首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
《Free radical research》2013,47(6):758-765
Abstract

An excessive accumulation of fat in the liver leads to chronic liver injury such as non-alcoholic fatty liver disease (NAFLD), which is an important medical problem affecting many populations worldwide. Oxidative stress has been implicated in the pathogenesis of NAFLD, but the exact nature of active species and the underlying mechanisms have not been elucidated. It was previously found that the administration of free radical-generating azo compound to mice induced accumulation of fat droplet in the liver. The present study was performed aiming at elucidating the changes of lipid classes and fatty acid composition and also measuring the levels of lipid peroxidation products in the liver induced by azo compound administration to mouse. The effects of azo compound on the liver were compared with those induced by high fat diet, a well-established cause of NAFLD. Azo compounds given to mice either by intraperitoneal administration or by dissolving to drinking water induced triacylglycerol (TG) increase and concomitant phospholipid decrease in the liver, whose pattern was quite similar to that induced by high fat diet. Lipid peroxidation products such as hydroxyoctadecadienoic acid and hydroxyeicosatetraenoic acid were increased in the liver in association with the increase in TG. These results show that free radicals as well as high fat diet induce fatty liver by similar mechanisms, in which lipid peroxidation may be involved.  相似文献   

2.
目的 分析物种差异对NAFLD模型复制的影响,探讨不同鼠种NAFLD形成及其机制.方法 长爪沙鼠、SD大鼠、ICR小鼠各20只,按种属随机分为对照组及模型组,对照组给予普通饲料,模型组给予高脂饲料.16周后,观察肝脏HE及Mallory三色染色病理变化,计算肝指数,检测血清血脂(CHO、TG、LDL-c、HDL-c)、肝功能(GOP、GPT)及肝组织中抗氧化酶(SOD、GSH-PX、CAT)活性及羟脯氨酸(Hyp)、丙二醛(MDA)、游离脂肪酸(FFA)水平.结果 与对照组比较,各模型组:沙鼠Hyp、CHO、TG、LDL-c、HDL-c、肝指数、GOP、GPT、MDA、FFA均升高,SOD、GSH-PX、CAT活性降低(P<0.05,P<0.01),肝脏出现纤维化;大鼠CHO、肝指数、GOP、GPT、FFA、SOD活性升高,MDA含量、GSH-PX、CAT活性降低(P <0.05,P<0.01),有局灶性脂肪肝炎;小鼠CHO、LDL-c、HDL-c、肝指数、CAT活性升高,MDA含量降低(P <0.05,P<0.01),肝脏病理正常.结论 三种动物在脂质代谢、肝功能、氧化应激等方面有显著的差异,并形成了不同的NAFLD模型:沙鼠形成伴高TG、CHO血症的肝纤维化模型、大鼠形成伴高CHO血症的局灶性脂肪肝炎模型、小鼠形成高胆固醇血症模型但肝脏未发生明显的病理改变.  相似文献   

3.
Nonalcoholic fatty liver disease (NAFLD) is increasingly regarded as a hepatic manifestation of metabolic syndrome. Though with high prevalence, the mechanism is poorly understood. This study aimed to investigate the effects of p21 on free fatty acid (FFA)-induced steatosis in L02 cells. We therefore analyzed the L02 cells with MG132 and siRNA treatment for different expression of p21 related to lipid accumulation and lipotoxicity. Cellular total lipid was stained by Oil Red O, while triglyceride content, cytotoxicity assays, lipid peroxidation markers and anti-oxidation levels were measured by enzymatic kits. Treatment with 1 mM FFA for 48 hr induced magnificent intracellular lipid accumulation and increased oxidative stress in p21 overload L02 cells compared to that in p21 knockdown L02 cells. By increasing oxidative stress and peroxidation, p21 accelerates FFA-induced lipotoxic effect in L02 cells and might provide information about potentially new targets for drug development and treatments of NAFLD.  相似文献   

