首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Although competition and predation are considered to be among the most important biotic processes influencing the distribution and abundance of species in space and time, the relative and interactive roles of these processes in communities comprised of cyclically fluctuating populations of small mammals are not well known. We examined these processes in and among populations of field voles, sibling voles, bank voles and common shrews in western Finland, using spatially replicated trapping data collected four times a year during two vole cycles (1987–1990 and 1997–1999). Populations of the four species exhibited relatively strong interspecific temporal synchrony in their multiannual fluctuations. During peak phases, we observed slight deviations from close temporal synchrony: field vole densities peaked at least two months earlier than those of either sibling voles or bank voles, while densities of common shrews peaked even earlier. The growth rates of all four coexisting small mammal species were best explained by their own current densities. The growth rate of bank vole populations was negatively related to increasing densities of field voles in the increase phase of the vole cycle. Apart from this, no negative effects of interspecific density, direct or delayed, were observed among the vole species. The growth rates of common shrew populations were negatively related to increasing total rodent (including water voles and harvest mice) densities in the peak phase of the vole cycle. Sibling voles appeared not to be competitively superior to field voles on a population level, as neither of these Microtus voles increased disproportionately in abundance as total rodent density increased. We suggest that interspecific competition among the vole species may occur, but only briefly, during the autumn of peak years, when the total available amount of rodent habitat becomes markedly reduced following agricultural practices. Our results nonetheless indicate that interspecific competition is not a strong determinant of the structure of communities comprised of species exhibiting cyclic dynamics. We suggest that external factors, namely predation and shortage of food, limit densities of vole populations below levels where interspecific competition occurs. Common shrews, however, appear to suffer from asymmetric space competition with rodents at peak densities of voles; this may be viewed as a synchronizing effect.  相似文献   

2.
In order to gain a better understanding of the consequences of population density cycles and landscape structure for the genetic composition in time and space of vole populations, we analyzed the multiannual genetic structure of the two numerically dominant, sympatric small rodent species of northernmost Fennoscandia. Red voles Myodes rutilus and grey-sided voles M. rufocanus were trapped in the subarctic birch forest along three fjords over five years. Along each fjord, there were four or five altitudinal transects each with five trapping stations. Spring and fall population densities were estimated from mark–recapture data. Grey-sided voles exhibited higher amplitude density fluctuations than red voles. Polymorphism at eight or nine microsatellite loci, determined in 1228 voles, was used to estimate local genetic diversity and differentiation among samples. Genetic diversity was higher in grey-sided voles than in red voles. Spring densities had no effect on local genetic diversity or on differentiation. The amplitude of density fluctuations and the extent of favorable habitat (sub-arctic birch forest) surrounding each site had a positive effect on genetic diversity, and the amplitude of density fluctuations had a negative effect on differentiation in red voles, for which fluctuating populations were compared with more stable populations. The harmonic mean of densities, reflecting average population sizes, had a negative effect on genetic diversity in red voles, but a positive effect in grey-sided voles, for which only fluctuating populations were compared. No other effects were significant for grey-sided voles. A temporal assignment test showed that the spatial structure was more stable in time for populations with more stable population dynamics. Altogether our results suggest that high amplitude density fluctuations lead to more gene flow and higher genetic diversity in vole populations.  相似文献   

3.
Spatial structure in the distribution of pathogen infection can influence both epidemiology and host-parasite coevolutionary processes. It may result from the spatial heterogeneity of intrinsic and extrinsic factors, or from the local population dynamics of hosts and parasites. In this study, we investigated the effects of landscape, host dispersal and demography (population abundance and phase of the fluctuation) on the distribution of a gastro-intestinal nematode Trichuris arvicolae in the fossorial water vole Arvicola terrestris sherman. This rodent exhibits outbreaks occurring regularly in Franche-Comté (France). Thirteen out-of-phase populations were studied in autumn 2003. They exhibited highly different T. arvicolae prevalences. The heterogeneity in prevalences was not explained by population structure, landscape or vole abundance, but by the phase of the vole population fluctuations. Populations at the end of the high density phase showed null prevalence whereas populations in increase or outbreak phases exhibited higher prevalences. Population genetic analyses based on microsatellites revealed significant differentiation between vole populations, and higher dispersal rates of young voles compared with old ones. These younger individuals were also infected more frequently than older voles. This suggested a role of host dispersal in the distribution of T. arvicolae. However, there was a strong discrepancy between the spatial patterns of prevalence and of host genetics or demographic phase. Genetic differentiation and differences in demographic phase exhibited significant spatial autocorrelations whereas prevalence did not. We concluded that the distribution of T. arvicolae is influenced by vole dispersal, although this effect might be overwhelmed by local adaptation processes or environmental conditions.  相似文献   

