首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ataxia telangiectasia (AT) is caused by mutational inactivation of the ataxia telangiectasia mutated (Atm) gene, which is involved in DNA repair. Increased oxidative stress has been shown in human AT cells and neuronal tissues of Atm-deficient mice. Heme oxygenase-1 (HO-1) is an inducible antioxidant enzyme and protects cells against oxidative stress. The purpose of this study is to determine whether ATM induces antioxidant enzyme HO-1 and protects cells from oxidative stress-mediated apoptosis by driving the activation of PKC-δ and NF-κB, by increasing cell viability, and by downregulating DNA fragmentation and apoptotic indicators (apoptosis-inducing factor and cleaved caspase-3). AT fibroblasts stably transfected with human full-length ATM cDNA (YZ5 cells) or the empty vector (MOCK cells) were treated with H2O2 as a source of reactive oxygen species (ROS). As a result, transfection with ATM inhibited ROS-induced cell death and DNA fragmentation in MOCK cells. Transfection with ATM induced expression of HO-1 which was mediated by PKC-δ and NF-κB in H2O2-treated MOCK cells. ZnPP, an HO-1 inhibitor, and transfection with HO-1 siRNA increased ROS levels and apoptosis, whereas hemin, an HO-1 activator, reduced ROS levels and apoptosis in H2O2-treated YZ5 cells. Rottlerin, a PKC-δ inhibitor, inhibited NF-κB activation and HO-1 expression in H2O2-treated YZ5 cells. MOCK cells showed increased cell death, DNA fragmentation, and apoptotic indicators compared to YZ5 cells exposed to H2O2. In addition, transfection with p65 siRNA increased ROS levels and DNA fragmentation, but decreased HO-1 protein levels in H2O2-treated YZ5 cells. In conclusion, ATM induces HO-1 expression via activation of PKC-δ and NF-κB and inhibits oxidative stress-induced apoptosis. A loss of HO-1 induction may explain why AT patients are vulnerable to oxidative stress.  相似文献   

2.
We have investigated the neuroprotective effect of sesaminol glucosides (SG) in SK-N-SH cells. SG prevented apoptotic cell death induced by Aβ25–35. In parallel, SK-N-SH cells exposed to Aβ25–35 underwent oxidative stress as shown by the elevated level of intracellular ROS, lipid peroxidation, and 8-hydroxy-2′-deoxyguanosine (8-OHdG) formation, which were effectively suppressed by SG treatment. Furthermore, SG reversed the activities of catalase and glutathione peroxidase, and restored intracellular GSH levels in Aβ25–35 challenged SK-N-SH cells. In addition, SG inhibited not only Aβ25–35-induced apoptotic features including cleavage of poly(ADP-ribose) polymerase, activation of caspase-3, and activation of caspase-9, but also elevated Bax/Bcl-2 ratio in SK-N-SH cells treated with Aβ25–35. It was also observed that Aβ25–35 stimulated the phosphorylation of mitogen-activated protein kinases (MAPKs), including extracellular protein regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAP kinase. SG inhibited phosphorylation of the JNK, ERK and p38 MAP kinase. These results suggest that SG has a protective effect against Aβ25–35-induced neuronal apoptosis, possibly through scavenging oxidative stress and regulating MAPKs signaling pathways.  相似文献   

