact with DNA, but the mechanism of this interaction is not fully understood. Using the alkaline comet assay we showed that lead acetate at 1-100 microM induced DNA damage in isolated human lymphocytes measured the change in the comet tail length. At 1 and 10 microM we observed an increase in the tail length, whereas at 100 microM a decrease was seen. The former effect could follow from the induction of DNA strand breaks and/or alkali-labile sites (ALS), the latter from the formation of DNA-DNA and/or DNA-protein cross-links. No difference was observed between tail length for the alkaline and pH 12.1 versions of the assay, which indicates that strand breaks and not ALS are responsible for the tail length increase induced by lead. The neutral version of the test revealed that lead acetate induced DNA double-strand breaks at all concentrations tested. The presence of spin traps, 5,5-dimethyl-pyrroline N-oxide (DMPO) and N-tert-butyl-alpha-phenylnitrone (PBN) did not influence the level of DNA damage induced by lead. Post-treatment of the lead-damaged DNA (at 100 microM treatment concentration) by endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing oxidized DNA bases, as well as 3-methyladenine-DNA glycosylase II, an enzyme recognizing alkylated bases, gave rise to a significant increase in the extent of DNA damage. Proteinase K caused an increase in comet tail length, suggesting that lead acetate might cross-link DNA with nuclear proteins. Vitamin A, E, C, calcium chloride and zinc chloride acted synergistically on DNA damage evoked by lead. The results obtained suggest that lead acetate may induce single-strand breaks (SSB) and double-strand breaks (DSB) in DNA as well as DNA-protein cross-links. The participation of free radicals in DNA-damaging potential of lead is not important and it concerns other reactive species than could be trapped by DMPO or PBN.  相似文献   

9.
Lee M  Kwon J  Chung MK 《Mutation research》2003,541(1-2):9-19
The comet assay has been recently validated as a sensitive and specific test system for the quantification of DNA damage. The objectives of this study are to investigate the utility of comet assay for detecting mutagens with 11 substances that demonstrated positive results in at least one test among four standard short-term genotoxicity tests, and to evaluate its ability to predict rodent carcinogenicity. Out of 11 test substances, positive comet results were obtained for colchicine, hydroxyurea and actinomycin D. No effect on DNA migration, determined as the tail moment, was found with theophylline or 2,4-dinitrophenol. Bisphenol A, vinblastine, paclitaxel and p-anisidine appeared cytotoxic clastogens because these induced tail moment at concentrations showing 60% or less cell survival. In addition, among three test substances showing the bimodal distribution of DNA damage, which is a characteristic of apoptosis, true apoptosis result was obtained for camptothecin and dexamethasone with the Annexin V affinity assay. With this limited data-set, an investigation into the predictive value of these short-term genotoxicity tests for determining the carcinogenicity showed that comet assay has relatively high sensitivity and superior specificity to other four short-term genotoxicity assay. Therefore, our data suggest that comet assay, especially in combination with apoptotic assay, would be a good predictive test to minimize false-positives in evaluation of the potential rodent carcinogenicity.  相似文献   

10.
Semen has a heterogeneous population of sperm with varying degrees of DNA damage. Increased sperm DNA fragmentation is a pathological trait observed in a large percentage of infertile men (Shamsi et al., this issue). Pictured here is the comet assay (background), which is used to assess DNA fragmentation in sperm populations from infertile men. It can distinguish individual sperm with intact DNA (circular halos) from those with DNA damage (smaller halo in the comet head, with most of the DNA migrating into the comet tail). A scanning electron micrograph of a human sperm (image courtesy of Judith Lyons, www.judithlyons.co.uk ) and DNA double helix and are shown in relief.  相似文献   

11.
Oxaliplatin is a third generation platinum (Pt) drug with a diaminocyclohexane (DACH) entity, which has recently obtained worldwide approval for the clinical treatment of colon cancer, and apparently operates by a different mechanism of action to the classical cisplatin or carboplatin. Introducing a novel dual mechanism of action is one approach in designing a new platinum-based anticancer agent, whereby an appropriate ligand, such as demethylcantharidin (DMC), is released from the parent compound to exert a cytotoxic effect, in addition to that of the DNA-alkylating function of the platinum moiety. To investigate the likelihood of a novel dual mechanism of anticancer action, demethylcantharidin-integrated Pt complexes: Pt(R,R-DACH)(DMC) with the same Pt-DACH moiety as oxaliplatin, and Pt(NH(3))(2)(DMC) akin to carboplatin; were studied for their ability to induce DNA damage in HCT116 colorectal cancer cells by an alkaline comet assay. The results showed that the DMC ligand released from the novel complexes caused additional DNA lesions when compared with oxaliplatin and carboplatin. The comet assay also revealed that the DNA-damaging behavior of cisplatin is characteristically different; and this study is the first to demonstrate the ability of DMC to induce DNA lesions, thus providing sufficient evidence to explain the superior antiproliferative effect of the novel DMC-integrated complexes.  相似文献   

