首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this study, we investigated the protective effect of macelignan, isolated from Myristica fragrans Houtt. (nutmeg) against tert-butylhydroperoxide (t-BHP)-induced cytotoxicity in a human hepatoma cell line, HepG2. The tetrazolium dye colorimetric test (MTT test) and lactate dehydrogenase (LDH) assay were used to monitor cell viability and necrosis, respectively. Lipid peroxidation [malondialdehyde (MDA) formation] was estimated by the fluorometric method. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA), and DNA damage was detected using single cell gel electrophoresis (comet assay). The results showed that macelignan significantly reduced the cell growth inhibition and necrosis caused by t-BHP. Furthermore, macelignan ameliorated lipid peroxidation as demonstrated by a reduction in MDA formation in a dose-dependent manner. It was also found that macelignan reduced intracellular ROS formation and DNA damaging effect caused by t-BHP. These results strongly suggest that macelignan has significant protective ability against oxidative damage caused by reactive intermediates.  相似文献   

2.
Five benzophenones and a xanthone, isolated from Hypericum annulatum Moris, were investigated for their protective effect against carbon tetrachloride toxicity in isolated rat hepatocytes. The benzophenones and the xanthone gentisein were administered alone (100 microM) and in combination with CCl4 (86 microM). CCl4 undergoes dehalogenation in the liver endoplasmic reticulum. This process leads to trichlormethyl radical (*CCl3) formation, initiation of lipid peroxidation, and measurable toxic effects on the hepatocytes. The levels of thiobarbituric acid reactive substances (TBARS) were assayed as an index of lipid peroxidation (LPO). Lactate dehydrogenase (LDH) leakage, cell viability and reduced glutathione (GSH) depletion were used as signs of cytotoxicity. CCl4 significantly decreased hepatocyte viability, GSH level and increased TBARS level and LDH leakage as compared to the control. Our data indicate that 2,3',5',6-tetrahydroxy-4-methoxybenzophenone, 2-O-alpha-L-arabinofuranosyl-3',5',6-trihydroxy-4-methoxybenzophenone and 2-O-alpha-L-3'-acetylarabinofuranosyl-3',5',6-trihydroxy-4-methoxybenzophenone showed weaker toxic effects compared to CCl4 and in combination showed statistically significant protection against the toxic agent.  相似文献   

3.
Ultraviolet B (UVB medium wave, 280–315 nm) induces cellular oxidative damage and apoptosis by producing reactive oxygen species (ROS). Glutathione peroxidase functions as an antioxidant by catalyzing the reduction of hydrogen peroxide, the more important member of reactive oxygen species. A human selenium-containing single-chain variable fragment (se-scFv-B3) with glutathione peroxidase activity of 1288 U/μmol was generated and investigated for its antioxidant effects in UVB-induced oxidative damage model. In particular, cell viability, lipid peroxidation extent, cell apoptosis, the change of mitochondrial membrane potential, caspase-3 activity and the levels of intracellular reactive oxygen species were assayed. Human se-scFv-B3 protects NIH3T3 cells against ultraviolet B-induced oxidative damage and subsequent apoptosis by prevention of lipid peroxidation, inhibition of the collapse of mitochondrial membrane potential as well as the suppression of the caspase-3 activity and the level of intracellular ROS. It seems that antioxidant effects of human se-scFv-B3 are mainly associated with its capability to scavenge reactive oxygen species, which is similar to that of the natural glutathione peroxidase.  相似文献   

4.
Silica nanoparticles have become promising carriers for drug delivery or gene therapy. Endothelial cells could be directly exposed to silica nanoparticles by intravenous administration. However, the underlying toxic effect mechanisms of silica nanoparticles on endothelial cells are still poorly understood. In order to clarify the cytotoxicity of endothelial cells induced by silica nanoparticles and its mechanisms, cellular morphology, cell viability and lactate dehydrogenase (LDH) release were observed in human umbilical vein endothelial cells (HUVECs) as assessing cytotoxicity, resulted in a dose- and time- dependent manner. Silica nanoparticles-induced reactive oxygen species (ROS) generation caused oxidative damage followed by the production of malondialdehyde (MDA) as well as the inhibition of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px). Both necrosis and apoptosis were increased significantly after 24 h exposure. The mitochondrial membrane potential (MMP) decreased obviously in a dose-dependent manner. The degree of DNA damage including the percentage of tail DNA, tail length and Olive tail moment (OTM) were markedly aggravated. Silica nanoparticles also induced G2/M arrest through the upregulation of Chk1 and the downregulation of Cdc25C, cyclin B1/Cdc2. In summary, our data indicated that the toxic effect mechanisms of silica nanoparticles on endothelial cells was through DNA damage response (DDR) via Chk1-dependent G2/M checkpoint signaling pathway, suggesting that exposure to silica nanoparticles could be a potential hazards for the development of cardiovascular diseases.  相似文献   