3.
目的:通过研究高压氧(HBO)治疗急性CO中毒大鼠海马不同分区神经细胞凋亡情况,探讨HBO治疗急性CO中毒的应用及机理。方法:利用雄性SD大鼠,建立急性CO中毒模型。应用免疫组织化学以及免疫荧光的方法,测定在染毒和CO中毒HBO治疗后1 d、3 d、7 d、14 d和21d Bcl-2、caspase-3、Neu N、BAX和MMP-9的表达水平的变化。结果:海马CA3区神经细胞对急性CO中毒与HBO治疗比CA1和CA2区更加敏感;急性CO中毒后,海马各区神经细胞凋亡程度随1 d、3 d、7 d、14 d和21 d时间延长而加重;BAX、caspase-3和Bcl-2等凋亡相关因子的表达水平与MMP-9的变化趋势一致:在1d开始增多,3d达到最大值,7d开始减少,14 d与21 d与正常组类似;CO中毒大鼠进行HBO治疗后,海马各区MMP-9、BAX、caspase-3和Bcl-2的表达水平明显降低;且HBO治疗7 d后,海马各区这些凋亡相关因子的表达降低最为明显。结论:海马CA3区神经细胞对急性CO中毒及HBO治疗敏感;海马神经细胞凋亡可能与神经细胞表达MMP-9降解神经细胞周围的基质,表达BAX、caspase-3和Bcl-2等凋亡相关因子促进凋亡发生有关;HBO治疗可降低MMP-9以及BAX、caspase-3和Bcl-2等凋亡因子的表达,抑制神经细胞的凋亡;HBO治疗7d对神经细胞凋亡的抑制作用最明显。  相似文献   

4.
Recent studies have implicated apoptosis as one of the most plausible mechanisms of the chemopreventive effects of selenium compounds, and reactive oxygen species (ROS) as important mediators in apoptosis induced by various stimuli. In the present study, we demonstrate that Se-methylselenocysteine (MSC), one of the most effective selenium compounds at chemoprevention, induced apoptosis in HL-60 cells and that ROS plays a crucial role in MSC-induced apoptosis. The uptake of MSC by HL-60 cells occurred quite early, reaching the maximum within 1 h. The dose-dependent decrease in cell viability was observed by MSC treatment and was coincident with increased DNA fragmentation and sub-G(1) population. 50 microM of MSC was able to induce apoptosis in 48% of cell population at a 24 h time point. Moreover, the release of cytochrome c from mitochondria and the activation of caspase-3 and caspase-9 were also observed. The measurement of ROS by dichlorofluorescein fluorescence revealed that dose- and time-dependent increase in ROS was induced by MSC. N-acetylcysteine, glutathione, and deferoxamine blocked cell death, DNA fragmentation, and ROS generation induced by MSC. Moreover, N-acetylcysteine effectively blocked caspase-3 activation and the increase of the sub-G(1) population induced by MSC. These results imply that ROS is a critical mediator of the MSC-induced apoptosis in HL-60 cells.  相似文献   

5.
Death signaling provided by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) can induce death in cancer cells with little cytotoxicity to normal cells; this cell death has been thought to involve caspase-dependent apoptosis. Reactive oxygen species (ROS) are also mediators that induce cell death, but their roles in TRAIL-induced apoptosis have not been elucidated fully. In the current study, we investigated ROS and caspases in human pancreatic cancer cells undergoing two different types of TRAIL-induced cell death, apoptosis and necroptosis. TRAIL treatment increased ROS in two TRAIL-sensitive pancreatic cancer cell lines, MiaPaCa-2 and BxPC-3, but ROS were involved in TRAIL-induced apoptosis only in MiaPaCa-2 cells. Unexpectedly, inhibition of ROS by either N-acetyl-L-cysteine (NAC), a peroxide inhibitor, or Tempol, a superoxide inhibitor, increased the annexin V-/propidium iodide (PI)+ early necrotic population in TRAIL-treated cells. Additionally, both necrostatin-1, an inhibitor of receptor-interacting protein kinase 1 (RIP1), and siRNA-mediated knockdown of RIP3 decreased the annexin V-/PI+ early necrotic population after TRAIL treatment. Furthermore, an increase in early apoptosis was induced in TRAIL-treated cancer cells under inhibition of either caspase-2 or -9. Caspase-2 worked upstream of caspase-9, and no crosstalk was observed between ROS and caspase-2/-9 in TRAIL-treated cells. Together, these results indicate that ROS contribute to TRAIL-induced apoptosis in MiaPaCa-2 cells, and that ROS play an inhibitory role in TRAIL-induced necroptosis of MiaPaCa-2 and BxPC-3 cells, with caspase-2 and -9 playing regulatory roles in this process.  相似文献   