12.
2,2,4,7-Tetramethyl-1,2,3,4-tetrahydroquinoline (THQ) is a new synthetic compound with potential antioxidant activity. In this study, cytotoxic, genotoxic and antioxidant activities of THQ were studied on human lymphocytes with the use of the trypan blue exclusion assay, the TUNEL method, the comet assay and the micronucleus test. The activities of THQ were compared with those of a structurally similar compound-ethoxyquin (1,2-dihydro-6-ethoxy-2,2,4-trimethylquinoline, EQ), which is used in animal feeds as a preservative. Cytotoxic effects of THQ were observed after 1-h treatment at the concentration of 500 microM and after 24-h treatments at the concentrations of 250-500 microM. Although the micronucleus test did not reveal a genotoxic effect of THQ, in the comet assay the statistically significant increase in DNA damage was observed as compared with the control. On the other hand, the protection of human lymphocytes against DNA damage induced by hydrogen peroxide suggests an antioxidant activity of THQ. The comparative analysis of THQ and EQ activities performed in these studies revealed that THQ was less cytotoxic and less genotoxic than EQ. Slightly lower antioxidant activity of THQ was also shown in the comet assay when it was used at the lower studied doses (1-5 microM), but for the highest one (10 microM) its efficiency was similar to that of EQ. In the micronucleus assay THQ was more effective than EQ in protecting the cultured lymphocytes from clastogenicity of H2O2. We believe that THQ is worthy of further detailed studies on its antioxidant properties to confirm its usefulness as a preservative.  相似文献   

13.
A series of mononuclear copper(II) complexes having a 1:1 molar ratio of copper and the planar heterocyclic base like 1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and dipyrido[3,2-a:2',3'-c]phenazine (dppz) are prepared from a reaction of copper(II) nitrate.trihydrate and the base (L) in ethanol or aqueous ethanol at different temperatures. The complexes [Cu(dpq)(NO(3))(2)] (2), [Cu(dpq)(NO(3))(H(2)O)(2)](NO(3)) (3), [Cu(dpq)(NO(3))(2)(H(2)O)(2)].2H(2)O (4.2H(2)O) and [Cu(dppz)(NO(3))(2)(H(2)O)].H(2)O (5.H(2)O) have been characterized by X-ray crystallography. The crystal structures show the presence of the heterocyclic base in the basal plane. The coordination geometries of the copper(II) centers are axially elongated square-pyramidal (4+1) in 2, 3 and 5, and octahedral (4+2) in 4. The nitrate anion in the coordination sphere displays unidentate and bidentate chelating bonding modes. The axial ligand is either H(2)O or NO(3) in these structures giving a Cu-L(ax) distance of approximately 2.4 A. The one-electron paramagnetic complexes (mu approximately 1.8 mu(B)) exhibit axial EPR spectra in DMF glass at 77 K giving g(parallel)>g( perpendicular ) with an A(parallel) value of approximately 170G indicating a [d(x)2(-y)2](1) ground state. The complexes are redox active and display a quasireversible cyclic voltammetric response for the Cu(II)/Cu(I) couple near 0.0 V vs. SCE giving an order of the E(1/2) values as 5(dppz)>2-4 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). The complexes bind to calf thymus DNA giving an order 5 (dppz)>2 (dpq)>[Cu(phen)(2)(H(2)O)](2+)>1 (phen). An effect of the extended planar ring in dpq and dppz is observed in the DNA binding. The complexes show nuclease activity with pUC19 supercoiled DNA in DMF/Tris-HCl buffer containing NaCl in presence of mercaptopropanoic acid as a reducing agent. The extent of cleavage follows the order: [Cu(phen)(2)(H(2)O)](ClO(4))(2)>5>2 approximately 3 approximately 4>1. The bis-phen complex is a better cleaver of SC DNA than 1-5 having mono-heterocyclic base. Mechanistic investigations using distamycin reveal minor groove biding for the phen, dpq complexes, and a major groove binding for the dppz complex 5. The cleavage reactions are found to be inhibited in the presence of hydroxyl radical scavenger DMSO and the reactions are proposed to proceed via sugar hydrogen abstraction pathway. The ancillary ligand is found to have less effect in DNA binding but are of importance in DNA cleavage reactions.  相似文献   