4.
Elevated hepatic reactive oxygen species play an important role in pathogenesis of liver diseases, such as alcohol-induced liver injury, hepatitis C virus infection, and nonalcoholic steatohepatitis. In the present study, we investigated and compared the hepatic lipid metabolisms of liver-specific Sod2 (superoxide dismutase 2) knock-out (Sod2 KO), Sod1 knock-out (Sod1 KO), and Sod1/liver-specific Sod2 double knock-out mice (double KO). We observed significant increases in lipid peroxidation and triglyceride (TG) in the liver of Sod1 KO and double KO mice but not in the liver of Sod2 KO mice. We also found that high fat diet enhanced fatty changes of the liver in Sod1 KO and double KO mice but not in Sod2 KO mice. These data indicated that CuZn-SOD deficiency caused lipid accumulation in the liver. To investigate the molecular mechanism of hepatic lipid accumulation in CuZn-SOD-deficient mice, we measured TG secretion rate from liver using Triton WR1339. We found significant decrease of TG secretion in CuZn-SOD-deficient mice. Furthermore, we observed marked degradation of apolipoprotein B (apoB) in the liver and plasma of CuZn-SOD-deficient mice, indicating that degradation of apoB impairs secretion of lipoprotein from the liver. Our data suggest that oxidative stress enhances hepatic lipid accumulation by impaired lipoprotein secretion due to the degradation of apoB in liver.  相似文献   

5.
目的探讨奥美沙坦对于高脂诱导的非酒精性脂肪肝病(NAFLD)的影响及可能机制。方法健康雄性8周龄C57BL/6小鼠24只随机分为高脂组(n=16)和正常饮食组(n=8),高脂组小鼠高脂饮食(60%的脂肪)12w后再随机分为高脂饮食对照组(n=8)、高脂饮食治疗组(n=8)。高脂饮食治疗组小鼠给予0.75mg/kg/d的奥美沙坦灌胃8w,灌胃结束后处理小鼠,留取空腹血样本检测AST和ALT。肝组织冰冻切片行油红O染色观察脂肪变;石蜡切片行HE和F4/80免疫组化染色观察肝脏炎症变化;实时荧光定量PCR检测肝脏TNF-α和IL-6mRNA的表达水平;WesternBlot检测肝组织中IκB-α、p-IκBa、NF—κB信号通路的活化。结果奥美沙坦显著抑制了高脂诱导的NAFLD脂肪变性,并明显改善肝功能。实时荧光定量PCR结果表明奥美沙坦能显著降低肝脏组织中TNF-α和IL-6mRNA表达水平(P〈0.05);Western Blot结果显示奥美沙坦显著抑制肝脏NF-κB信号通路活化。结论奥美沙坦显著抑制NAFLD小鼠肝脏炎性病变而保护肝功能,其机制与抑制NF-κB信号通路活化以及降低肝脏TNF-α和IL-6mRNA水平有关。  相似文献   

6.
7.
目的观察胆汁酸G-蛋白偶联受体(Gprotein—coupled receptor for bile acids,TGR5)激动剂齐墩果酸(oleanolic acid,OA)对肥胖小鼠体重及糖、脂代谢的影响,探讨齐墩果酸减轻肥胖小鼠体重的机制。方法建立高脂饮食诱导的肥胖小鼠动物模型,并喂食OA进行干预。动态测定体重及第17周后内脏脂肪、肝脏重量,并进行葡萄糖耐量实验(glucose tolerence test,GTT);肝脏组织石蜡切片HE染色,光镜观察病理变化;Realtime PCR检测肝脏组织糖代谢相关基因的表达及白色脂肪组织脂肪合成酶(fatty acid synthase,FAS)的表达。结果OA减轻肥胖小鼠的体重、内脏脂肪及肝脏的重量;改善肝脏脂质沉积;增强胰岛素敏感性。OA抑制肝脏内葡萄糖-6-磷酸酶(glucose-6-phosphatase,G6Pc)的表达,并下调肥胖小鼠脂肪组织FAS的mRNA水平的表达。结论TGR5激动剂OA能减少高脂诱导的肥胖小鼠的脂肪堆积,其机制可能与OA能改善肥胖小鼠胰岛素抵抗,减少脂质合成有关。  相似文献   

8.
9.
To investigate the role of S100 calcium-binding protein A16 (S100A16) in hepatic lipid metabolism, S100a16 transgenic, S100a16 knockdown, and wildtype C57BL/6 mice were fed either a high-fat diet (HFD) or normal-fat diet (NFD) for 16 weeks. The results showed that for HFD-fed mice, S100a16 transgenic mice showed significantly more severe fatty liver than other HFD-fed mice, with a significant increase in serum triglyceride (TG) concentration, with more and larger lipid droplets in the liver, whereas S100a16 knockdown mice were completely opposite, with liver fat lesions and TG serological changes being the mildest; for NFD-fed mice, liver fat accumulation and serum TG concentrations were significantly lower than those fed HFD, and no significant lipid droplets were found in the liver. Further, we found that calmodulin (CaM) interacts with S100A16, a member of the AMP-activated protein kinase (AMPK) pathway. Our research found that S100A16 regulates the AMPK pathway-associated protein by interacting with CaM to regulate liver lipid synthesis. S100A16 regulates liver lipid metabolism through the CaM/CAMKK2/AMPK pathway. Overexpression of S100A16 promotes the deterioration of fatty liver induced by HFD, and low expression of S100A16 can attenuate fatty liver.  相似文献   