5.
These experiments are a continuation of work investigating the mechanism of oxidant-induced damage to cultured bovine pulmonary artery endothelial cells (BPEC). Earlier experiments implicated DNA strand breakage and activation of poly(ADP-ribose)polymerase as critical steps in cell injury. In the current report, a better defined model of oxidant stress was used to investigate DNA damage, lipid peroxidation and protein thiol oxidation in BPEC following oxidant stress. The dose and time response of LDH release following exposure to H2O2 were established. H2O2 was metabolized rapidly by BPEC (t1/2 = 20 min). Hydrogen peroxide-induced increases in thiobarbituric acid (TBA) reactive material were prevented by pretreatment with the lipophilic antioxidant diphenylphenylinediamine (DPPD). However, DPPD did not decrease LDH release. Conversely, pretreatment with 5 mM 3-aminobenzamide (3AB), a competitive inhibitor of poly(ADP-ribose)polymerase, prevented LDH release from BPEC following H2O2 treatment. Dithiothreitol (DTT), a sulfhydryl reducing agent, also prevented LDH release. The effects of 3AB and DTT on H2O2-induced changes in DNA strand breaks and NAD+ and ATP levels were investigated as well as the effect of H2O2 on soluble and protein-bound thiols. As DPPD inhibited peroxidation without preventing LDH release, lipid peroxidation does not appear to play a role in the loss of BPEC viability in response to oxidant stress. As protein thiol oxidation was not caused by H2O2, it does not appear to play a causative role in cytotoxicity, although DTT may protect via maintenance of soluble thiols. H2O2 induces DNA strand breaks, which activate poly(ADP-ribose)polymerase, leading to depletion of cellular NAD+ and ATP and loss in cell viability. This supports earlier studies implicating the activation of poly(ADP-ribose)polymerase in oxidant injury to cultured endothelial cells.  相似文献   

6.
Alzheimer's disease (AD) is the most common aging-associated dementia. The population of AD patients is increasing as the world age grows. Currently, there is no cure for AD. Given that methyl vitamin B12 (methylcobalamin) deficiency is related to AD and Aβ-induced oxidative damage and that methylcobalamin can scavenge reactive oxygen species (ROS) by direct or indirect ways, we studied the effect of methylcobalamin on the cytotoxicity of Aβ. PC12 cells were chronically exposed (24 hours) to Aβ25-35 (25 μM) to establish an AD cell model. The cells were pretreated with or without methylcobalamin (1-100 μM) to investigate the role of methylcobalamin. Cell viability and apoptosis were tested, followed by testing of mitochondrial damage, oxidative stress, and mitochondrial calcium concentration. We observed that methylcobalamin improved the cell viability by decreasing the ratio of apoptosis cells in this AD cell model. Further experiments suggested that methylcobalamin functioned as an antioxidant to scavenge ROS, reducing the endoplasmic reticulum-mitochondria calcium flux through IP3R, preventing mitochondria dysfunction, ultimately protecting cells against apoptosis and cell death. Taken together, our results presented, for the first time, that methyl vitamin B12 can protect cells from Aβ-induced cytotoxicity and the mechanism was mainly relevant to the antioxidative function of methyl B12.  相似文献   