14.
An Y  Jiang L  Cao J  Geng C  Zhong L 《Mutation research》2007,627(2):164-170
Sudan I, a synthetic lipid soluble azo pigment, is widely used in various industrial fields. However, Sudan I has not been approved at any level of food production, since there are many inconclusive reports relating to its genotoxicity and carcinogenicity in humans. The aim of this study was to assess the genotoxic effects of Sudan I and to identify and clarify the reaction mechanisms by use of human hepatoma HepG2 cells. To study the genotoxic effects of Sudan I, the comet assay and micronucleus test (MNT) were used. In the comet assay and MNT, we found increase of DNA migration and of the micronuclei frequencies at all tested concentrations (25-100 microM) of Sudan I in a dose-dependent manner. The data suggest that Sudan I caused DNA strand breaks and chromosome breaks. To elucidate the underlying mechanism of this difference, we monitored the level of reactive oxygen species (ROS) production with the 2,7-dichlorofluorescein diacetate assay. The level of the oxidative DNA damage and lipid peroxidation was evaluated using immunoperoxidase staining for 8-hydroxydeoxyguanosine (8-OHdG) and by measuring levels of thiobarbituric acid-reactive substances (TBARS). Significantly increased levels of ROS, 8-OHdG and TBARS were observed in HepG2 cells at higher concentrations, the doses being 100, 50-100 and 50-100 microM, respectively. We conclude that Sudan I causes genotoxic effects, probably via ROS-induced oxidative DNA damage at the higher doses.  相似文献   

15.
New complexes, [Ni(HL)(PPh(3))]Cl (1), [Pd(L)(PPh(3))](2), and [Pd(L)(AsPh(3))](3), were synthesized from the reactions of 4-chloro-5-methyl-salicylaldehyde thiosemicarbazone [H(2)L] with [NiCl(2)(PPh(3))(2)], [PdCl(2)(PPh(3))(2)] and [PdCl(2)(AsPh(3))(2)]. They were characterized by IR, electronic, (1)H-NMR spectral data. Further, the structures of the complexes have been determined by single crystal X-ray diffraction. While the thiosemicarbazone coordinated as binegative tridentate (ONS) in complexes 2 and 3, it is coordinated as mono negative tridentate (ONS) in 1. The interactions of the new complexes with calf thymus DNA was examined by absorption and emission spectra, and viscosity measurements. Moreover, the antioxidant properties of the new complexes have also been tested against DPPH radical in which complex 1 exhibited better activity than that of the other two complexes 2 and 3. The in vitro cytotoxicity of complexes 1-3 against A549 and HepG2 cell lines was assayed, and the new complexes exhibited higher cytotoxic activity with lower IC(50) values indicating their efficiency in killing the cancer cells even at very low concentrations.  相似文献   

16.
The Comet assay (single cell gel electrophoresis assay) measures DNA strand breaks in individual cells. In the assay cells are embedded in agarose, lysed, and electrophoresed under low voltage, allowing migration of damaged DNA. The DNA is stained and subsequently viewed with an epifluorescent microscope. If DNA damage has occurred the electrophoresed DNA fragments appear as a diffuse tail behind the nucleus known as a "comet". Many computer-aided analysis systems are currently in use to quantify the amount of DNA damage that is represented by a comet image. Here, we present a novel method of analysis known as "tail profile". This method of analysis provides several advantages over currently employed methods, which rely primarily on the "tail moment" method of analysis. We compared the amount of DNA damage reported from both the tail profile and tail moment methods of analysis and observed a 26% (P<0.0001) increase in damage detected by tail profile across the 10-25 microm range of tail length, where the majority of the relevant comet data is concentrated. We further report that this increase in sensitivity is not only limited to assessing DNA damage, but also to gathering data from DNA repair assays. Furthermore, we demonstrate increased functionality and extended data analysis capabilities with the use of a compressed collection of images called a "comet chip" and through a visual representation of data called a "profile plot". Use of the custom macros enabled us to detect an unexpected characteristic of the electrophoretic profile, giving us novel insight into the nature of comet analysis. In addition to the increased analytical sensitivity proffered by this system, the tail profile macros are upgradeable and platform independent.  相似文献   

