首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 695 毫秒
1.
The purpose of this paper is to observe the protective action and its effective mechanism of eriodictyol on lipopolysaccharide (LPS)‐induced acute lung injury (ALI). In this study, our results indicated that eriodictyol could dramatically suppress the inflammatory mediators, including interleukin‐6 (IL‐6), IL‐1β, prostaglandin E2, and tumor necrosis factor‐α in bronchoalveolar lavage fluid of LPS‐challenged mice. Eriodictyol also alleviated the wet/dry ratio and improved pathological changes of the lung. In addition, eriodictyol significantly decreased myeloperoxidase activity and malondialdehyde content as well as increased superoxide dismutase activity. Moreover, eriodictyol inhibited the COX‐2/NLRP3/NF‐κB signaling pathway in the lung tissues of ALI mice. In conclusion, our observations validated that eriodictyol processed the protective effects on ALI mice, which was related to the regulation of the COX‐2/NLRP3/NF‐κB signaling pathway.  相似文献   

2.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. IL‐6 is a multifunctional cytokine that plays a central role in both innate and acquired immune responses. We investigated the signaling pathway involved in IL‐6 production stimulated by TNF‐α in cultured myoblasts. TNF‐α caused concentration‐dependent increases in IL‐6 production. TNF‐α‐mediated IL‐6 production was attenuated by focal adhesion kinase (FAK) mutant and siRNA. Pretreatment with phosphatidylinositol 3‐kinase inhibitor (PI3K; Ly294002 and wortmannin), Akt inhibitor, NF‐κB inhibitor (pyrrolidine dithiocarbamate, PDTC), and IκB protease inhibitor (L ‐1‐tosylamido‐2‐phenyl phenylethyl chloromethyl ketone, TPCK) also inhibited the potentiating action of TNF‐α. TNF‐α increased the FAK, PI3K, and Akt phosphorylation. Stimulation of myoblasts with TNF‐α activated IκB kinase α/β (IKKα/β), IκBα phosphorylation, p65 phosphorylation, and κB‐luciferase activity. TNF‐α mediated an increase of κB‐luciferase activity which was inhibited by Ly294002, wortmannin, Akt inhibitor, PDTC and TPCK or FAK, PI3K, and Akt mutant. Our results suggest that TNF‐α increased IL‐6 production in myoblasts via the FAK/PI3K/Akt and NF‐κB signaling pathway. J. Cell. Physiol. 223: 389–396, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Ankylosing spondylitis (AS) is a high disability and greatly destructive disease. In this study, we preliminarily studied the function and mechanism of bilobalide (BIL) on interleukin (IL)‐17‐induced inflammatory injury in ATDC5 cells. CCK‐8 and migration assays were used to detect the functions of IL‐7, BIL, and microRNA (miR)‐125a on cell viability and migration. The miR‐125a level was changed by transfection, and tested by real‐time quantitative polymerase chain reaction. Additionally, Western blot tested the levels of inflammatory factors (IL‐6 and tumor necrosis factor‐α), matrix metalloproteinases (MMPs), and pathway‐related proteins. Moreover, the enzyme‐linked immunosorbent assay also was used to detect inflammatory factor levels. IL‐7 was used to construct an inflammatory injury model in ATDC5 cells. Based on this, BIL inhibited IL‐17‐induced cell viability, migration, and expressions of inflammatory factors and MMPs. Furthermore, we found BIL negatively regulated miR‐125a, and the miR‐125a mimic could partly reverse the effects of BIL on IL‐17‐injury. Finally, we showed that BIL inhibited the c‐Jun N‐terminal kinase (JNK) and nuclear factor kappa B (NF‐κB) pathways, and the miR‐125a mimic had the opposite effect. BIL inhibited IL‐17‐induced inflammatory injury in ATDC5 cells by downregulation of miR‐125a via JNK and NF‐κB signaling pathways.  相似文献   

