首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Epigenetics》2013,8(9):1149-1161
After fertilization, lineage specification is governed by a complicated molecular network in which permissiveness and repression of expression of pluripotency- and differentiation-associated genes are regulated by epigenetic modifications. DNA methylation operates as a very stable repressive mark in this process. In this study, we investigated the relationship between DNA methylation and expression of pluripotency-associated genes (OCT4, NANOG and SOX2), a trophectoderm (TE)-specific gene (ELF5), and genes associated with neural differentiation (SOX2 and VIMENTIN) in porcine Day 10 (E10) epiblast, hypoblast, and TE as well as in epiblast-derived neural progenitor cells (NPCs). We found that OCT4, NANOG, and SOX2 were highly expressed in the epiblast and hypoblast, while VIMENTIN was only highly expressed in the epiblast. Moreover, low expression of OCT4, NANOG, SOX2 and VIMENTIN was noted in the TE. Most CpG sites of OCT4, NANOG, SOX2 and VIMENTIN displayed low methylation levels in the epiblast and hypoblast and, strikingly, also in the TE. Hence, the expression patterns of these genes were not directly related to levels of DNA methylation in the TE in contrast to the situation in the mouse. In contrast, ELF5 was exclusively expressed in the TE and was correspondingly hypomethylated in this tissue. In NPCs, we observed down-regulation of NANOG and OCT4 expression, which correlated with hypermethylation of their promoters, whereas VIMENTIN displayed up-regulation in accordance with hypomethylation of its promoter. In conclusion, DNA methylation is an inconsistently operating epigenetic mechanism in porcine E10 blastocysts, whereas in porcine epiblast-derived NPCs, expression of pluripotency-associated and differentiation genes appear to be regulated by this modification.  相似文献   

2.
Early embryonic lethality is common, particularly in dairy cattle. We made cattle embryos more sensitive to environmental stressors by raising the threshold of embryo survival signaling required to overcome the deleterious effects of overexpressing the proapoptotic protein BAD. Two primary fibroblast cell lines expressing BAD and exhibiting increased sensitivity to stress-induced apoptosis were used to generate transgenic Day13/14 BAD embryos. Transgenic embryos were normal in terms of retrieval rates, average embryo length or expression levels of the trophectoderm marker ASCL2. However both lines of BAD-tg embryos lost the embryonic disc and thus the entire epiblast lineage at significantly greater frequencies than either co-transferrred IVP controls or LacZ-tg embryos. Embryos without epiblast still contained the second ICM-derived lineage, the hypopblast, albeit frequently in an impaired state, as shown by reduced expression of the hypoblast markers GATA4 and FIBRONECTIN. This indicates a gradient of sensitivity (epiblast > hypoblast > TE) to BAD overexpression. We postulate that the greater sensitivity of specifically the epiblast lineage that we have seen in our transgenic model, reflects an inherent greater susceptibility of this lineage to environmental stress and may underlie the epiblast-specific death seen in phantom pregnancies.  相似文献   

3.
4.
5.
6.
At the blastocyst stage of mammalian pre-implantation development, three distinct cell lineages have formed: trophectoderm, hypoblast (primitive endoderm) and epiblast. The inability to derive embryonic stem (ES) cell lines in a variety of species suggests divergence between species in the cell signaling pathways involved in early lineage specification. In mouse, segregation of the primitive endoderm lineage from the pluripotent epiblast lineage depends on FGF/MAP kinase signaling, but it is unknown whether this is conserved between species. Here we examined segregation of the hypoblast and epiblast lineages in bovine and human embryos through modulation of FGF/MAP kinase signaling pathways in cultured embryos. Bovine embryos stimulated with FGF4 and heparin form inner cell masses (ICMs) composed entirely of hypoblast cells and no epiblast cells. Inhibition of MEK in bovine embryos results in ICMs with increased epiblast precursors and decreased hypoblast precursors. The hypoblast precursor population was not fully ablated upon MEK inhibition, indicating that other factors are involved in hypoblast differentiation. Surprisingly, inhibition of FGF signaling upstream of MEK had no effects on epiblast and hypoblast precursor numbers in bovine development, suggesting that GATA6 expression is not dependent on FGF signaling. By contrast, in human embryos, inhibition of MEK did not significantly alter epiblast or hypoblast precursor numbers despite the ability of the MEK inhibitor to potently inhibit ERK phosphorylation in human ES cells. These findings demonstrate intrinsic differences in early mammalian development in the role of the FGF/MAP kinase signaling pathways in governing hypoblast versus epiblast lineage choices.  相似文献   