4.
The transmission of pathogens to susceptible hosts is dependent on the vector population dynamics. In Europe, bank voles (Myodes glareolus) carry Puumala hantavirus, which causes nephropathia epidemica (NE) in humans. Fluctuations in bank vole populations and epidemics in humans are correlated but the main factors influencing this relationship remain unclear. In Belgium, more NE cases are reported in spring than in autumn. There is also a higher incidence of human infections during years of large vole populations. This study aimed to better understand the link between virus prevalence in the vector, vole demography, habitat quality, and human infections. Three rodent populations in different habitats bordering Brussels city, Belgium, were studied for two years. The seroprevalence in voles was influenced first by season (higher in spring), then by vole density, vole weight (a proxy for age), and capture site but not by year or sex. Moreover, voles with large maximal distance between two captures had a high probability for Puumala seropositivity. Additionally, the local vole density showed similar temporal variations as the number of NE cases in Belgium. These results showed that, while season was the main factor influencing vole seroprevalence, it was not sufficient to explain human risks. Indeed, vole density and weight, as well as the local habitat, were essential to understanding the interactions in these host‐pathogen dynamics. This can, in turn, be of importance for assessing the human risks.  相似文献   

5.
Populations of the common vole Microtus arvalis in mid‐western France show cyclic dynamics with a three‐year period. Studies of cyclic vole populations in Fennoscandia have often found inter‐specific synchrony between the voles and other small mammals which share the voles' predators. Although predators are central to the favoured mechanism to explain Fennoscandian vole cycles and the spatial variation of small mammal populations, their role in vole cycles elsewhere, including France, is less clear. Establishing whether alternative prey species in France cycle in parallel with voles as they do in Fennoscandia is thus an important step towards understanding the generality of predators' influence on cyclic vole populations. We applied spatial and temporal autocorrelation and cross‐correlation methods to French populations of M. arvalis and two sympatric non‐cyclic small mammal species, Apodemus sylvaticus and Crocidura russula. Patterns of time‐lagged cross‐correlation between the abundance of M. arvalis and the other two species suggested synchrony in their dynamics beyond that expected of stochastic environmental variation, and indicated a weak three‐year cycle in A. sylvaticus and C. russula that was in phase with that of M. arvalis. We interpret the synchrony between these species as the effect of shared predators and environmental stochasticity. Abundance within species showed weak spatial autocorrelation in June at scales consistent with dispersal being the mechanism responsible, but a more general lack of spatial structure within and between species was consistent with the strong spatial synchrony at regional scales often found in fluctuations of small mammal abundance.  相似文献   

6.
Three mechanisms have been proposed to induce spatial synchrony in fluctuations of small mammal populations: climate‐related environmental effects, predation and dispersal. We conducted a field experiment in western Finland to evaluate the relative roles of these mechanisms in inducing spatial synchrony among cyclic populations of field voles Microtus agrestis. The study was conducted during the increase and peak phases of a vole population cycle on four agricultural field sites situated 1.5–7.0 km apart. Each field contained two 0.5‐ha fenced enclosures and one 1‐ha unfenced control area. One enclosure per field allowed access by small mustelid predators and the other by avian predators; all enclosures prevented the dispersal of voles. The unfenced control areas allowed access by all predators as well as dispersal by voles. Enclosed vole populations were in a treatment‐wise asynchronous phase before the predator access treatments were applied. The growth rates of all enclosed populations were tightly synchronized during the course of the experiment. Conversely, synchrony both among the unfenced populations and between the fenced and unfenced populations was practically non‐existent. During winter, in the increase phase of the cycle, vole populations in all treatments declined to low densities due to a seasonal effect of winter food depletion. During summer, in the peak year of the vole cycle, all populations fluctuated in synchrony. At this time, both small mustelids and birds of prey appeared to be abundant enough to induce synchrony. Dispersal was identified as a potential contributor to synchronization, but the magnitude of its effects could not be reliably discerned. Our results indicate that no single mechanism can account for the observed patterns of spatial synchrony among cyclic northern vole populations. Rather, spatial synchronization is induced by different mechanisms, namely seasonality and predation, acting successively during different seasons and phases of the vole cycle.  相似文献   

