首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
2.
3.
4.
Ali NA  Molloy MP 《Proteomics》2011,11(16):3390-3401
The transforming growth factor‐β (TGF‐β) signaling pathway progresses through a series of protein phosphorylation regulated steps. Smad4 is a key mediator of the classical TGF‐β signaling pathway; however, reports suggest that TGF‐β can activate other cellular pathways independent of Smad4. By investigating the TGF‐β‐regulated phosphoproteome, we aimed to uncover new functions controlled by TGF‐β. We applied titanium dioxide to enrich phosphopeptides from stable isotope labeling with amino acids in cell culture (SILAC)‐labeled SW480 cells stably expressing Smad4 and profiled them by mass spectrometry. TGF‐β stimulation for 30 min resulted in the induction of 17 phosphopeptides and the repression of 8 from a total of 149 unique phosphopeptides. Proteins previously not known to be phosphorylated by TGF‐β including programmed cell death protein 4, nuclear ubiquitous casein and cyclin‐dependent kinases substrate, hepatoma‐derived growth factor and cell division kinases amongst others were induced following TGF‐β stimulation, while the phosphorylation of TRAF2 and NCK‐interacting protein kinase are examples of proteins whose phosphorylation status was repressed. This phosphoproteomic screen has identified new TGF‐β‐modulated phosphorylation responses in colon carcinoma cells.  相似文献   

5.
Proteoglycans are macromolecules that consist of a core protein and one or more glycosaminoglycan side chains. Previously, we reported that transforming growth factor‐β1 (TGF‐β1) regulates the synthesis of a large heparan sulfate proteoglycan, perlecan, and a small leucine‐rich dermatan sulfate proteoglycan, biglycan, in vascular endothelial cells depending on cell density. Recently, we found that TGF‐β1 first upregulates and then downregulates the expression of syndecan‐4, a transmembrane heparan sulfate proteoglycan, via the TGF‐β receptor ALK5 in the cells. In order to identify the intracellular signal transduction pathway that mediates this modulation, bovine aortic endothelial cells were cultured and treated with TGF‐β1. Involvement of the downstream signaling pathways of ALK5—the Smad and MAPK pathways—in syndecan‐4 expression was examined using specific siRNAs and inhibitors. The data indicate that the Smad3–p38 MAPK pathway mediates the early upregulation of syndecan‐4 by TGF‐β1, whereas the late downregulation is mediated by the Smad2/3 pathway. Multiple modulations of proteoglycan synthesis may be involved in the regulation of vascular endothelial cell functions by TGF‐β1. J. Cell. Biochem. 118: 2009–2017,2017. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.  相似文献   

6.
Signaling by the transforming growth factor‐β (TGF‐β) is an essential pathway regulating a variety of cellular events. TGF‐β is produced as a latent protein complex and is required to be activated before activating the receptor. The mechanical force at the cell surface is believed to be a mechanism for latent TGF‐β activation. Using β‐actin null mouse embryonic fibroblasts as a model, in which actin cytoskeleton and cell‐surface biophysical features are dramatically altered, we reveal increased TGF‐β1 activation and the upregulation of TGF‐β target genes. In β‐actin null cells, we show evidence that the enhanced TGF‐β signaling relies on the active utilization of latent TGF‐β1 in the cell culture medium. TGF‐β signaling activation contributes to the elevated reactive oxygen species production, which is likely mediated by the upregulation of Nox4. The previously observed myofibroblast phenotype of β‐actin null cells is inhibited by TGF‐β signaling inhibition, while the expression of actin cytoskeleton genes and angiogenic phenotype are not affected. Together, our study shows a scenario that the alteration of the actin cytoskeleton and the consequent changes in cellular biophysical features lead to changes in cell signaling process such as TGF‐β activation, which in turn contributes to the enhanced myofibroblast phenotype.  相似文献   