7.
Lipid peroxidation-mediated cytotoxicity and DNA damage in U937 cells   总被引:7,自引:0,他引:7  
Park JE  Yang JH  Yoon SJ  Lee JH  Yang ES  Park JW 《Biochimie》2002,84(12):1198-1205
Membrane lipid peroxidation processes yield products that may react with DNA and proteins to cause oxidative modifications. In the present study, we evaluated lipid peroxidation-mediated cytotoxicity and oxidative DNA damage in U937 cells. Upon exposure of U937 cells to tert-butylhydroperoxide (t-BOOH) and 2,2'-azobis (2-amidinopropane) hydrochloride (AAPH), which induce lipid peroxidation in membranes, the cells exhibited a reduction in viability and an increase in the endogenous production of reactive oxygen species (ROS), as measured by the oxidation of 2',7'-dichlorodihydrofluorescein. In addition, a significant decrease in the intracellular GSH level and the activities of major antioxidant enzymes were observed. We also observed lipid peroxidation-mediated oxidative DNA damage, reflected by an increase in 8-OH-dG level and loss of the ability of DNA to renature. When the cells were pretreated with the antioxidant N-acetylcysteine (NAC) or the spin trap alpha-phenyl-N-t-butylnitrone (PBN), lipid peroxidation-mediated cytotoxicity in U937 cells was protected. This effect seems to be due to the ability of NAC and PBN to reduce ROS generation induced by lipid peroxidation. These results suggest that lipid peroxidation resulted in a pro-oxidant condition of U937 cells by the depletion of GSH and inactivation of antioxidant enzymes, which consequently leads to a decrease in survival and oxidative damage to DNA. The results indicate that the peroxidation of lipid is probably one of the important intermediary events in oxidative stress-induced cellular damage.  相似文献   

8.
TNFα generates reactive oxygen species (ROS) at the cell surface that induce cell death, but how ROS communicate to mitochondria and their specific apoptotic action(s) are both undefined. ROS oxidize phospholipids to hydroperoxides that are friable and fragment adjacent to the (hydro)peroxide function, forming truncated phospholipids, such as azelaoyl phosphatidylcholine (Az-PC). Az-PC is relatively soluble, and exogenous Az-PC rapidly enters cells to damage mitochondrial integrity and initiate intrinsic apoptosis. We determined whether this toxic phospholipid is formed within cells during TNFα stimulation in sufficient quantities to induce apoptosis and if they are essential in TNFα-induced cytotoxicity. We found that TNFα induced ROS formation and phospholipid peroxidation in Jurkat cells, and either chemical interference with NADPH oxidase activity or siRNA suppression of the NADPH oxidase-4 subunit blocked ROS accumulation and phospholipid peroxidation. Mass spectrometry showed that phospholipid peroxides and then Az-PC increased after TNFα exposure, whereas ROS inhibition abolished Az-PC accumulation and TNFα-induced cell death. Glutathione peroxidase-4 (GPx4), which specifically metabolizes lipid hydroperoxides, fell in TNFα-stimulated cells prior to death. Ectopic GPx4 overcame this, reduced peroxidized phospholipid accumulation, blocked Az-PC accumulation, and prevented death. Conversely, GPx4 siRNA knockdown enhanced phospholipid peroxidation, increasing TNFα-stimulated Az-PC formation and apoptosis. Truncated phospholipids were essential elements of TNFα-induced apoptosis because overexpression of PAFAH2 (a phospholipase A(2) that selectively hydrolyzes truncated phospholipids) blocked TNFα-induced Az-PC accumulation without affecting phospholipid peroxidation. PAFAH2 also abolished apoptosis. Thus, phospholipid oxidation and truncation to apoptotic phospholipids comprise an essential element connecting TNFα receptor signaling to mitochondrial damage and apoptotic death.  相似文献   

9.
Fan S  Li L  Chen S  Yu Y  Qi M  Tashiro S  Onodera S  Ikejima T 《Free radical research》2011,45(11-12):1307-1324
Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC(50) of approximately 80-100 and 40-60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