7.
Kaitala  Ranta 《Ecology letters》1998,1(3):186-192
We analyse spatial population dynamics showing that periodic or period-like chaotic dynamics produce self-organization structures, such as travelling waves. We suggest that self-organized patterns are associated with spatial synchrony patterns that often depend on geographical distance between subpopulations. The population dynamics also show statistical spatial autocorrelation patterns. We contrast our theoretical simulations with empirical data on annual damages in young sapling stands caused by voles. We conclude, on the basis of the periodicity, synchrony, and spatial autocorrelation patterns, and our simulation results, that vole dynamics represent travelling waves in population dynamics. We suggest that because such synchrony patterns are frequently observed in natural populations, spatial self-organization may be more common in population dynamics than reported in the literature.  相似文献   

8.
Some studies suggest that mild winters decrease overwinter survival of small mammals or coincide with decreased cyclicity in vole numbers, whereas other studies suggest non-significant or positive relationships between mild winter conditions and vole population dynamics. We expect for the number of voles to be higher in the rich and low-lying habitats of the coastal areas than in the less fertile areas inland. We assume that this geographical difference in vole abundances is diminished by mild winters especially in low-lying habitats. We examine these relationships by generalized linear mixed models using prey remains of breeding tawny owls Strix aluco as a proxy for the abundance of voles. The higher number of small voles in the coastal area than in the inland area suggest that vole populations were denser in the coastal area. Vole populations of both areas were affected by winter weather conditions particularly in March, but these relationships differed between areas. The mild ends of winter with frequent fluctuations of the ambient temperature around the freezing point (“frost seesaw”) constrained significantly the coastal vole populations, while deep snow cover, in general after hard winters, was followed by significantly lowered number of voles only in the inland populations. Our results suggest that coastal vole populations are more vulnerable to mild winters than inland ones. We also show that tawny owl prey remains can be used in a meaningful way to study vole population dynamics.  相似文献   

9.
Hušek et al. (Popul Ecol 55:363–375, 2013 ) showed that the numerical response of storks to vole prey was stronger in regions where variability in vole density was higher. This finding is, at first sight, in contradiction with the predictions of life-history theory in stochastic environments. Since the stork productivity-vole density relationship is concave, theory predicts a negative association between the temporal variability in vole density and stork productivity. Here, we illustrate this negative effect of vole variability on stork productivity with a simple mathematical model relating expected stork productivity to vole dynamics. When comparing model simulations to the observed mean density and variability of thirteen Czech and Polish vole populations, we find that the observed positive effect of vole variability on stork numerical response is most likely due to an unusual positive correlation between mean and variability of vole density.  相似文献   

10.
We investigated habitat selection and movement characteristics of male weaselsMustela nivalis Linnaeus, 1766 during the breeding season through radio-telemetry in Kielder Forest (KF) in order to assess how weasel movement is influenced by prey dynamics, mate searching and predation risk, and whether the scale of weasel movement corresponds to the spatial scale of the asynchronous, multi-annual vole population cycles observed in KF. Weasels used habitats with a high proportion of grass cover to a much larger extend than habitats with less grass cover and moved through the latter habitats faster and / or straighter. Habitats with high amounts of grass cover also had the highest field vole abundance, although total rodent abundance did not differ between habitats. The selection of this habitat by weasels might reflect weasels preferring field voles as prey or avoiding habitats with little grass cover and high intraguild predation risk. Five out of 8 male weasels radio-tracked had low day-to-day site fidelity and moved between different clear cuts. Three other males were resident in a single clear cut. This variation may reflect mate searching by male weasels. The observation that most weasels (5 out of 8) roamed over large areas and the scale of their dispersal potential suggests, that if they regulated vole populations, they should have a greater synchronising effect on the spatial scale of vole population dynamics than what is observed in vole populations in KF.  相似文献   