6.
Salicylates and nonsteroidal anti-inflammatory drugs (NSAIDs) induce apoptosis in a variety of cancer cells, including those of colon, prostate, breast, and leukemia. We examined the effects of sodium salicylate (NaSal) on reactive oxygen species (ROS) production and the association of these effects with apoptotic tumor cell death. We demonstrate that NaSal mediates ROS production followed by a decrease in mitochondrial membrane potential (deltapsi(m)), release of cytochrome c, and activation of caspase-9 and caspase-3. However, expression of Bcl-2 or Bcl-x(L) prevents ROS production and subsequent loss of deltapsi(m), thereby inhibiting apoptotic cell death. The presence of ROS scavengers and an inhibitor of NADPH oxidase or expression of a dominant negative form of Rac1 blocks ROS production, deltapsi(m) collapse, and the subsequent activation of caspases. These observations indicate that NaSal mediates ROS production critical in the triggering of apoptotic tumor cell death through a Rac1-NADPH oxidase-dependent pathway. Our data collectively imply that NaSal-induced ROS are key mediators of deltapsi(m) collapse, which leads to the release of cytochrome c followed by caspase activation, culminating in tumor apoptosis.  相似文献   

7.
The heme oxygenase (HO) enzymes catalyze the rate-limiting step of heme breakdown. Prior studies have demonstrated that the vulnerability of neurons and astrocytes to hemoglobin is modified in cells lacking HO-2, the constitutive isoform. The present study assessed the effect of the inducible isoform, HO-1. Wild-type astrocytes treated for 3-5 days with 3-30 microM hemoglobin sustained no loss of viability, as quantified by LDH and MTT assays. The same treatment resulted in death of 25-50% of HO-1 knockout astrocytes, and a 4-fold increase in protein oxidation. Cell injury was attenuated by transfer of the HO-1 gene, but not by bilirubin, the antioxidant heme breakdown product. Conversely, neuronal protein oxidation and cell death after hemoglobin exposure were similar in wild-type and HO-1 knockout cultures. These results suggest that HO-1 induction protects astrocytes from the oxidative toxicity of Hb, but has no effect on neuronal injury.  相似文献   

8.
Mitochondrial glutathione pool is vital in protecting cells against oxidative stress as the majority of the cellular reactive oxygen species are generated in mitochondria. Oxidative stress is implicated as a causative factor in neuronal death in neurodegenerative disorders. We hypothesized that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptotic death of SK-N-SH (human neuroblastoma) cells and investigated the neuroprotective strategies against GSH depletion. SK-N-SH cells were treated with two distinct inhibitors of glutathione metabolism: L-buthionine-(S, R)-sulfoximine (BSO) and ethacrynic acid (EA). EA treatment caused depletion of both the total and mitochondrial glutathione (while BSO had no effect on mitochondrial glutathione), enhanced rotenone-induced ROS production, and reduced the viability of SK-N-SH cells. Glutathione depletion by BSO or EA demonstrated positive features of mitochondria-mediated apoptosis in neuroblastoma cell death. Prevention of apoptosis by Bcl2 overexpression or use of antioxidant ebselen did not confer neuroprotection. Co-culture with U-87 (human glioblastoma) cells protected SK-N-SH cells from the cell death. Our data suggest that depletion of mitochondrial glutathione leads to mitochondrial dysfunction and apoptosis. The study indicates that preventing mitochondrial glutathione depletion could become a novel strategy for the development of neuroprotective therapeutics in neurodegenerative disorders.  相似文献   