4.
Endometritis is a prevalent disease with inflammation of uterus endangering women reproductive health. MicroRNAs (miRNAs) play important roles in inflammatory disorders, including endometritis. However, the role and mechanism of miR‐643 in endometritis development remain unclear. This study aimed to investigate the effect of miR‐643 on lipopolysaccharide (LPS)‐induced inflammatory response and clarify the potential mechanism. LPS‐treated human endometrial epithelial cells (HEECs) were cultured to investigate the role of miR‐643 in vitro. The expression levels of miR‐643 and tumor necrosis factor receptor‐associated factor 6 (TRAF6) were measured via quantitative real‐time polymerase chain reaction and western blot, respectively. LPS‐induced inflammatory response was assessed by inflammatory cytokines secretion via enzyme‐linked immunosorbent assay. The activation of nuclear factor‐κB (NF‐κB) pathway was investigated by western blot. The interaction between miR‐643 and TRAF6 was validated by bioinformatics analysis, luciferase reporter assay, and RNA immunoprecipitation. The expression of miR‐643 was decreased and TRAF6 protein level was enhanced in LPS‐treated HEECs. The overexpression of miR‐643 suppressed LPS‐induced secretion of inflammatory cytokines (tumor necrosis factor‐α, interleukin‐1β [IL‐1β], and IL‐6) and activation of NF‐κB pathway. The knockdown of TRAF6 inhibited LPS‐induced inflammatory response in HEECs. TRAF6 was validated as a target of miR‐643 and TRAF6 restoration reversed the effect of miR‐643 on inflammation response in LPS‐treated HEECs. Collectively, miR‐643 attenuated LPS‐induced inflammatory response by targeting TRAF6, indicating a novel avenue for the treatment of endometritis.  相似文献   

5.
Interleukin (IL)‐1β plays an important role in the pathogenesis of idiopathic pulmonary fibrosis. The production of IL‐1β is dependent upon caspase‐1‐containing multiprotein complexes called inflammasomes and IL‐1R1/MyD88/NF‐κB pathway. In this study, we explored whether a potential anti‐fibrotic agent fluorofenidone (FD) exerts its anti‐inflammatory and anti‐fibrotic effects through suppressing activation of NACHT, LRR and PYD domains‐containing protein 3 (NALP3) inflammasome and the IL‐1β/IL‐1R1/MyD88/NF‐κB pathway in vivo and in vitro. Male C57BL/6J mice were intratracheally injected with Bleomycin (BLM) or saline. Fluorofenidone was administered throughout the course of the experiment. Lung tissue sections were stained with haemotoxylin and eosin and Masson's trichrome. Cytokines were measured by ELISA, and α‐smooth muscle actin (α‐SMA), fibronectin, collagen I, caspase‐1, IL‐1R1, MyD88 were measured by Western blot and/or RT‐PCR. The human actue monocytic leukaemia cell line (THP‐1) were incubated with monosodium urate (MSU), with or without FD pre‐treatment. The expression of caspase‐1, IL‐1β, NALP3, apoptosis‐associated speck‐like protein containing (ASC) and pro‐caspase‐1 were measured by Western blot, the reactive oxygen species (ROS) generation was detected using the Flow Cytometry, and the interaction of NALP3 inflammasome‐associated molecules were measured by Co‐immunoprecipitation. RLE‐6TN (rat lung epithelial‐T‐antigen negative) cells were incubated with IL‐1β, with or without FD pre‐treatment. The expression of nuclear protein p65 was measured by Western blot. Results showed that FD markedly reduced the expressions of IL‐1β, IL‐6, monocyte chemotactic protein‐1 (MCP‐1), myeloperoxidase (MPO), α‐SMA, fibronectin, collagen I, caspase‐1, IL‐1R1 and MyD88 in mice lung tissues. And FD inhibited MSU‐induced the accumulation of ROS, blocked the interaction of NALP3 inflammasome‐associated molecules, decreased the level of caspase‐1 and IL‐1β in THP‐1 cells. Besides, FD inhibited IL‐1β‐induced the expression of nuclear protein p65. This study demonstrated that FD, attenuates BLM‐induced pulmonary inflammation and fibrosis in mice via inhibiting the activation of NALP3 inflammasome and the IL‐1β/IL‐1R1/MyD88/ NF‐κB pathway.  相似文献   