11.
Factors involved in causing cyclic vole populations to decline, and in preventing populations from recovering during the subsequent low density phase have long remained unidentified. The traditional view of self-regulation assumes that an increase in population density is prevented by a change in the quality of individuals within the population itself, but this is still inadequately tested in the field. We compared the population growth of wild field voles ( Microtus agrestis ) from the low phase (conducted in 1998) with that of voles from the increase phase (conducted in 1999) in predator-proof enclosures (each 0.5 ha) in western Finland. Within a few months, enclosed vole populations increased to high density, and the realised per capita rate of change over the breeding season did not differ between the populations from different cycle phases. This implies that the recovery of populations from the low phase was not hindered by an impoverishment in quality of individual voles. Accordingly, we suggest that population intrinsic factors (irrespective of the mechanisms they are based on) are unlikely to play a significant role in the generation of cyclic density fluctuations of voles. Instead, we discovered direct density-dependent regulation in the vole populations. Accurate estimates of population growth and the observed density dependence provide important information for empirically based models on population dynamics of rodents.  相似文献   

12.
The areal extent and configuration of thickets of willow shrubs are currently changing in the Arctic both as an effect of global warming and changed browsing pressure of reindeer. These changes have been predicted to impact the distribution and abundance of wildlife species relying on willow thickets as habitat. We assessed the relation between variables quantifying willow thicket configuration and population dynamics of tundra voles (Microtus oeconomus) in three riparian regions in Finnmark, northern Norway, which were subject to intense browsing by semi-domesticated reindeer. The tundra vole, which exhibits 5-year population cycles in Finnmark, is the dominant small rodent species in riparian landscape elements in southern arctic tundra. In the course of a 4-year trapping study, tundra vole populations went through the cyclic phases of increase, peak and crash, however, with distinct differences between the three regions in the population dynamics. Within regions, the occupancy pattern during the increase phase was positively related to willow thicket configuration (in particular edge density and willow height) only in the region attaining the highest abundance and occupancy. However, local abundance was not clearly related to habitat features within any regions. The lack of consistency in the response of tundra vole populations to willow thicket configuration, as well as the positive relation between the degree of thicket shredding and tundra vole habitat occupancy in one of the regions, indicates that tundra voles will not be much affected by climate or browsing induced changes in the shrubbiness of the tundra in the future.  相似文献   

13.
Parasites can play an important role in the dynamics of host populations, but empirical evidence remains sparse. We investigated the role of bot fly (Cuterebra spp.) parasitism in red-backed voles (Myodes gapperi) by first assessing the impacts of the parasite on the probability of vole survival under stressful conditions as well as on the reproductive activity of females. We then identified the main factors driving both the individual risk of infection and the abundance of bot flies inside red-backed voles. Finally, we evaluated the impacts of bot fly prevalence on the growth rate of vole populations between mid-July and mid-August. Thirty-six populations of red-backed voles were sampled in the boreal forest of Québec, Canada. The presence and the abundance of parasites in voles, two host life history traits (sex and body condition), three indices of habitat complexity (tree basal area, sapling basal area, coarse woody debris volume), and vole abundance were considered in models evaluating the effects of bot flies on host populations. We found that the probability of survival of red-backed voles in live traps decreased with bot fly infection. Both the individual risk of infection and the abundance of bot flies in red-backed voles were driven mainly by vole abundance rather than by the two host life history traits or the three variables of habitat complexity. Parasitism had population consequences: bot fly prevalence was linked to a decrease in short-term growth rate of vole populations over the summer. We found that bot flies have the potential to reduce survival of red-backed voles, an effect that may apply to large portions of populations. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
In territorial microtines intra-specific density dependent processes can limit the maturation of individuals during the summer of their birth. This may have demographic consequences by affecting the number and the age distribution of breeding individuals in the population. Little is known about this process on a community level, though populations of many northern microtine species fluctuate in synchrony and are known to interfere socially with each other. We experimentally studied the influence of the field vole Microtus agrestis on maturation, breeding, space use and survival of weanling bank voles, Clethrionomys glareolus. Two additive competition experiments on bank vole populations were conducted in large outdoor enclosures, half of them additionally housing a field vole population. In a mid-summer experiment low population density and absence of older breeding females minimised intra-specific competition. Survival was not affected by the presence of field voles. Season had a significant effect on both the probability of maturation and breeding of the weanlings. Competition with field voles significantly delayed breeding, and coupled with seasonal effects decreased the probability of breeding. In a late-summer experiment breeding and survival of bank vole weanlings were studied for three weeks as part of a high density breeding bank vole population. Weanlings did not mature at all nor were their space use and survival affected by the presence of field voles. Our results show that competition with other species can also have an impact on breeding of immatures. In an extreme seasonal environment, even a short delay of breeding may decrease survival chances of offspring. Seasonal and competition effects together may thus limit the contribution of year born females to reproductive output of the population. Other studies have shown that adult breeding bank voles suffer lower survival in the presence of field voles, but this study showed no survival effects on the weanlings. Thus it might be beneficial for weanlings to stay immature especially in the end of the breeding season and postpone reproduction to the next breeding season if densities of competing species are high.  相似文献   

