首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
MOTIVATION: One important application of gene expression microarray data is classification of samples into categories, such as the type of tumor. The use of microarrays allows simultaneous monitoring of thousands of genes expressions per sample. This ability to measure gene expression en masse has resulted in data with the number of variables p(genes) far exceeding the number of samples N. Standard statistical methodologies in classification and prediction do not work well or even at all when N < p. Modification of existing statistical methodologies or development of new methodologies is needed for the analysis of microarray data. RESULTS: We propose a novel analysis procedure for classifying (predicting) human tumor samples based on microarray gene expressions. This procedure involves dimension reduction using Partial Least Squares (PLS) and classification using Logistic Discrimination (LD) and Quadratic Discriminant Analysis (QDA). We compare PLS to the well known dimension reduction method of Principal Components Analysis (PCA). Under many circumstances PLS proves superior; we illustrate a condition when PCA particularly fails to predict well relative to PLS. The proposed methods were applied to five different microarray data sets involving various human tumor samples: (1) normal versus ovarian tumor; (2) Acute Myeloid Leukemia (AML) versus Acute Lymphoblastic Leukemia (ALL); (3) Diffuse Large B-cell Lymphoma (DLBCLL) versus B-cell Chronic Lymphocytic Leukemia (BCLL); (4) normal versus colon tumor; and (5) Non-Small-Cell-Lung-Carcinoma (NSCLC) versus renal samples. Stability of classification results and methods were further assessed by re-randomization studies.  相似文献   

2.
MOTIVATION: Since DNA microarray experiments provide us with huge amount of gene expression data, they should be analyzed with statistical methods to extract the meanings of experimental results. Some dimensionality reduction methods such as Principal Component Analysis (PCA) are used to roughly visualize the distribution of high dimensional gene expression data. However, in the case of binary classification of gene expression data, PCA does not utilize class information when choosing axes. Thus clearly separable data in the original space may not be so in the reduced space used in PCA. RESULTS: For visualization and class prediction of gene expression data, we have developed a new SVM-based method called multidimensional SVMs, that generate multiple orthogonal axes. This method projects high dimensional data into lower dimensional space to exhibit properties of the data clearly and to visualize a distribution of the data roughly. Furthermore, the multiple axes can be used for class prediction. The basic properties of conventional SVMs are retained in our method: solutions of mathematical programming are sparse, and nonlinear classification is implemented implicitly through the use of kernel functions. The application of our method to the experimentally obtained gene expression datasets for patients' samples indicates that our algorithm is efficient and useful for visualization and class prediction. CONTACT: komura@hal.rcast.u-tokyo.ac.jp.  相似文献   

3.
The detection of genes that show similar profiles under different experimental conditions is often an initial step in inferring the biological significance of such genes. Visualization tools are used to identify genes with similar profiles in microarray studies. Given the large number of genes recorded in microarray experiments, gene expression data are generally displayed on a low dimensional plot, based on linear methods. However, microarray data show nonlinearity, due to high-order terms of interaction between genes, so alternative approaches, such as kernel methods, may be more appropriate. We introduce a technique that combines kernel principal component analysis (KPCA) and Biplot to visualize gene expression profiles. Our approach relies on the singular value decomposition of the input matrix and incorporates an additional step that involves KPCA. The main properties of our method are the extraction of nonlinear features and the preservation of the input variables (genes) in the output display. We apply this algorithm to colon tumor, leukemia and lymphoma datasets. Our approach reveals the underlying structure of the gene expression profiles and provides a more intuitive understanding of the gene and sample association.  相似文献   

4.
MOTIVATION: Gene set analysis allows formal testing of subtle but coordinated changes in a group of genes, such as those defined by Gene Ontology (GO) or KEGG Pathway databases. We propose a new method for gene set analysis that is based on principal component analysis (PCA) of genes expression values in the gene set. PCA is an effective method for reducing high dimensionality and capture variations in gene expression values. However, one limitation with PCA is that the latent variable identified by the first PC may be unrelated to outcome. RESULTS: In the proposed supervised PCA (SPCA) model for gene set analysis, the PCs are estimated from a selected subset of genes that are associated with outcome. As outcome information is used in the gene selection step, this method is supervised, thus called the Supervised PCA model. Because of the gene selection step, test statistic in SPCA model can no longer be approximated well using t-distribution. We propose a two-component mixture distribution based on Gumbel exteme value distributions to account for the gene selection step. We show the proposed method compares favorably to currently available gene set analysis methods using simulated and real microarray data. SOFTWARE: The R code for the analysis used in this article are available upon request, we are currently working on implementing the proposed method in an R package.  相似文献   