7.
8.
Accumulating evidence indicates that activated microglia contribute to the neuropathology involved in many neurodegenerative diseases and after traumatic injury to the CNS. The cytokine transforming growth factor‐beta 1 (TGF‐β1), a potent deactivator of microglia, should have the potential to reduce microglial‐mediated neurodegeneration. It is therefore perplexing that high levels of TGF‐β1 are found in conditions where microglia are chronically activated. We hypothesized that TGF‐β1 signaling is suppressed in activated microglia. We therefore activated primary rat microglia with lipopolysaccharide (LPS) and determined the expression of proteins important to TGF‐β1 signaling. We found that LPS treatment decreased the expression of the TGF‐β receptors, TβR1 and TβR2, and reduced protein levels of Smad2, a key mediator of TGF‐β signaling. LPS treatment also antagonized the ability of TGF‐β to suppress expression of pro‐inflammatory cytokines and to induce microglial cell death. LPS treatment similarly inhibited the ability of the TGF‐β related cytokine, Activin‐A, to down‐regulate expression of pro‐inflammatory cytokines and to induce microglial cell death. Together, these data suggest that microglial activators may oppose the actions of TGF‐β1, ensuring continued microglial activation and survival that eventually may contribute to the neurodegeneration prevalent in chronic neuroinflammatory conditions.

  相似文献   


9.
10.
11.
The enzyme chondroitin polymerizing factor (ChPF) is primarily involved in extension of the chondroitin sulfate backbone required for the synthesis of sulfated glycosaminoglycan (sGAG). Transforming growth factor beta (TGF‐β) upregulates sGAG synthesis in nucleus pulposus cells; however, the mechanisms mediating this induction are incompletely understood. Our study demonstrated that ChPF expression was negatively correlated with the grade of degenerative intervertebral disc disease. Treatment of nucleus pulposus cells with TGF‐β induced ChPF expression and enhanced Smad2/3, RhoA/ROCK activation, and the JNK, p38, and ERK1/2 MAPK signaling pathways. Selective inhibitors of Smad2/3, RhoA or ROCK1/2, and knockdown of Smad3 and ROCK1 attenuated ChPF expression and sGAG synthesis induced by TGF‐β. In addition, we showed that RhoA/ROCK1 signaling upregulated ChPF via activation of the JNK pathway but not the p38 and ERK1/2 signaling pathways. Moreover, inhibitors of JNK, p38 and ERK1/2 activity also blocked ChPF expression and sGAG synthesis induced by TGF‐β in a Smad3‐independent manner. Collectively, our data suggest that TGF‐β stimulated the expression of ChPF and sGAG synthesis in nucleus pulposus cells through Smad3, RhoA/ROCK1 and the three MAPK signaling pathways. J. Cell. Biochem. 119: 566–579, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

12.
13.
Transforming growth factor (TGF)‐β1 is a known factor in angiotensin II (Ang II)‐mediated cardiac fibrosis after myocardial infarction (MI). Hypoxia inducible factor‐1 (Hif‐1α) was recently demonstrated to involve in the tissue fibrosis and influenced by Ang II. However, whether Hif‐1α contributed to the Ang II‐mediated cardiac fibrosis after MI, and whether interaction or synergetic roles between Hif‐1α and TGF‐β pathways existed in the process was unclear. In vitro, cardiac cells were incubated under hypoxia or Ang II to mimic ischaemia. In vivo, valsartan was intravenously injected into Sprague–Dawley rats with MI daily for 1 week; saline and hydralazine (another anti‐hypertensive agent like valsartan) was used as control. The fibrosis‐related proteins were detected by Western blotting. Cardiac structure and function were assessed with multimodality methods. We demonstrated in vitro that hypoxia would induce the up‐regulation of Ang II, TGF‐β/Smad and Hif‐1α, which further induced collagen accumulation. By blocking with valsartan, a blocker of Ang II type I (AT1) receptor, we confirmed that the up‐regulation of TGF‐β/Smad and Hif‐1α was through the Ang II‐mediated pathway. By administering TGF‐β or dimethyloxalylglycine, we determined that both TGF‐β/Smad and Hif‐1α contributed to Ang II‐mediated collagen accumulation and a synergetic effect between them was observed. Consistent with in vitro results, valsartan significantly attenuated the expression of TGF‐β/Smad, Hif‐1α and fibrosis‐related protein in rats after MI. Heart function, infarcted size, wall thickness as well as myocardial vascularization of ischaemic hearts were also significantly improved by valsartan compared with saline and hydralazine. Our study may provide novel insights into the mechanisms of Ang II‐induced cardiac fibrosis as well as into the cardiac protection of valsartan.  相似文献   