10.
Non‐alcoholic fatty liver disease (NAFLD), a lipid metabolism disorder characterized by the accumulation of intrahepatic fat, has emerged as a global public health problem. However, its underlying molecular mechanism remains unclear. We previously have found that miR‐149 was elevated in NAFLD induced by high‐fat diet mice model, whereas decreased by a 16‐week running programme. Here, we reported that miR‐149 was increased in HepG2 cells treated with long‐chain fatty acid (FFA). In addition, miR‐149 was able to promote lipogenesis in HepG2 cells in the absence of FFA treatment. Moreover, inhibition of miR‐149 was capable of inhibiting lipogenesis in HepG2 cells in the presence of FFA treatment. Meanwhile, fibroblast growth factor‐21 (FGF‐21) was identified as a target gene of miR‐149, which was demonstrated by the fact that miR‐149 could negatively regulate the protein expression level of FGF‐21, and FGF‐21 was also responsible for the effect of miR‐149 inhibitor in decreasing lipogenesis in HepG2 cells in the presence of FFA treatment. These data implicate that miR‐149 might be a novel therapeutic target for NAFLD.  相似文献   

11.
12.
Nonalcoholic fatty liver disease (NAFLD) currently affects 20%-30% of adults and 10% of children in industrialized countries, and its prevalence is increasing worldwide. Although NAFLD is a benign form of liver dysfunction, it can proceed to a more serious condition, nonalcoholic steatohepatitis (NASH), which may lead to liver cirrhosis and hepatocellular carcinoma. NAFLD is accompanied by obesity, metabolic syndrome and diabetes mellitus, and evidence suggests that fructose, a major caloric sweetener in the diet, plays a significant role in its pathogenesis. Inflammatory progression to NASH is proposed to occur by a two-hit process. The first "hit" is hepatic fat accumulation owing to increased hepatic de novo lipogenesis, inhibition of fatty acid beta oxidation, impaired triglyceride clearance and decreased very-low-density lipoprotein export. The mechanisms of the second "hit" are still largely unknown, but recent studies suggest several possibilities, including inflammation caused by oxidative stress associated with lipid peroxidation, cytokine activation, nitric oxide and reactive oxygen species, and endogenous toxins of fructose metabolites.  相似文献   

13.
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm−/− mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/− mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression.  相似文献   

14.
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide, without any Food and Drug Administration-approved pharmacological intervention in clinic. Trim38, as an important member of the TRIM (tripartite motif-containing) family, was largely reported to be involved in the regulation of innate immune and inflammatory responses. However, the functional roles of TRIM38 in NAFLD remain largely unknown. Here, the expression of TRIM38 was first detected in liver samples of both NAFLD mice model and patients diagnosed with NAFLD. We found that TRIM38 expression was downregulated in NAFLD liver tissues compared with normal liver tissues. Genetic Trim38-KO in vivo showed that TRIM38 depletion deteriorated the high-fat diet and high fat and high cholesterol diet-induced hepatic steatosis and high fat and high cholesterol diet-induced liver inflammation and fibrosis. In particular, we found that the effects of hepatocellular lipid accumulation and inflammation induced by palmitic acid and oleic acid were aggravated by TRIM38 depletion but mitigated by TRIM38 overexpression in vitro. Mechanically, RNA-Seq analysis demonstrated that TRIM38 ameliorated nonalcoholic steatohepatitis progression by attenuating the activation of MAPK signaling pathway. We further found that TRIM38 interacted with transforming growth factor-β-activated kinase 1 binding protein 2 and promoted its protein degradation, thus inhibiting the transforming growth factor-β-activated kinase 1-MAPK signal cascades. In summary, our study revealed that TRIM38 could suppress hepatic steatosis, inflammatory, and fibrosis in NAFLD via promoting transforming growth factor-β-activated kinase 1 binding protein 2 degradation. TRIM38 could be a potential target for NAFLD treatment.  相似文献   