10.
Cytochrome P450 2E1 (CYP2E1) can mediate reactive oxygen species (ROS) induced cell death through its catalytic processes. Heat shock protein 90 (Hsp90) is an important molecular chaperone which is essential for cellular integrity. We previously showed that inhibition of Hsp90 with Geldanamycin (GA), an inhibitor of Hsp90 increased CYP2E1 mediated toxicity in CYP2E1 over-expressing HepG2 cells (E47 cells) but not in C34-HepG2 cells devoid of CYP2E1 expression. The aim of the present study was to test the hypothesis that the potentiation of CYP2E1 toxicity in E47 cells with GA may involve changes in mitogen activated protein kinase signal transduction pathways. GA was toxic to E47 cells and SB203580, an inhibitor of p38 MAPK prevented this decrease in viability. The protective effects of SB203580 were effective only when SB203580 was added before GA treatment. GA activated p38 MAPK in E47 cells and this activation was an early and a sustained event. GA elevated ROS levels and lipid peroxidation and lowered GSH levels in E47 cells and these changes were blunted or prevented by treatment with SB203580. Apoptosis was increased by GA and prevented by pre-treatment with SB203580. The loss in mitochondrial membrane potential in E47 cells after GA treatment was also decreased significantly with SB203580 treatment. The activity and expression of CYP2E1 and Hsp90 levels were not altered by SB203580. In conclusion, the inhibition of Hsp90 with GA increases the toxicity of CYP2E1 in HepG2 cells through an early and sustained activation of the p38 MAPK pathway.  相似文献   

11.
Role of oxidative stress and Na+,K+-ATPase in the cytotoxicity of hexachlorocyclohexane (HCH) on Ehrlich Ascites tumor (EAT) cells has been studied. HCH caused dose dependent cell death as measured by trypan blue exclusion and lactate dehydrogenase (LDH) leakage from the cells. HCH induced oxidative stress in EAT cells which was characterized by glutathione depletion, lipid peroxidation (LPO), reactive oxygen species (ROS) production and inhibition of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT). Protective effect of antioxidants on HCH induced oxidative stress was assessed, among the antioxidants used only quercetin inhibited HCH-induced LPO and ROS production as well as cell death whereas α -tocopherol, ascorbic acid and BHA inhibited LPO but not cell death. Inhibition of membrane bound Na+,K+-ATPase was a characteristic feature of HCH cytotoxicity in EAT cells. Experimental evidence indicates that HCH-induced cell death involves oxidative stress due to ROS production and membrane perturbation in EAT cells.  相似文献   

12.
13.
Mitochondria are the main organelles that produce reactive oxygen species (ROS). Overproduction of ROS induces oxidative damage to macromolecules, including lipids, and can damage cellular membrane structure and functions. Mitochondria, the main target of ROS-induced damage, are equipped with a network of antioxidants that control ROS production. Dietary intake of omega-3 polyunsaturated fatty acids (ω3PUFAs) and consequently the increase in ω3PUFA content of membrane lipids may be disadvantageous to the health because ROS-induced oxidative peroxidation of ω3PUFAs within membrane phospholipids can lead to the formation of toxic products. Mitochondrial control of lipid peroxidation is one of the mechanisms that protect cell against oxidative damage. This review discusses the role of mitochondria in ROS generation and the mechanisms by which it regulates ROS production. The susceptibility to peroxidation of PUFAs by ROS raises the question of the adverse effects of ω3PUFA dietary supplementation on embryonic development and prenatal developmental outcomes.  相似文献   

14.
Doxorubicin (DOX) has not only chronic, but also acute toxic effects in the heart, ascribed to the generation of reactive oxygen species (ROS). Focusing on the DOX-induced early biochemical changes in rat cardiomyocytes, we demonstrated that lipid peroxidation is an early event, in fact conjugated diene production increased after 1-h DOX exposure, while cell damage, evaluated as lactate dehydrogenase (LDH) release, was observed only later, when at least one third of the cell antioxidant defences were consumed. Cell pre-treatment with alpha-tocopherol (TC) inhibited both conjugated diene production and LDH release. In cardiomyocytes, DOX treatment caused a maximal increase in glucose uptake at 1 h, demonstrating that glucose transport may represent an early target for DOX. At longer times, as the cell damage become significant, the glucose uptake stimulation diminished. Immunoblotting of glucose transporter isoform GLUT1 in membranes after 1-h DOX exposure revealed an increase in GLUT1 amount similar to the increase in transport activity; both effects were inhibited by alpha TC. Early lipid peroxidation evokes an adaptive response resulting in an increased glucose uptake, presumably to restore cellular energy. The regulation of nutrient transport mechanisms in cardiomyocytes may be considered an early event in the development of the cardiotoxic effects of the anthracycline.  相似文献   