14.
Rho‐associated kinase (ROCK) plays a critical role in pressure overload‐induced left ventricular remodelling. However, the underlying mechanism remains unclear. Here, we reported that TGF‐β1‐induced ROCK elevation suppressed BMP‐2 level and strengthened fibrotic response. Exogenous BMP‐2 supply effectively attenuated TGF‐β1 signalling pathway through Smad6‐Smurf‐1 complex activation. In vitro cultured cardiomyocytes, mechanical stretch up‐regulated cardiac TGF‐β1, TGF‐β1‐dependent ROCK and down‐regulated BMP‐2, but BMP‐2 level could be reversed through blocking TGF‐β1 receptor by SB‐431542 or inhibition of ROCK by Y‐27632. TGF‐β1 could also activate ROCK and suppress endogenous BMP‐2 level in a dose‐dependent manner. Knock‐down BMP‐2 enhanced TGF‐β1‐mediated PKC‐δ and Smad3 signalling cascades. In contrast, treatment with Y‐27632 or SB‐431542, respectively suppressed ROCK‐dependent PKC‐δ and Smad3 activation, but BMP‐2 was only up‐regulated by Y‐27632. In addition, BMP‐2 silencing abolished the effect of Y‐27632, but not SB‐431542 on suppression of TGF‐β1 pathway. Further experiments showed that Smad6 Smurf1 interaction were required for BMP‐2‐evoked antagonizing effects. Smad6 overexpression attenuated TGF‐β1‐induced activation of PKC‐δ and Smad3, promoted TGF‐β RI degradation in BMP‐2 knock‐down cardiomyocytes, and could be abolished after knocking‐down Smurf‐1, in which Smad6/Smurf1 complex formation was critically involved. In vivo data showed that pressure overload‐induced collagen deposition was attenuated, cardiac function was improved and TGF‐β1‐dependent activation of PKC‐δ and Smad3 was reduced after 2 weeks treatment with rhBMP‐2(0.5 mg/kg) or Y‐27632 (10 mg/kg) in mice that underwent surgical transverse aortic constriction. In conclusion, we propose that BMP‐2, as a novel fibrosis antagonizing cytokine, may have potential beneficial effect in attenuating pressure overload‐induced cardiac fibrosis.  相似文献   

15.
16.
Muscle stem (satellite) cells are relatively resistant to cell‐autonomous aging. Instead, their endogenous signaling profile and regenerative capacity is strongly influenced by the aged P‐Smad3, differentiated niche, and by the aged circulation. With respect to muscle fibers, we previously established that a shift from active Notch to excessive transforming growth factor‐beta (TGF‐β) induces CDK inhibitors in satellite cells, thereby interfering with productive myogenic responses. In contrast, the systemic inhibitor of muscle repair, elevated in old sera, was suggested to be Wnt. Here, we examined the age‐dependent myogenic activity of sera TGF‐β1, and its potential cross‐talk with systemic Wnt. We found that sera TGF‐β1 becomes elevated within aged humans and mice, while systemic Wnt remained undetectable in these species. Wnt also failed to inhibit satellite cell myogenicity, while TGF‐β1 suppressed regenerative potential in a biphasic fashion. Intriguingly, young levels of TGF‐β1 were inhibitory and young sera suppressed myogenesis if TGF‐β1 was activated. Our data suggest that platelet‐derived sera TGF‐β1 levels, or endocrine TGF‐β1 levels, do not explain the age‐dependent inhibition of muscle regeneration by this cytokine. In vivo, TGF‐β neutralizing antibody, or a soluble decoy, failed to reduce systemic TGF‐β1 and rescue myogenesis in old mice. However, muscle regeneration was improved by the systemic delivery of a TGF‐β receptor kinase inhibitor, which attenuated TGF‐β signaling in skeletal muscle. Summarily, these findings argue against the endocrine path of a TGF‐β1‐dependent block on muscle regeneration, identify physiological modalities of age‐imposed changes in TGF‐β1, and introduce new therapeutic strategies for the broad restoration of aged organ repair.  相似文献   