7.
8.
9.
During mouse early embryogenesis, blastomeres increase in number by the morula stage. Among them, the outer cells are polarized and differentiated into trophectoderm (TE), while the inner cells remain unpolarized and give rise to inner cell mass (ICM). TE provides an important liquid environment for ICM development. In spite of extensive research, the molecular mechanisms underlying TE formation are still obscure. In order to investigate the roles of estrogen receptor α (ERα) in this course, mouse 8‐cell embryos were collected and cultured in media containing ERα specific antagonist MPP and/or agonist PPT. The results indicated that MPP treatment inhibits blastocyst formation in a dose‐dependent manner, while PPT, at proper concentration, promotes the cavitation ratio of mouse embryos. Immunofluorescence staining results showed that MPP significantly decreased the nuclear expression of CDX2 in morula, but no significant changes of OCT4 were observed. Moreover, after MPP treatment, the expression levels of the genes related to TE specification, Tead4, Gata3 and Cdx2, were significantly reduced. Overall, these results indicated that ERα might affect mouse embryo cavitation by regulating TE lineage differentiation.  相似文献   

10.
11.
The epiblast (EPI) and the primitive endoderm (PE), which constitute foundations for the future embryo body and yolk sac, build respectively deep and surface layers of the inner cell mass (ICM) of the blastocyst. Before reaching their target localization within the ICM, the PE and EPI precursor cells, which display distinct lineage-specific markers, are intermingled randomly. Since the ICM cells are produced in two successive rounds of asymmetric divisions at the 8→16 (primary inner cells) and 16→32 cell stage (secondary inner cells) it has been suggested that the fate of inner cells (decision to become EPI or PE) may depend on the time of their origin. Our method of dual labeling of embryos allowed us to distinguish between primary and secondary inner cells contributing ultimately to ICM. Our results show that the presence of two generations of inner cells in the 32-cell stage embryo is the source of heterogeneity within the ICM. We found some bias concerning the level of Fgf4 and Fgfr2 expression between primary and secondary inner cells, resulting from the distinct number of cells expressing these genes. Analysis of experimental aggregates constructed using different ratios of inner cells surrounded by outer cells revealed that the fate of cells does not depend exclusively on the timing of their generation, but also on the number of cells generated in each wave of asymmetric division. Taking together, the observed regulatory mechanism adjusting the proportion of outer to inner cells within the embryo may be mediated by FGF signaling.  相似文献   

12.
13.
14.
The first cell fate decision during mouse development concerns whether a blastomere will contribute to the inner cell mass (ICM; which gives rise to the embryo proper) or to trophectoderm (TE; which gives rise to the placenta). The position of a cell within an 8- to 16-cell-stage embryo correlates with its future fate, with outer cells contributing to TE and inner cells to the ICM. It remains unknown, however, whether an earlier pre-pattern exists. Here, we propose a hypothesis that could account for generation of such a pre-pattern and which is based on epigenetic asymmetry (such as in histone or DNA methylation) between maternal and paternal genomes in the zygote.  相似文献   

15.
The proportion of total cells in the blastocyst allocated to the inner cell mass (ICM) and trophectoderm (TE) is important for future development and may be a sensitive indicator to evaluate culture conditions. The number of cells and their distribution within the two primary cell lineages were determined for the rabbit embryo developing in vivo after superovulation or nonsuperovulation or embryo transfer and compared with embryos developing in vitro. Comparisons were made with cultured embryos or embryos grown in vivo until 3.5, 4.0, and 4.5 days of age. Embryos from superovulated rabbits developed in vivo for 3.5, 4.0, and 4.5 days, respectively, had 361, 758, and 902 total cells (P<0.05), and in nonsuperovulated rabbits 130, 414, and 905 total cells (P<0.05), with increasing proportions of ICM cells over time (P<0.05). One-cell embryos recovered from superovulated females and transferred to nonsuperovulated recipients developed more slowly with 70, 299, and 550 total cells after 3.5, 4.0, and 4.5 days of culture (P<0.05), respectively. The proportion of ICM cells increased with age of the embryo. Corresponding values for one-cell embryos cultured in vitro resulted in 70, 299, and 550 total cells (P<0.05). However, in vitro culture of morula-stage embryos in the presence of fetal bovine serum for 24 hr did not delay growth. In addition, the proportions of ICM/total cells were 0.17, 0.25, and 0.29 for embryos developing in vitro at 3.5, 4.0, and 4.5 days, respectively, similar to those for embryos developing in vivo at each of the three recovery times. These data establish for the first time the number and proportion of cells allocated to the ICM of the rabbit embryo developing in vivo or under defined conditions in vitro. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Noninvasive measurements of bovine embryo quality, such as timing of cleavage, morula morphology, blastocyst formation, and hatching ability, were linked with the number of inner cell mass (ICM) cells and trophectoderm (TE) cells of the resulting embryos. First, it was confirmed that fast-cleaving embryos proved to have significantly higher chances to reach advanced developmental stages vs. intermediate and slow cleavers (P = 0.01). They also showed significantly less fragmentation at the morula stage, implying the presence of more excellent morulae among fast-cleaving embryos (P < 0.05). Second, the quality of hatched blastocysts, resulting from morulae of different morphological grades, was examined by differential staining. The total cell and ICM cell numbers were significantly lower for hatched blastocysts developed from poor morulae compared to hatched blastocysts developed from excellent, good, or fair morulae. However, hatched blastocysts with <10 ICM cells were seen in embryos belonging to all four morphological scores. Finally, it was found that timing of first cleavage was not significantly correlated with timing of blastocyst formation or with cell number of blastocysts. Timing of blastocyst formation, however, was significantly correlated with cell number: day 8 blastocysts had significantly lower total cell and ICM cell numbers than day 6 and day 7 blastocysts (P < 0.001). These results suggest that the quality of in vitro-produced bovine embryos is very variable and cannot be linked with a single criterion such as embryo morphology and/or hatching ability. Timing of blastocyst formation was the most valuable criterion with regard to embryonic differentiation. Mol. Reprod. Dev. 47:47–56, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