9.
Berberine (BBR) is one of the major alkaloids and has been reported to have a variety of pharmacologic effects, including inhibition of cell cycle progression. Here, we investigated the mechanisms of BBR protection of neuronal cells from cell death induced by the Parkinson’s disease-related neurotoxin 6-hydroxydopamine (6-OHDA). Pretreatment of SH-SY5Y cells with BBR significantly reduced 6-OHDAinduced generation of reactive oxygen species (ROS), caspase-3 activation, and subsequent cell death. BBR also upregulated heme oxygenase-1 (HO-1) expression, which conferred protection against 6-OHDA-induced dopaminergic neuron injury and besides, effect of BBR on HO-1 was reversed by siRNA-Nrf2. Furthermore, BBR induced PI3K/Akt and p38 activation, which are involved in the induction of Nrf2 expression and neuroprotection. These results suggest that BBR may be useful as a therapeutic agent for the treatment of dopaminergic neuronal diseases.  相似文献   

10.
Oxidative stress became emerged as a key player in the development and progression of many pathological conditions including virus-induced encephalitis. Heme oxygenase-1 (HO-1) plays a crucial role in defending the body against oxidant-induced injury during inflammatory processes. Therefore, we investigated the induction of HO-1 level in host cells, which may exert a beneficial effect to minimize viral replication in SK-N-SH cells. In this study, we found that enterovirus 71 (EV71) induced the generation of reactive oxygen species (ROS) and activation of NADPH oxidase. EV71-induced ROS generation was mediated through activation of integrin β1, an epidermal growth factor receptor (EGFR), Rac1 and NADPH oxidase which revealed by using selective pharmacological inhibitors or transfection with respective siRNAs. In addition, the reduction of viral load was observed with NADPH oxidase inhibitors (apocynin and diphenyleneiodonium chloride), ROS scavenger (N-acetylcysteine), and transfection with p47(phox) siRNA in Western blot and real-time PCR analyses. Consistently, overexpression of HO-1 attenuated EV71-induced NADPH oxidase/ROS generation and EV71 replication which were abrogated by pretreatment with an HO-1 inhibitor, zinc protoporphyrin IX (ZnPP IX). Moreover, metabolite of HO-1, carbon monoxide (CO), also diminished ROS formation and EV71 replication which were reversed by pretreatment with a CO scavenger (hemoglobin) and a cyclic GMP-dependent protein kinase (PKG) inhibitor (KT5823). These findings suggest that up-regulation of HO-1 exerts as a host cellular defense mechanism against EV71 infection in SK-N-SH cells.  相似文献   

11.
The glutamate-induced excitotoxicity pathway has been reported in several neurodegenerative diseases. Molecules that inhibit the release of glutamate or cause the overactivation of glutamate receptors can minimize neuronal cell death in these diseases. Osmotin, a homolog of mammalian adiponectin, is a plant protein from Nicotiana tabacum that was examined for the first time in the present study to determine its protective effects against glutamate-induced synaptic dysfunction and neurodegeneration in the rat brain at postnatal day 7. The results indicated that glutamate treatment induced excitotoxicity by overactivating glutamate receptors, causing synaptic dysfunction and neuronal apoptosis after 4 h in the cortex and hippocampus of the postnatal brain. In contrast, post-treatment with osmotin significantly reversed glutamate receptor activation, synaptic deficit and neuronal apoptosis by stimulating the JNK/PI3K/Akt intracellular signaling pathway. Moreover, osmotin treatment abrogated glutamate-induced DNA damage and apoptotic cell death and restored the localization and distribution of p53, p-Akt and caspase-3 in the hippocampus of the postnatal brain. Finally, osmotin inhibited glutamate-induced PI3K-dependent ROS production in vitro and reversed the cell viability decrease, cytotoxicity and caspase-3/7 activation induced by glutamate. Taken together, these results suggest that osmotin might be a novel neuroprotective agent in excitotoxic diseases.  相似文献   