15.
Quercetin (QT), a dietary‐derived flavonoid, is ubiquitous in fruits and vegetables and plays an important role in human health by virtue of its antioxidant function. The present study was designed to examine the effects of QT on oxidative damage that was induced by the herbicide, atrazine (ATZ), in mixed cultures of Sertoli‐germ cells. Results showed that treatment with QT increased cell viability and decreased catalase activity, malondialdehyde, and reactive oxygen species (ROS) levels. QT treatment also increased the mRNA expression of glutathione peroxidase (GSH‐Px), glutathione reductase (GR), glutathione‐S‐transferase, and superoxide dismutase‐1 and could not reversed to the control levels ATZ‐induced steady‐state mRNA levels of these antioxidant genes as well as the level of glutathione and activities of GSH‐Px and GR. QT has protective effect against ATZ‐induced oxidative stress through a reduction in ROS levels and lipid peroxidation. © 2012 Wiley Periodicals, Inc. J Biochem Mol Toxicol 26:477‐485, 2012; View this article online at wileyonlinelibrary.com . DOI 10:1002/jbt.21449  相似文献   

16.
Gallic acid (GA) is generally distributed in a variety of plants and foods, and its various biological effects have been reported. Here, we investigated the effects of GA and/or caspase inhibitors on Calu-6 and A549 lung cancer cells in relation to cell death and reactive oxygen species (ROS). The growths of Calu-6 and A549 cells were diminished with an IC(50) of approximately 30 and 150 μM GA at 24 h, respectively. GA also inhibited the growth of primary human pulmonary fibroblast (HPF) cells with an IC(50) of about 300 μM. GA induced apoptosis and/or necrosis in lung cancer cells, which was accompanied by the loss of mitochondrial membrane potential (MMP, ΔΨ(m)). The percents of MMP (ΔΨ(m)) loss and death cells by GA were lower in A549 cells than in Calu-6 cells. Caspase inhibitors did not significantly rescued lung cancer cells from GA-induced cell death. GA increased ROS levels including O(2) (?-) and induced GSH depletion in both lung cancer cells. Z-VAD (pan-caspase inhibitor) did not decrease ROS levels and GSH depleted cell number in GA-treated lung cancer cells. In conclusion, GA inhibited the growth of lung cancer and normal cells. GA-induced lung cancer cell death was accompanied by ROS increase and GSH depletion.  相似文献   

17.
赵慧慧  王道艳  王春波 《生物磁学》2014,(23):4434-4439
目的:氧化应激在肝脏疾病中扮演着重要的角色。胶原蛋白肽是天然的抗氧化剂,其在动物实验中已经被证实有抑制氧化应激的作用。最新研究证实胶原蛋白肽将有可能被应用在肝脏疾病的预防中,但是很少有研究报道其分子作用机制。因此本研究在胶原蛋白肽是对H2O2诱导的正常人的肝细胞系HL7702氧化损伤有保护作用的基础上,并探索其分子作用机制。方法:实验设空白对照组,H2O2模型组,胶原蛋白肽低、中、高剂量组(10,100,200μg/ml)。胶原蛋白肽各组加入相应浓度的药物预处理12 h后,与模型组一起加入300μM H2O2的H2O2共同培养12 h,空白对照组正常培养。细胞毒性是由CCK8和乳酸脱氢酶(LDH)的释放检测。抗氧化试剂盒检测细胞内活性氧的水平,超氧化物歧化酶(SOD)、过氧化氢酶(CAT)活性和丙二醛(MDA)含量的变化。Western blot检测细胞内Nrf2蛋白的表达水平。结果:胶原蛋白肽对H2O2诱导的正常人的肝细胞系HL7702氧化损伤有保护作用。胶原蛋白肽能够及时清除细胞内的活性氧,增加Nrf2的蛋白表达水平,提高超氧化物歧化酶(SOD)、过氧化氢酶(CAT)的活性,减轻脂质过氧化反应,从而保护正常人的肝细胞系HL7702。结论:总之,胶原蛋白肽通过增加Nrf2的蛋白表达水平,提高抗氧化活性,对H2O2诱导损伤的肝细胞发挥保护作用。本研究为胶原蛋白肽的分子作用机制提供了新的证据,将有助于预防氧化应激所致的肝损伤。  相似文献   