5.
Jia Z  Xu S 《Genetical research》2005,86(3):193-207
Cluster analyses of gene expression data are usually conducted based on their associations with the phenotype of a particular disease. Many disease traits have a clearly defined binary phenotype (presence or absence), so that genes can be clustered based on the differences of expression levels between the two contrasting phenotypic groups. For example, cluster analysis based on binary phenotype has been successfully used in tumour research. Some complex diseases have phenotypes that vary in a continuous manner and the method developed for a binary trait is not immediately applicable to a continuous trait. However, understanding the role of gene expression in these complex traits is of fundamental importance. Therefore, it is necessary to develop a new statistical method to cluster expressed genes based on their association with a quantitative trait phenotype. We developed a model-based clustering method to classify genes based on their association with a continuous phenotype. We used a linear model to describe the relationship between gene expression and the phenotypic value. The model effects of the linear model (linear regression coefficients) represent the strength of the association. We assumed that the model effects of each gene follow a mixture of several multivariate Gaussian distributions. Parameter estimation and cluster assignment were accomplished via an Expectation-Maximization (EM) algorithm. The method was verified by analysing two simulated datasets, and further demonstrated using real data generated in a microarray experiment for the study of gene expression associated with Alzheimer's disease.  相似文献   

6.
Rapidly growing public gene expression databases contain a wealth of data for building an unprecedentedly detailed picture of human biology and disease. This data comes from many diverse measurement platforms that make integrating it all difficult. Although RNA-sequencing (RNA-seq) is attracting the most attention, at present, the rate of new microarray studies submitted to public databases far exceeds the rate of new RNA-seq studies. There is clearly a need for methods that make it easier to combine data from different technologies. In this paper, we propose a new method for processing RNA-seq data that yields gene expression estimates that are much more similar to corresponding estimates from microarray data, hence greatly improving cross-platform comparability. The method we call PREBS is based on estimating the expression from RNA-seq reads overlapping the microarray probe regions, and processing these estimates with standard microarray summarisation algorithms. Using paired microarray and RNA-seq samples from TCGA LAML data set we show that PREBS expression estimates derived from RNA-seq are more similar to microarray-based expression estimates than those from other RNA-seq processing methods. In an experiment to retrieve paired microarray samples from a database using an RNA-seq query sample, gene signatures defined based on PREBS expression estimates were found to be much more accurate than those from other methods. PREBS also allows new ways of using RNA-seq data, such as expression estimation for microarray probe sets. An implementation of the proposed method is available in the Bioconductor package “prebs.”  相似文献   

7.
8.

Background  

Recently, microarray data analyses using functional pathway information, e.g., gene set enrichment analysis (GSEA) and significance analysis of function and expression (SAFE), have gained recognition as a way to identify biological pathways/processes associated with a phenotypic endpoint. In these analyses, a local statistic is used to assess the association between the expression level of a gene and the value of a phenotypic endpoint. Then these gene-specific local statistics are combined to evaluate association for pre-selected sets of genes. Commonly used local statistics include t-statistics for binary phenotypes and correlation coefficients that assume a linear or monotone relationship between a continuous phenotype and gene expression level. Methods applicable to continuous non-monotone relationships are needed. Furthermore, for multiple experimental categories, methods that combine multiple GSEA/SAFE analyses are needed.  相似文献   

9.
Genome-wide techniques such as microarray analysis, Serial Analysis of Gene Expression (SAGE), Massively Parallel Signature Sequencing (MPSS), linkage analysis and association studies are used extensively in the search for genes that cause diseases, and often identify many hundreds of candidate disease genes. Selection of the most probable of these candidate disease genes for further empirical analysis is a significant challenge. Additionally, identifying the genes that cause complex diseases is problematic due to low penetrance of multiple contributing genes. Here, we describe a novel bioinformatic approach that selects candidate disease genes according to their expression profiles. We use the eVOC anatomical ontology to integrate text-mining of biomedical literature and data-mining of available human gene expression data. To demonstrate that our method is successful and widely applicable, we apply it to a database of 417 candidate genes containing 17 known disease genes. We successfully select the known disease gene for 15 out of 17 diseases and reduce the candidate gene set to 63.3% (±18.8%) of its original size. This approach facilitates direct association between genomic data describing gene expression and information from biomedical texts describing disease phenotype, and successfully prioritizes candidate genes according to their expression in disease-affected tissues.  相似文献   

10.
Traits such as disease resistance are costly to evaluate and slow to improve using current methods. Analysis of gene expression profiles (e.g. DNA microarrays) has potential for predicting such phenotypes and has been used in an analogous way to classify cancer types in human patients. However, doubts have been raised regarding the use of classification methods with microarray data for this purpose. Here we propose a method using random regression with cross validation, which accounts for the distribution of variation in the trait and utilises different subsets of patients or animals to perform a complete validation of predictive ability. Published breast tumour data were used to test the method. Despite the small dataset (n < 100), the new approach resulted in a moderate but significant correlation between the predicted and actual phenotypes (0.32). Binary classification of the predicted phenotypes yielded similar classification error rates to those found by other authors (35%). Unlike other methods, the new method gave a quantitative estimate of phenotype that could be used to rank animals and select those with extreme phenotypic performance. Use of the method in an optimal way using larger sample sizes, and combining DNA microarrays and other testing platforms, is recommended.  相似文献   