12.
Hypoxia-induced cardiomyocyte apoptosis is one of the leading causes of heart failure. Nuclear respiratory factor 1 (NRF-1) was suggested as a protector against cell apoptosis; However, the mechanism is not clear. Therefore, the aim of this study was to elucidate the role of NRF-1 in hypoxia-induced H9C2 cardiomyocyte apoptosis and to explore its effect on regulating the death receptor pathway and mitochondrial pathway. NRF-1 was overexpressed or knocked down in H9C2 cells, which were then exposed to a hypoxia condition for 0, 3, 6, 12, and 24 h. Changes in cell proliferation, cell viability, reactive oxygen species (ROS) generation, and mitochondrial membrane potential (MMP) were investigated. The activities of caspase-3, -8, and -9, apoptosis rate, and the gene and protein expression levels of the death receptor pathway and mitochondrial pathway were analyzed. Under hypoxia exposure, NRF-1 overexpression improved the proliferation and viability of H9C2 cells and decreased ROS generation, MMP loss, caspase activities, and the apoptosis rate. However, the NRF-1 knockdown group showed the opposite results. Additionally, NRF-1 upregulated the expression of antiapoptotic molecules involved in the death receptor and mitochondrial pathways, such as CASP8 and FADD-like apoptosis regulator, B-cell lymphoma 2, B-cell lymphoma-extra-large, and cytochrome C. Conversely, the expression of proapoptotic molecules, such as caspase-8, BH3-interacting domain death agonist, Bcl-2-associated X protein, caspase-9, and caspase-3 was downregulated by NRF-1 overexpression in hypoxia-induced H9C2 cells. These results suggest that NRF-1 functions as an antiapoptotic factor in the death receptor and mitochondrial pathways to mitigate hypoxia-induced apoptosis in H9C2 cardiomyocytes.  相似文献   

13.
This report is designed to explore the molecular mechanism by which dihydroartemisinin (DHA) and ionizing radiation (IR) induce apoptosis in human lung adenocarcinoma A549 cells. DHA treatment induced a concentration- and time-dependent reactive oxygen species (ROS)-mediated cell death with typical apoptotic characteristics such as breakdown of mitochondrial membrane potential (Δψm), caspases activation, DNA fragmentation and phosphatidylserine (PS) externalization. Inhibition of caspase-8 or -9 significantly blocked DHA-induced decrease of cell viability and activation of caspase-3, suggesting the dominant roles of caspase-8 and -9 in DHA-induced apoptosis. Silencing of proapoptotic protein Bax but not Bak significantly inhibited DHA-induced apoptosis in which Bax but not Bak was activated. In contrast to DHA treatment, low-dose (2 or 4 Gy) IR induced a long-playing generation of ROS. Interestingly, IR treatment for 24 h induced G2/M cell cycle arrest that disappeared at 36 h after treatment. More importantly, IR synergistically potentiated DHA-induced generation of ROS, activation of caspase-8 and -3, irreparable G2/M arrest and apoptosis, but did not enhance DHA-induced loss of Δψm and activation of caspase-9. Taken together, our results strongly demonstrate the remarkable synergistic efficacy of combination treatment with DHA and low-dose IR for A549 cells in which IR potentiates DHA-induced apoptosis largely by enhancing the caspase-8-mediated extrinsic pathway.  相似文献   