18.
As an anticancer drug, cisplatin is widely used, but its clinical application is restricted due to its severe side effects of ototoxicity. Therefore, this study was dedicated to assessing the benefit of ginsenoside extract, 20(S)-Ginsenoside Rh1 (Rh1), on cisplatin-induced ototoxicity. HEI-OC1 cells and neonatal cochlear explants were cultured. Cleaved caspase-3, TUNEL, and MitoSOX Red were observed in vitro by immunofluorescence staining. CCK8 and LDH cytotoxicity assays were detected to measure cell viability and cytotoxicity. Our results showed that Rh1 significantly increased cell viability, reduced cytotoxicity, and alleviated cisplatin-induced apoptosis. In addition, Rh1 pretreatment decreased the excessive accumulation of intracellular reactive oxygen species. Mechanistic studies indicated that Rh1 pretreatment reversed the increase of apoptotic protein expression, accumulation of mitochondrial ROS, and activation of the MAPK signaling pathway. These results suggested that Rh1 can act as an antioxidant and anti-apoptotic agent against cisplatin-induced hearing loss by suppressing the excessive accumulation of mitochondrial ROS, activation of MAPK signaling pathway and apoptosis.  相似文献   

19.
Interaction between Vitamin C (VitC) and transition metals can induce the formation of reactive oxygen species (ROS). VitC may also act as an ROS scavenger and as a metal chelant. To examine these possibilities, we tested in vivo the effect of two doses of VitC (1 and 30 mg/kg of mouse body weight) on the genotoxicity of known mutagens and transition metals. We used the alkaline version of the comet assay to assess DNA damage in peripheral white blood cells of mice. Animals were orally given either water (control), cyclophosphamide (CP), methyl methanesulfonate (MMS), cupric sulfate or ferrous sulfate. A single treatment with each VitC dose was administered after treatment with the mutagens or the metal sulfates. Both doses of VitC enhanced DNA damage caused by the metal sulfates. DNA damage caused by MMS was significantly reduced by the lower dose, but not by the higher dose of VitC. For CP, neither post-treatment dose of VitC affected the DNA damage level. These results indicate a modulatory role of Vitamin C in the genotoxicity/repair effect of these compounds. Single treatment with either dose of VitC showed genotoxic effects after 24 h but not after 48 h, indicating repair. Double treatment with VitC (at 0 and 24 h) induced a cumulative genotoxic response at 48 h, more intense for the higher dose. The results suggest that VitC can be either genotoxic or a repair stimulant, since the alkaline version of the comet assay does not differentiate "effective" strand breaks from those generated as an intermediate step in excision repair (incomplete excision repair sites). Further data is needed to shed light upon the beneficial/noxious effects of VitC.  相似文献   

20.
《Free radical research》2013,47(11-12):1307-1324
Abstract

Silibinin, as the major active constituent of silymarin, has its various biological effects. Here, we investigated the inhibitory effects of silibinin on HeLa cell growth in relation to autophagy and apoptosis induced by reactive oxygen species (ROS) and reactive nitrogen species (RNS) generation. Silibinin dose and time-dependently decreased cell growth cultured in medium containing 10% fetal bovine serum or in serum free media (SFM) with an IC50 of approximately 80–100 and 40–60 μM at 24 h, respectively. Silibinin induced autophagy at 12 h, confirmed by monodansylcadervarine (MDC) staining and up-regulation of beclin-1, and induced apoptosis at 24 h, detected by observation of apoptotic bodies and activation of caspase-3. 3-methyladenine (3-MA) inhibited silibinin-induced autophagy and attenuated the silibinin's inhibitory effect on cell viability, suggesting that autophagy enhanced silibinin-induced cell death. Silibinin increased ROS levels at 12 h, and ROS scavenger, N-acetylcysteine (NAC), significantly reversed the cytotoxicity of silibinin through inhibiting both autophagy and apoptosis. Specific antioxidants were applied and results indicated that hydroxyl radical (·OH) was the major ROS induced by silibinin, and OH scavenger glutathione (GSH) inhibited apoptosis and autophagy. Silibinin also generated RNS production in the cells at 12 h. High concentration of N omega-nitro-l-arginine methyl ester (L-NAME) as nitric oxide synthase (NOS) inhibitor attenuated the cytotoxicity of silibinin by decreasing ROS levels, leading to down-regulation of apoptosis. Silibinin also could interrupt the respiring functions of mitochondria, leading to ROS production and oxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号