15.
Steatoapoptosis is a hallmark of non-alcoholic fatty liver disease (NAFLD) and is an important factor in liver disease progression. We hypothesized that increased reactive oxygen species resulting from excess dietary fat contribute to liver disease by causing DNA damage and apoptotic cell death, and tested this by investigating the effects of feeding mice high fat or standard diets for 8 weeks. High fat diet feeding resulted in increased hepatic H2O2, superoxide production, and expression of oxidative stress response genes, confirming that the high fat diet induced hepatic oxidative stress. High fat diet feeding also increased hepatic steatosis, hepatitis and DNA damage as exemplified by an increase in the percentage of 8-hydroxyguanosine (8-OHG) positive hepatocytes in high fat diet fed mice. Consistent with reports that the DNA damage checkpoint kinase Ataxia Telangiectasia Mutated (ATM) is activated by oxidative stress, ATM phosphorylation was induced in the livers of wild type mice following high fat diet feeding. We therefore examined the effects of high fat diet feeding in Atm-deficient mice. The prevalence of apoptosis and expression of the pro-apoptotic factor PUMA were significantly reduced in Atm-deficient mice fed the high fat diet when compared with wild type controls. Furthermore, high fat diet fed Atm?/? mice had significantly less hepatic fibrosis than Atm+/+ or Atm+/? mice fed the same diet. Together, these data demonstrate a prominent role for the ATM pathway in the response to hepatic fat accumulation and link ATM activation to fatty liver-induced steatoapoptosis and fibrosis, key features of NAFLD progression.  相似文献   

16.
《Free radical research》2013,47(11):869-880
Abstract

Non-alcoholic fatty liver disease (NAFLD) is now the most common liver disease affecting high proportion of the population worldwide. NAFLD encompasses a large spectrum of conditions ranging from fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to cirrhosis and cancer. NAFLD is considered as a multifactorial disease in relation to the pathogenic mechanisms. Oxidative stress has been implicated in the pathogenesis of NAFLD and NASH and the involvement of reactive oxygen species (ROS) has been suggested. Many studies show the association between the levels of lipid oxidation products and disease state. However, often neither oxidative stress nor ROS has been characterized, despite oxidative stress is mediated by multiple active species by different mechanisms and the same lipid oxidation products are produced by different active species. Further, the effects of various antioxidants have been assessed in human and animal studies, but the effects of drugs are determined by the type of active species, suggesting the importance of characterizing the active species involved. This review article is focused on the role of free radicals and free radical-mediated lipid peroxidation in the pathogenesis of NAFLD and NASH, taking characteristic features of free radical-mediated oxidation into consideration. The detailed analysis of lipid oxidation products shows the involvement of free radicals in the pathogenesis of NAFLD and NASH. Potential beneficial effects of antioxidants such as vitamin E are discussed.  相似文献   

17.
ABSTRACT

Dietary capsaicin exhibits anti-steatosis activity in obese mice. High-fat diet (HFD)-induced mice is a highly studied approach to develop non-alcoholic fatty liver disease (NAFLD). In this study, we determined whether the topical application of capsaicin can improve lesions of NAFLD. The HFD-induced mice were treated with daily topical application of capsaicin for 8 weeks. Topical application of capsaicin reduced liver fat in HFD-fed mice. Capsaicin stimulated carnitine palmitoyl transferase (CPT)-1 and CD36 expression, which are associated with β-oxidation and fatty acids influx of liver while it decreased the expression of key enzymes involved in the synthesis of fatty acids, such as acetyl Co-A carboxylase (ACC) and fatty acid synthase (FAS). Immunohistochemical analysis revealed the elevated level of adiponectin in liver tissue of the capsaicin-treated mice. These results suggest that the topical application of capsaicin suppresses liver fat accumulation through the upregulation of β-oxidation and de novo lipogenesis in HFD-induced NAFLD mice.  相似文献   

18.
19.
In obese adults, nonalcoholic fatty liver disease (NAFLD) is accompanied by multiple metabolic dysfunctions. Although upregulated hepatic fatty acid synthesis has been identified as a crucial mediator of NAFLD development, the underlying mechanisms are yet to be elucidated. In this study, we reported upregulated expression of gene related to anergy in lymphocytes (GRAIL) in the livers of humans and mice with hepatic steatosis. Grail ablation markedly alleviated the high-fat diet-induced hepatic fat accumulation and expression of genes related to the lipid metabolism, in vitro and in vivo. Conversely, overexpression of GRAIL exacerbated lipid accumulation and enhanced the expression of lipid metabolic genes in mice and liver cells. Our results demonstrated that Grail regulated the lipid accumulation in hepatic steatosis via interaction with sirtuin 1. Thus, Grail poses as a significant molecular regulator in the development of NAFLD.Subject terms: Cell signalling, Metabolic disorders  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号