14.
During hemorrhagic stroke induced by intracerebral hemorrhage (ICH), brain injury occurs from the deleterious actions of hemoglobin byproducts; induction of heme oxygenase-1 (HO-1) also plays a critical role in the neurotoxicity in ICH. Valproic acid (VPA), which is a commonly used drug in the treatment of epilepsy, has been reported to have neuroprotective effects against various neuronal insults including ischemic stroke. We investigated the effect of VPA on HO-1-mediated neurotoxicity in an experimental model of ICH. We investigated the effects of VPA on HO-1 protein in primary cortical neurons: (1) the expression levels of HO-1 mRNA and protein measured by RT-PCR and Western blotting; (2) the cell viability and ROS generation by MTT reduction assay and ROS measurement; (3) the signal pathway regulated by VPA using IP-Western blotting; (4) the effects of VPA on hemin-induced cell death by hemin microinjection and immunohistochemistry in vivo. VPA treatment partially blocked cell death induced by hemin, which is released from hemoglobin during ICH, both in rat primary cortical neurons and rat brain. Treatment of VPA significantly decreased the expression of HO-1 protein both in vitro and in vivo. Hemin treatment induced HO-1 protein expression and this was partially blocked by pretreatment with VPA, which might be mediated by increased ubiquitination and degradation of HO-1 via ERK1/2 and JNK activation in primary cortical neurons. Our results indicate that VPA inhibits hemin toxicity by downregulating HO-1 protein expression, and provide a therapeutic strategy to attenuate intracerebral hemorrhagic injury.  相似文献   

15.
Alzheimer's disease (AD) is one of the most common neurodegenerative disorders in recent world, characterized by increased production of amyloid beta in the nervous system with an ultimate effect of apoptotic neurodegeneration. This study was aimed to investigate the neuroprotective effect of black soybean anthocyanins in a neurodegenerative model of amyloid beta 1–42 (Aβ1–42). Aβ1–42 was treated to HT22 cell lines or adult male rats via intra-cerebro-ventricular injection to induce neurotoxicity in these experimental models. Anthocyanins were treated 0.2 mg/kg in case of cell lines or 4 mg/kg intragastrically to adult rats to protect against Aβ-induced neurodegeneration. Assay for cell viability, mitochondrial membrane potential (Ψm), intracellular free Ca2+ and apoptotic cells (fluoro-jade B and TUNEL) were performed in vitro while western blot analyses were performed to the hippocampal proteins of adult rats. Our results showed that Aβ1–42 treatment reduced cell viability, disturbed the Ψm and Ca2+ homeostasis in and out of the cell, and increased neuronal apoptosis. Treatment with anthocyanins for 12 hr retained the cell viability, normalized Ψm and Ca2+ level, and decreased the neuronal cell death. In accordance, anthocyanins reversed Aβ-induced effect on protein expression of mitochondrial apoptotic pathway (Bax, cytochrome C, caspase-9 and caspase-3) and major Alzheimer's markers i.e. Aβ, APP, P-tau and BACE-1. Overall, our results showed that anthocyanins are potential candidates to treat neurodegenerative disorders like AD.  相似文献   

16.
Hwang YP  Jeong HG 《FEBS letters》2008,582(17):2655-2662
In this study, we investigated the mechanisms of kahweol protection of neuronal cells from cell death induced by the Parkinson's disease-related neurotoxin 6-hydroxydopamine (6-OHDA). Pretreatment of SH-SY5Y cells with kahweol significantly reduced 6-OHDA-induced generation of ROS, caspase-3 activation, and subsequent cell death. Kahweol also up-regulated heme oxygenase-1 (HO-1) expression, which conferred neuroprotection against 6-OHDA-induced oxidative injury. Moreover, kahweol induced PI3K and p38 activation, which are involved in the induction of Nrf2, HO-1 expression, and neuroprotection. These results suggest that regulation of the anti-oxidant enzyme HO-1 via the PI3K and p38/Nrf2 signaling pathways controls the intracellular levels of ROS.  相似文献   