17.
Laser scanning cytometry for comet assay analysis   总被引:4,自引:0,他引:4  
BACKGROUND: The comet assay (single-cell gel electrophoresis) is a sensitive method for evaluating nuclear DNA damage. Previously used evaluation methods for the comet assay are time consuming and have an inherent risk of biased selection of comets due to manual selection and categorization of comet images. Laser scanning cytometry (LSC), the principle of which is equivalent to flow cytometry, enables quantification of fluorescence emitted from the cells on a microscope slide. In the present study, we explored whether LSC could be used to determine the degree of DNA damage demonstrated by the comet assay. METHODS: DNA damage was induced by ultraviolet A irradiation of keratinocytes and visualized by the comet assay. The evaluation included (a) LSC determination of DNA-specific fluorescence in 1,000 comet heads (undamaged DNA), (b) image acquisition of comets by rescanning of the microscope slide, and (c) digital image analysis and computation of tail moment and DNA content in the comet tails. RESULTS: Cells with damaged DNA were observed in a sub-G(1) area because the comet head loses DNA to the tail. We found a strong inverse correlation between tail moment and DNA content per nucleus. CONCLUSIONS: LSC enables an automated method for cell recognition and evaluation of the comets, thus providing quantitative information about nuclear DNA damage without subjective selection of analyzed comets.  相似文献   

18.
The present study examined the impacts of sodium acetate (SA), sodium acid pyrophosphate (SAPP), and citric acid (CA) on the viability, proliferation, and DNA damage of isolated lymphocytes in vitro. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays were adopted to evaluate cell viability, while comet assay was employed to assess the genotoxic effects. The cells were incubated with different levels of SA (50, 100, and 200 mM), SAPP (25, 50, and 100 mM/L), or CA (100, 200, and 300 μg/mL). The lymphocytes treated with the tested food additives showed concentration‐dependent decreases in both cell viability and proliferation. A concentration‐dependent increase in LDH release was also observed. The comet assay results indicated that SA, SAPP, and CA increased DNA damage percentage, tail DNA percentage, tail length, and tail moment in a concentration‐dependent manner. The current results showed that SA, SAPP, and CA are cytotoxic and genotoxic to isolated lymphocytes in vitro.  相似文献   

19.
Genotoxicity of anticancer drugs is of a special interest due to the risk of inducing secondary malignancies. Vitamin C (ascorbic acid) is a recognized antioxidant and, since human diet can be easily supplemented with vitamin C, it seems reasonable to check whether it can protect against DNA-damaging effects of antitumor drugs. In the present work the ability of vitamin C to modulate cytotoxic and genotoxic effects of a cisplatin analog, conjugate (NH3)2Pt(SeO3), in terms of cell viability, DNA damage and repair in human lymphocytes was examined using the trypan blue exclusion test and the alkaline comet assay, respectively. The conjugate evoked a concentration-dependent decrease in the cell viability, reaching nearly 50% at 250 microM. (NH3)2Pt(SeO3) at 1, 10 and 30 microM caused DNA strand breaks, measured as the increase in the comet tail moment of the lymphocytes. The treated cells were able to recover within a 30-min incubation in a drug-free medium at 37 degrees C. Vitamin C at 10 and 50 microM diminished the extent of DNA damage evoked by (NH3)2Pt(SeO3) but had no effect on the kinetics of DNA repair. The vitamin did not directly inactivate the conjugate. Lymphocytes treated with endonuclease III, which recognises oxidised pyrimidines, displayed a greater tail moment than those untreated with the enzyme, suggesting that the damages induced by the drug have, at least in part, an oxidative origin. Vitamin C can be considered a potential protective agent against side effects of antitumor drugs, but further research with both normal and cancer cells are needed to clarify this point.  相似文献   

20.
The coordination propensities of 4(N,N')-diethylaminosalicylaldehyde-4(N)-substituted thiosemicarbazones (H(2)L(1-4)) were investigated by reacting with an equimolar amount of [PdCl(2)(PPh(3))(2)]. The new complexes were characterized by various spectroscopic techniques. The structure determination of the complexes [Pd(DeaSal-tsc)(PPh(3))] (1), [Pd(DeaSal-mtsc)(PPh(3))] (2) and [Pd(DeaSal-etsc)(PPh(3))] (3) by X-ray crystallography showed that ligands are coordinated in a dibasic tridentate ONS donor fashion forming stable five and six membered chelate rings. The binding ability of complexes (1-4) to calf-thymus DNA (CT DNA) has been explored by absorption and emission titration methods. Based on the observations, an electrostatic and an intercalative binding mode have been proposed. The protein binding studies have been monitored by quenching of tryptophan and tyrosine residues in the presence of complexes using lysozyme as a model protein. As determined by MTT assays, complex 3 exhibited a higher cytotoxic effect towards human lung cancer cell line (A549) and liver cancer cells (HepG2). LDH, NO assay and cellular uptake of the complexes have been studied. Further, antibacterial activity studies of the complexes have been screened against the pathogenic bacteria such as Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa, MIC50 values of the complexes showed that the complexes exhibited significant activity against the pathogens and among the complexes, 3 exhibited higher activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号