15.
The crash phase of vole populations with cyclic dynamics regularly leads to vast areas of uninhabited habitats. Yet although the capacity for cyclic voles to re-colonize such empty space is likely to be large and predicted to have become evolved as a distinct life history trait, the processes of colonization and its effect on the spatio-temporal dynamics have been little studied. Here we report from an experiment with root voles (Microtus oeconomus) specifically targeted at quantifying the process of colonization of empty patches from distant source patches and its resultant effect on local vole deme size variation in a patchy landscape. Three experimental factors: habitat quality, predation risk and inter-patch distance were employed among 24 habitat patches in a 100 × 300-m experimental area. The first-born cohort in the spring efficiently colonized almost all empty patches irrespective of the degree of patch isolation and predation risk, but this was dependent on habitat quality. Just after the initial colonization wave the deme sizes in patches of the same quality were underdispersed relative to Poisson variance, indicating regulated (density-dependent) settlement. Towards the end of the breeding season local demographic processes acted to smooth out the initial post-colonization differences among source and colonization patches, and among patches of initially different quality. However, at this time demographic stochasticity had also given rise to a large (overdispersed) variation in deme sizes that may have contributed to an overshadowing of the effect of other factors. The results of this experiment confirmed our expectation that the space-filling capacity of voles is large. The costs associated with transience appeared to be so low, at least at the spatial scale considered in this experiment, that such costs are not likely to substantially constrain habitat selection and colonization in the increase phase of cyclic patchy populations.  相似文献   

16.
One of the most studied problems in population ecology has been to understand the relative roles of top–down and bottom–up forces in regulating animal populations. This has also been a key issue in studies of vole population dyna mics. Vole populations exhibit a wide variation of dynamics, from seasonal fluctuations to multiannual variations or cyclicity. One of the hypotheses to explain cyclic population dynamics is predation by the specialist predators. A common counterargument against the predation hypothesis has been the lack of conclusive observations of the time delay in the predators’ numerical response. We studied the interaction between voles and their specialist small mustelid predators, the stoat Mustela erminea and the least weasel Mustela n. nivalis, by modelling their interaction to data sets that cover large areas of Finland. Vole abundance was monitored with biannual trappings and their predators with snow‐tracking. Results show a high dependence of the predators on the voles, and this connection is generally tighter in weasels than in stoats. Weasel abundance is affected most strongly by the vole abundance in previous spring, 8.5– 10 months earlier, while in stoats the effect of autumn abundance of voles, 2.5–6 months earlier, was the strongest. These results, together with the observation that the weasels’ effects on voles are stronger after a time lag of 6–9.5 than 2–4.5 months, indicate the existence of a time lag in weasels’ numerical response. A time lag in the predators’ numerical response is a necessary condition for the predators to drive population cycles in its prey, and therefore our results support the specialist predation hypothesis.  相似文献   