6.
7.
Under septic conditions, Lipopolysaccharide (LPS)‐induced apoptosis of lung vascular endothelial cells (ECs) triggers and aggravates acute lung injury (ALI), which so far has no effective therapeutic options. Genistein‐3′‐sodium sulphonate (GSS) is a derivative of native soy isoflavone, which has neuro‐protective effects through its anti‐apoptotic property. However, whether GSS protects against sepsis‐induced lung vascular endothelial cell apoptosis and ALI has not been determined. In this study, we found that LPS‐induced Myd88/NF‐κB/BCL‐2 signalling pathway activation and subsequent EC apoptosis were effectively down‐regulated by GSS in vitro. Furthermore, GSS not only reversed the sepsis‐induced BCL‐2 changes in expression in mouse lungs but also blocked sepsis‐associated lung vascular barrier disruption and ALI in vivo. Taken together, our results demonstrated that GSS might be a promising candidate for sepsis‐induced ALI via its regulating effects on Myd88/NF‐κB/BCL‐2 signalling in lung ECs.  相似文献   

8.
Abnormal hyperplasia of fibroblast‐like synoviocytes (FLS) leads to the progression of rheumatoid arthritis (RA). This study aimed to investigate the role of miR‐124a in the pathogenesis of RA. The viability and cell cycle of FLS in rheumatoid arthritis (RAFLS) were evaluated by Cell Counting Kit 8 and flow cytometry assay. The expression of PIK3CA, Akt, and NF‐κB in RAFLS was examined by real‐time PCR and Western blot analysis. The production of tumour necrosis factor (TNF)‐α and interleukin (IL)‐6 was detected by ELISA. The joint swelling and inflammation in collagen‐induced arthritis (CIA) mice were examined by histological and immunohistochemical analysis. We found that miR‐124a suppressed the viability and proliferation of RAFLS and increased the percentage of cells in the G1 phase. miR‐124a suppressed PIK3CA 3'UTR luciferase reporter activity and decreased the expression of PIK3CA at mRNA and protein levels. Furthermore, miR‐124a inhibited the expression of the key components of the PIK3/Akt/NF‐κB signal pathway and inhibited the expression of pro‐inflammatory factors TNF‐α and IL‐6. Local overexpression of miR‐124a in the joints of CIA mice inhibited inflammation and promoted apoptosis in FLS by decreasing PIK3CA expression. In conclusion, miR‐124a inhibits the proliferation and inflammation in RAFLS via targeting PIK3/NF‐κB pathway. miR‐124a is a promising therapeutic target for RA.  相似文献   

9.
10.
11.
The current examination was intended to observe the defensive impacts of embelin against paraquat‐incited lung damage in relationship with its antioxidant and anti‐inflammatory action. Oxidative stress marker, like malondialdehyde (MDA), antioxidative enzymes, for example, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH Px), inflammatory cytokines, such as interleukin‐1β (IL‐1β), tumor necrosis factor‐α, and IL‐6, histological examination, and nuclear factor kappa B/mitogen‐activated protein kinase (NF‐κB/MAPK) gene expression were evaluated in lung tissue. Embelin treatment significantly decreased MDA and increased SOD, CAT, and GSH Px. Embelin significantly reduced levels of inflammatory cytokines in paraquat‐administered and paraquat‐intoxicated rats. In addition, embelin suggestively decreased relative protein expression of nuclear NF‐κB p65, p‐NF‐κBp65, p38 MAPK, and p‐p38 MAPKs in paraquat‐intoxicated rats. The outcomes show the impact of embelin inhibitory action on NF‐κB and MAPK and inflammatory cytokines release, and the decrease of lung tissue damage caused by paraquat.  相似文献   

12.
Tumor necrosis factor‐α (TNF‐α) is a pleiotropic cytokine produced by activated macrophages. Nitric oxide (NO) is a highly reactive nitrogen radical implicated in inflammatory responses. We investigated the signaling pathway involved in inducible nitric oxide synthase (iNOS) expression and NO production stimulated by TNF‐α in cultured myoblasts. TNF‐α stimulation caused iNOS expression and NO production in myoblasts (G7 cells). TNF‐α‐mediated iNOS expression was attenuated by integrin‐linked kinase (ILK) inhibitor (KP392) and siRNA. Pretreatment with Akt inhibitor, mammalian target of rapamycin (mTOR) inhibitor (rapamycin), NF‐κB inhibitor (PDTC), and IκB protease inhibitor (TPCK) also inhibited the potentiating action of TNF‐α. Stimulation of cells with TNF‐α increased ILK kinase activity. TNF‐α also increased the Akt and mTOR phosphorylation. TNF‐α mediated an increase of NF‐κB‐specific DNA–protein complex formation, p65 translocation into nucleus, NF‐κB‐luciferase activity was inhibited by KP392, Akt inhibitor, and rapamycin. Our results suggest that TNF‐α increased iNOS expression and NO production in myoblasts via the ILK/Akt/mTOR and NF‐κB signaling pathway. J. Cell. Biochem. 109: 1244–1253, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