17.
18.
Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin   总被引:5,自引:0,他引:5  
In a prior study, we observed that heme oxygenase-2 gene deletion protected murine cortical neurons from heme-mediated injury. In the course of these studies, constitutive HO-2 expression was observed in astrocyte cultures. The present study tested the hypothesis that astrocytes lacking the HO-2 gene would be less vulnerable to heme. Contrary to this hypothesis, gene deletion resulted in a 50-75% increase in cell death after 6h exposure to 30 or 60microM hemin, as measured by LDH release. A similar effect was observed when cell viability was assessed with the MTT assay. HO-2 gene deletion did not alter cellular expression of HO-1. The increased sensitivity of knockout astrocytes to hemin was reversed by increasing HO-1 expression by adenoviral gene transfer. These results suggest that heme oxygenase protects astrocytes from heme-mediated oxidative injury and highlight the disparate effect of HO in neurons and astrocytes.  相似文献   

19.
Docosahexaenoic acid (DHA), an important w-3 fatty acid exhibits differential behavior in cancer cells of neural origin when compared to that in normal healthy astrocytes. Treatment of C6 glioma and SH-SY5Y cell lines and primary astrocytes, representing the neoplastic cells and normal healthy cells respectively, with 100 µM DHA for 24 h showed significant loss of cell viability in the both the cancer cells as determined by MTT assay, whereas the primary astrocytes cultures were unaffected. Such loss of cell viability was due to apoptosis as confirmed by TUNEL staining and caspase-3 activation in cancer cells. Proteomic approach, employing 2-dimensional gel electrophoresis (2DE), difference gel electrophoresis (DIGE), and MALDI-TOF-TOF analysis identified six proteins which unlike in the astrocytes, were differently altered in the cancer cells upon exposure to DHA, suggesting their putative contribution in causing apoptosis in these cells. Of these, annexin A2, calumenin, pyruvate kinase M2 isoform, 14-3-3ζ were downregulated while aldo keto reductase-1B8 (AKR1B8) and glutathione–S-transferase P1 subunit (GSTP1) showed upregulation by DHA in the cancer cells. siRNA-mediated knockdown of AKR1B8 and GSTP1 inhibit DHA-induced apoptosis confirming their role in apoptotic process. Furthermore, western blot analysis identified upregulation of PPARα and the MAP kinases, JNK and p38 as well as increased ROS production selectively in the cell lines. Results suggest that DHA selectively induces apoptosis in the neural cell lines by regulating the expression of the above proteins to activate multiple apoptotic pathways which in association with excess ROS and activated MAPKs promote cell death.  相似文献   

20.
Neuronal cell death caused by oxidative stress is common in a variety of neural diseases and can be investigated in detail in cultured HT22 neuronal cells, where the amino acid glutamate at high concentrations causes glutathione depletion by inhibition of the glutamate/cystine antiporter system, intracellular accumulation of reactive oxygen species (ROS) and eventually oxidative stress-induced neuronal cell death. Using this paradigm, we have previously reported that resveratrol (3,5,4′-trans-trihydroxystilbene) protects HT22 neuronal cells from glutamate-induced oxidative stress by inducing heme oxygenase (HO)-1 expression. Piceatannol (3,5,4′,3′-trans-trihydroxystilbene), which is a hydroxylated resveratrol analog and one of the resveratrol metabolites, is estimated to exert neuroprotective effect similar to that of resveratrol. The aim of this study, thus, is to determine whether piceatannol, similarly to resveratrol, would protect HT22 neuronal cells from glutamate-induced oxidative stress. Glutamate at high concentrations induced neuronal cell death and ROS formation. Piceatannol reduced glutamate-induced cell death and ROS formation. The observed cytoprotective effect was much higher when HT22 neuronal cells were pretreated with piceatannol for 6 or 12 h prior to glutamate treatment than when pretreated for 0.5 h. Piceatannol also increased HO-1 expression and HO activity via its activation of nuclear factor-E2-related factor 2 (Nrf2). Interestingly, neuroprotective effect of piceatannol was partly (but not completely) abolished by either down-regulation of HO-1 expression or blockage of HO-1 activity. Taken together, our results suggest that piceatannol, similar to resveratrol, is capable of protecting HT22 neuronal cells against glutamate-induced cell death, at least in part, by inducing Nrf2-dependent HO-1 expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号