17.
Huitu O  Norrdahl K  Korpimäki E 《Oecologia》2003,135(2):209-220
Populations of northern small rodents have previously been observed to fluctuate in spatial synchrony over distances ranging from tens to hundreds of kilometers between sites. It has been suggested that this phenomenon is caused by common environmental perturbations, mobile predators or dispersal movements. However, very little focus has been given to how the physical properties of the geographic area over which synchrony occurs, such as landscape composition and climate, affect spatial population dynamics. This study reports on the spatial and temporal properties of vole population fluctuations in two areas of western Finland: one composed of large interconnected areas of agricultural farmland interspersed by forests and the other highly dominated by forest areas, containing more isolated patches of agricultural land. Furthermore, the more agricultural area exhibits somewhat milder winters with less snow than the forested area. We found the amplitude of vole cycles to be essentially the same in the two areas, suggesting that the relative amount of predation on small rodents by generalist versus specialist predators is similar in both areas. No seasonal differences in the timing of synchronization were observable for Microtus voles, whereas bank vole populations in field habitats appeared to become synchronized primarily during winter. Microtus populations in field habitats exhibited smaller spatial variation and a higher degree of synchrony in the more continuous agricultural landscape than in the forest-dominated landscape. We suggest that this inter-areal difference is due to differences in the degree of inter-patch connectivity, with predators and dispersal acting as the primary synchronizing agents. Bank vole populations in field habitats were more synchronized within the forest-dominated landscape, most likely reflecting the suitability of the inter-patch matrix and the possibility of dispersal. Our study clearly indicates that landscape composition needs to be taken into account when describing the spatial properties of small rodent population dynamics.  相似文献   

18.
Animals can modify their environment by consumptive and physical activities such as herbivory and soil disturbance. Engineering species may create structures that long outlive them and have lasting impacts on local communities of plants and animals. Water voles, Arvicola amphibious, are rodents that visibly impact riparian plant communities by grazing on surface and root vegetation and excavating long-lasting burrow systems. This species has a metapopulation structure and occurs across patches which are subject to frequent extinction and colonization events, causing spatially heterogeneous disturbances across the landscape. Using a chronosequence of water vole occupancy in the Highlands of Scotland, we show that heterogeneity in plant community composition and structure—both within and between colony patches—was related to cumulative measures of past physical impact: burrow density and time since a patch was last occupied by voles, rather than to current indices of vole occupancy. In our sample of 107 patches monitored over 5 years, no fewer than 31 unique patch occupancy histories were found, each with potentially subtle differences in the accumulated influence of water vole herbivory and engineering. As a result, a patchwork of different plant successional stages occurs across the riparian landscape which is both created and maintained by water vole extinction-colonization dynamics. We propose that the water vole-vegetation system can be described as a metacommunity where dispersal by a higher tropic agent at the landscape scale influences the spatial dynamics of plants at the patch level.  相似文献   

19.
Karyological (G-, C-, and NOR-banding) and allozyme analyses were carried out for island and continental populations of the vole Microtus fortis from the Far East of Russia. Variability of the autosome pair 7 was found. The presence of variation in the number of telomere heterochromatin blocks in the populations of Far Eastern voles was confirmed. NOR-staining of the Far Eastern vole chromosomes was carried out, showing stability of the number and the positions of the nucleolus organizer regions. Ten enzyme systems and three non-enzyme proteins (controlled in total by 25 interpretable loci) were examined in the Far Eastern vole from the island and continental populations. All of the loci were shown to be monomorphic, except for one esterase locus, which exhibited polymorphism at the intrapopulation and interpopulation levels. The issue of distribution of the Far Eastern vole subspecies is discussed. It is suggested that M. fortis pelliceus occurs not only in the Russian Far East, but also in Northern Transbaikalia.  相似文献   

20.
The impact of plant-based factors on the population dynamics of mammalian herbivores has been the subject of much debate in ecology, but the role of antiherbivore defences in grasses has received relatively little attention. Silica has been proposed as the primary defence in grasses and is thought to lead to increased abrasiveness of foliage so deterring feeding, as well as reducing foliage digestibility and herbivore performance. However, at present there is little direct experimental evidence to support these ideas. In this study, we tested the effects of manipulating silica levels on the abrasiveness of grasses and on the feeding preference and growth performance of field voles, specialist grass-feeding herbivores. Elevated silica levels did increase the abrasiveness of grasses and deterred feeding by voles. We also demonstrated, for the first time, that silica reduced the growth rates of both juvenile and mature female voles by reducing the nitrogen they could absorb from the foliage. Furthermore, we found that vole feeding leads to increased levels of silica in leaves, suggesting a dynamic feedback between grasses and their herbivores. We propose that silica induction due to vole grazing reduces vole performance and hence could contribute to cyclic dynamics in vole populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号