13.
14.
Dioscorealide B (DB), a naphthofuranoxepin has been purified from an ethanolic extract of the rhizome of Dioscorea membranacea Pierre ex Prain & Burkill which has been used to treat inflammation and cancer in Thai Traditional Medicine. Previously, DB has been reported to have anti‐inflammatory activities through reducing nitric oxide (NO) and tumor necrosis factor‐α (TNF‐α) production in lipopolysaccharides (LPS)‐induced RAW 264.7 macrophage cells. In this study, the mechanisms of DB on LPS‐induced NO production and cytokine expression through the activation of nuclear factor‐κB (NF‐κB) and ERK1/2 are demonstrated in RAW 264.7 cells. Through measurement with Griess's reagent, DB reduced NO level with an IC50 value of 2.85 ± 0.62 µM that was due to the significant suppression of LPS‐induced iNOS mRNA expression as well as IL‐1β, IL‐6, and IL‐10 mRNA at a concentration of 6 µM. At the signal transduction level, DB significantly inhibited NF‐κB binding activity, as determined using pNFκB‐Luciferase reporter system, which action resulted from the prevention of IκBα degradation. In addition, DB in the range of 1.5–6 µM significantly suppressed the activation of the ERK1/2 protein. In conclusion, the molecular mechanisms of DB on the inhibition of NO production and mRNA expression of iNOS, IL‐1β, IL‐6, and IL‐10 were due to the inhibition of the upstream kinases activation, which further alleviated the NF‐κB and MAPK/ERK signaling pathway in LPS‐induced RAW264.7 macrophage cells. J. Cell. Biochem. 109: 1057–1063, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

15.
In the present study, beneficial effect of S‐allyl cysteine (SAC) was evaluated in the lipopolysaccharide/d ‐galactosamine (LPS/d ‐Gal) model of acute liver injury (ALI). To mimic ALI, LPS and d ‐Gal (50 μg/kg and 400 mg/kg, respectively) were intraperitoneally administered and animals received SAC per os (25 or 100 mg/kg/d) for 3 days till 1 hour before LPS/d ‐Gal injection. Pretreatment of LPS/d ‐Gal group with SAC‐lowered activities of alkaline phosphatase, alanine aminotransferase, and aspartate aminotransferase and partially reversed inappropriate alterations of hepatic oxidative stress‐ and inflammation‐related biomarkers including liver reactive oxygen species, malondialdehyde, and hepatic activity of the defensive enzyme superoxide dismutase, ferric reducing antioxidant power (FRAP), toll‐like receptor‐4 (TLR4), cyclooxygenase 2, NLR family pyrin domain containing 3 (NLRP3), caspase 1, nuclear factor κB (NF‐κB), interleukin 1β (IL‐1β), IL‐6, tumor necrosis factor‐α, and myeloperoxidase activity. Additionally, SAC was capable to ameliorate apoptotic biomarkers including caspase 3 and DNA fragmentation. In summary, SAC can protect liver against LPS/d ‐Gal by attenuation of neutrophil infiltration, oxidative stress, inflammation, apoptosis, and pyroptosis which is partly linked to its suppression of TLR4/NF‐κB/NLRP3 signaling.  相似文献   

16.
Syndecan‐1 (SDC1), with a variable ectodomain carrying heparan sulphate (HS) chains between different Syndecans, participates in many steps of inflammatory responses. In the process of proteolysis, the HS chains of the complete extracellular domain can be shed from the cell surface, by which they can mediate most of SDC1's function. However, the exact impact on SDC1 which anchored on the cell surface has not been clearly reported. In our study, we established the models by transfection with the cleavable resistant SDC1 mutant plasmid, in which SDC1 shedding can be suppressed during stimulation. Role of membrane SDC1 in inflammatory pathway, pro‐inflammatory cytokine secretion as well as neutrophil transmigration, and how suppressing its shedding will benefit colitis were further investigated. We found that the patients suffered ulcerative colitis had high serum SDC1 levels,presented with increased levels of P65, tumour necrosis factor alpha (TNF‐α) and IL‐1β and higher circulating neutrophils. NF‐κB pathway was activated, and secretion of TNF‐α, interleukin‐1beta (IL‐1β), IL‐6 and IL‐8 were increased upon lipopolysaccharide stimuli in intestinal epithelial cells. Syndecan‐1, via its anchored ectodomain, significantly lessened these up‐regulation extents. It also functioned in inhibiting transmigration of neutrophils by decreasing CXCL‐1 secretion. Moreover, SDC1 ameliorated colitis activity and improved histological disturbances of colon in mice. Taken together, we conclude that suppression of SDC1 shedding from intestinal epithelial cells relieves severity of intestinal inflammation and neutrophil transmigration by inactivating key inflammatory regulators NF‐κB, and down‐regulating pro‐inflammatory cytokine expressions. These indicated that compenstion and shedding suppression of cytomembrane SDC1 might be the optional therapy for intestinal inflammation.  相似文献   