17.
Gastrulation is characterized by the extensive movements of cells. Fate mapping is used to follow such cell movements as they occur over time, and prospective fate maps have been constructed for several stages of the model organisms used in modern studies in developmental biology. In chick embryos, detailed fate maps have been constructed for both prospective mesodermal and ectodermal cells. However, the origin and displacement of the prospective endodermal cells during crucial periods in gastrulation remain unclear. This study had three aims. First, we determined the primitive-streak origin of the endoderm using supravital fluorescent markers, and followed the movement of the prospective endodermal cells as they dispersed to generate the definitive endodermal layer. We show that between stages 3a/b and 4, the intraembryonic definitive endoderm receives contributions mainly from the rostral half of the primitive streak, and that endodermal movements parallel those of ingressing adjacent mesodermal subdivisions. Second, the question of the epiblast origin of the endodermal layer was addressed by precisely labeling epiblast cells in a region known to give rise to prospective somitic cells, and following their movement as they underwent ingression through the primitive streak. We show that the epiblast clearly contributes prospective endodermal cells to the primitive streak, and subsequently to definitive endoderm of the area pellucida. Finally, the relationship between the hypoblast and the definitive endoderm was defined by following labeled rostral primitive-streak cells over a short period of time as they contributed to the definitive endoderm, and combining this with in situ hybridization with a riboprobe for Crescent, a marker of the hypoblast. We show that as the definitive endodermal layer is laid down, there is cell-cell intercalation at its interface with the displaced hypoblast cells. These data were used to construct detailed prospective fate maps of the endoderm in the chick embryo, delineating the origins and migrations of endodermal cells in various rostrocaudal levels of the primitive streak during key periods in early development.  相似文献   

18.
The hypothesis was tested that the pluripotency of the inner cell mass (ICM) of the bovine embryo is enhanced by the glycogen synthase kinase-3β inhibitor CHIR99021 and the MAPK1 and MAPK3 inhibitor PD032591. Treatment with the two inhibitors from Days 6 to 8 after insemination increased blastocyst steady state concentrations of mRNA for NANOG (P < 0.05) and SOX2 (P = 0.055) and tended to decrease (P = 0.09) expression of GATA6. To evaluate pluripotency, the inner cell mass was isolated by immunosurgery at Day 8, seeded on a feeder layer of bovine embryonic fibroblasts, and cultured in the presence of the inhibitors. Ten of 52 (19%) ICM from control embryos had primary outgrowth formation vs. 23 of 50 (46%) of the ICM from embryos cultured with inhibitors (P < 0.01). For ICM outgrowths from embryos cultured without inhibitors, colonies either did not persist through Passage 2 or became differentiated. In contrast, for the inhibitor group, four colonies survived beyond Passage 2, and one line persisted for 19 passages. This cell line possessed alkaline phosphatase activity, expressed several genes characteristically expressed in pluripotent cells, and differentiated into embryoid bodies when cultured in the absence of the signal transduction inhibitors and the feeder layer. Propagation of the cells was difficult due to slow growth and inefficiency in survival through each passage. In conclusion, exposure to inhibitors during the morula-blastocyst transition facilitated formation of self-renewing pluripotent cell lines from bovine blastocysts.  相似文献   

19.
Human hypoblast formation is not dependent on FGF signalling   总被引:2,自引:0,他引:2  
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号