17.
Hyperosmolarity plays an essential role in the pathogenesis of diabetic tubular fibrosis. However, the mechanism of the involvement of hyperosmolarity remains unclear. In this study, mannitol was used to evaluate the effects of hyperosmolarity on a renal distal tubule cell line (MDCK). We investigated transforming growth factor‐β receptors and their downstream fibrogenic signal proteins. We show that hyperosmolarity significantly enhances the susceptibility to exogenous transforming growth factor (TGF)‐β1, as mannitol (27.5 mM) significantly enhanced the TGF‐β1‐induced increase in fibronectin levels compared with control experiments (5.5 mM). Specifically, hyperosmolarity induced tyrosine phosphorylation on TGF‐β RII at 336 residues in a time (0–24 h) and dose (5.5–38.5 mM) dependent manner. In addition, hyperosmolarity increased the level of TGF‐β RI in a dose‐ and time‐course dependent manner. These observations may be closely related to decreased catabolism of TGF‐β RI. Hyperosmolarity significantly downregulated the expression of an inhibitory Smad (Smad7), decreased the level of Smurf 1, and reduced ubiquitination of TGF‐β RI. In addition, through the use of cycloheximide and the proteasome inhibitor MG132, we showed that hyperosmolarity significantly increased the half‐life and inhibited the protein level of TGF‐β RI by polyubiquitination and proteasomal degradation. Taken together, our data suggest that hyperosmolarity enhances cellular susceptibility to renal tubular fibrosis by activating the Smad7 pathway and increasing the stability of type I TGF‐β receptors by retarding proteasomal degradation of TGF‐β RI. This study clarifies the mechanism underlying hyperosmotic‐induced renal fibrosis in renal distal tubule cells. J. Cell. Biochem. 109: 663–671, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
Connective tissue growth factor (CTGF/CCN2) is a matricellular protein induced by transforming growth factor (TGF)‐β and intimately involved with tissue repair and overexpressed in various fibrotic conditions. We previously showed that keratinocytes in vitro downregulate TGF‐β‐induced expression of CTGF in fibroblasts by an interleukin (IL)‐1 α‐dependent mechanism. Here, we investigated further the mechanisms of this downregulation by both IL‐1α and β. Human dermal fibroblasts and NIH 3T3 cells were treated with IL‐1α or β in presence or absence of TGF‐β1. IL‐1 suppressed basal and TGF‐β‐induced CTGF mRNA and protein expression. IL‐1α and β inhibited TGF‐β‐stimulated CTGF promoter activity, and the activity of a synthetic minimal promoter containing Smad 3‐binding CAGA elements. Furthermore, IL‐1α and β inhibited TGF‐β‐stimulated Smad 3 phosphorylation, possibly linked to an observed increase in Smad 7 mRNA expression. In addition, RNA interference suggested that TGF‐β activated kinase1 (TAK1) is necessary for IL‐1 inhibition of TGF‐β‐stimulated CTGF expression. These results add to the understanding of how the expression of CTGF in human dermal fibroblasts is regulated, which in turn may have implications for the pathogenesis of fibrotic conditions involving the skin. J. Cell. Biochem. 110: 1226–1233, 2010. Published 2010 Wiley‐Liss, Inc.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号