17.
18.
Interferon (IFN)‐γ‐induced protein 10 (IP‐10/CXCL10), a CXC chemokine, has been documented in several inflammatory and autoimmune disorders including atopic dermatitis and bronchial asthma. Although CXCL10 could be induced by IFN‐γ depending on cell type, the mechanisms regulating CXCL10 production following treatment with combination of IFN‐γ and TNF‐α have not been adequately elucidated in human monocytes. In this study, we showed that TNF‐α had more potential than IFN‐γ to induce CXCL10 production in THP‐1 monocytes. Furthermore, IFN‐γ synergistically enhanced the production of CXCL10 in parallel with the activation of NF‐κB in TNF‐α‐stimulated THP‐1 cells. Blockage of STAT1 or NF‐κB suppressed CXCL10 production. JAKs inhibitors suppressed IFN‐γ plus TNF‐α‐induced production of CXCL10 in parallel with activation of STAT1 and NF‐κB, while ERK inhibitor suppressed production of CXCL10 as well as activation of NF‐κB, but not that of STAT1. IFN‐γ‐induced phosphorylation of JAK1 and JAK2, whereas TNF‐α induced phosphorylation of ERK1/2. Interestingly, IFN‐γ alone had no effect on phosphorylation and degradation of IκB‐α, whereas it significantly promoted TNF‐α‐induced phosphorylation and degradation of IκB‐α. These results suggest that TNF‐α induces CXCL10 production by activating NF‐κB through ERK and that IFN‐γ induces CXCL10 production by increasing the activation of STAT1 through JAKs pathways. Of note, TNF‐α‐induced NF‐κB may be the primary pathway contributing to CXCL10 production in THP‐1 cells. IFN‐γ potentiates TNF‐α‐induced CXCL10 production in THP‐1 cells by increasing the activation of STAT1 and NF‐κB through JAK1 and JAK2. J. Cell. Physiol. 220: 690–697, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
Baicalin had neuroprotective effects on inhibiting neuronal cell apoptosis induced by spinal cord ischemic injury. This study aimed to explore the protective effects of Baicalin on rats with spinal cord injury (SCI) and its mechanism of action. The recovery of spinal cord nerve function in rats was evaluated by the Basso, Beattie, and Bresnahan (BBB) score and the combine behavioral score (CBS). The expressions of cytokines tumor necrosis factor α (TNF‐α), interleukin‐1β (IL‐1β), and IL‐6 were detected by the enzyme‐linked immunosorbent assay method. Expressions of inflammation‐related proteins were detected by Western blot. Multivariate statistical analysis was performed for serum metabolites. The BBB and CBS score results showed that Baicalin had a certain improvement on rats with SCI. SCI symptoms were significantly improved in low‐dose and high‐dose groups. The levels of TNF‐α, IL‐1β, and IL‐6 in the SCI group were significantly increased. The expressions of NF‐κB p65, NF‐κB p50, p‐IκBα, and IKKα in the SCI group showed the opposite trend compared with the low‐dose and high‐dose groups. Compared with the sham group, glutamine, levels of 3‐OH‐butyrate, N‐acetylaspartate, and glutathione were significantly reduced, and the levels of glutamate and betaine were significantly increased in the SCI group. When Baicalin was administered, the contents of glutamine synthase (GS) and glutaminase (GLS) were significantly reduced, indicating that Baicalin had the effect of improving GS and GLS. Baicalin has protective effects on improving SCI and lower extremity motor function, has a significant anti‐inflammatory effect, and regulates the serum metabolic disorder caused by SCI in rats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号