11.
12.
Gene set methods aim to assess the overall evidence of association of a set of genes with a phenotype, such as disease or a quantitative trait. Multiple approaches for gene set analysis of expression data have been proposed. They can be divided into two types: competitive and self-contained. Benefits of self-contained methods include that they can be used for genome-wide, candidate gene, or pathway studies, and have been reported to be more powerful than competitive methods. We therefore investigated ten self-contained methods that can be used for continuous, discrete and time-to-event phenotypes. To assess the power and type I error rate for the various previously proposed and novel approaches, an extensive simulation study was completed in which the scenarios varied according to: number of genes in a gene set, number of genes associated with the phenotype, effect sizes, correlation between expression of genes within a gene set, and the sample size. In addition to the simulated data, the various methods were applied to a pharmacogenomic study of the drug gemcitabine. Simulation results demonstrated that overall Fisher''s method and the global model with random effects have the highest power for a wide range of scenarios, while the analysis based on the first principal component and Kolmogorov-Smirnov test tended to have lowest power. The methods investigated here are likely to play an important role in identifying pathways that contribute to complex traits.  相似文献   

13.
Recent developments in microarray technology make it possible to capture the gene expression profiles for thousands of genes at once. With this data researchers are tackling problems ranging from the identification of 'cancer genes' to the formidable task of adding functional annotations to our rapidly growing gene databases. Specific research questions suggest patterns of gene expression that are interesting and informative: for instance, genes with large variance or groups of genes that are highly correlated. Cluster analysis and related techniques are proving to be very useful. However, such exploratory methods alone do not provide the opportunity to engage in statistical inference. Given the high dimensionality (thousands of genes) and small sample sizes (often <30) encountered in these datasets, an honest assessment of sampling variability is crucial and can prevent the over-interpretation of spurious results. We describe a statistical framework that encompasses many of the analytical goals in gene expression analysis; our framework is completely compatible with many of the current approaches and, in fact, can increase their utility. We propose the use of a deterministic rule, applied to the parameters of the gene expression distribution, to select a target subset of genes that are of biological interest. In addition to subset membership, the target subset can include information about relationships between genes, such as clustering. This target subset presents an interesting parameter that we can estimate by applying the rule to the sample statistics of microarray data. The parametric bootstrap, based on a multivariate normal model, is used to estimate the distribution of these estimated subsets and relevant summary measures of this sampling distribution are proposed. We focus on rules that operate on the mean and covariance. Using Bernstein's Inequality, we obtain consistency of the subset estimates, under the assumption that the sample size converges faster to infinity than the logarithm of the number of genes. We also provide a conservative sample size formula guaranteeing that the sample mean and sample covariance matrix are uniformly within a distance epsilon > 0 of the population mean and covariance. The practical performance of the method using a cluster-based subset rule is illustrated with a simulation study. The method is illustrated with an analysis of a publicly available leukemia data set.  相似文献   

14.
Classification methods used in microarray studies for gene expression are diverse in the way they deal with the underlying complexity of the data, as well as in the technique used to build the classification model. The MAQC II study on cancer classification problems has found that performance was affected by factors such as the classification algorithm, cross validation method, number of genes, and gene selection method. In this paper, we study the hypothesis that the disease under study significantly determines which method is optimal, and that additionally sample size, class imbalance, type of medical question (diagnostic, prognostic or treatment response), and microarray platform are potentially influential. A systematic literature review was used to extract the information from 48 published articles on non-cancer microarray classification studies. The impact of the various factors on the reported classification accuracy was analyzed through random-intercept logistic regression. The type of medical question and method of cross validation dominated the explained variation in accuracy among studies, followed by disease category and microarray platform. In total, 42% of the between study variation was explained by all the study specific and problem specific factors that we studied together.  相似文献   

15.
There are many sources of systematic variation in cDNA microarray experiments which affect the measured gene expression levels (e.g. differences in labeling efficiency between the two fluorescent dyes). The term normalization refers to the process of removing such variation. A constant adjustment is often used to force the distribution of the intensity log ratios to have a median of zero for each slide. However, such global normalization approaches are not adequate in situations where dye biases can depend on spot overall intensity and/or spatial location within the array. This article proposes normalization methods that are based on robust local regression and account for intensity and spatial dependence in dye biases for different types of cDNA microarray experiments. The selection of appropriate controls for normalization is discussed and a novel set of controls (microarray sample pool, MSP) is introduced to aid in intensity-dependent normalization. Lastly, to allow for comparisons of expression levels across slides, a robust method based on maximum likelihood estimation is proposed to adjust for scale differences among slides.  相似文献   

16.
Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of data from experimental microarrays and simulation studies, the proposed model-based approach was shown to provide a more powerful result than the naïve approach and the hierarchical approach. Since our approach is model-based, it is very flexible and can easily handle different types of covariates.  相似文献   

17.
Pathway analysis of microarray data evaluates gene expression profiles of a priori defined biological pathways in association with a phenotype of interest. We propose a unified pathway-analysis method that can be used for diverse phenotypes including binary, multiclass, continuous, count, rate, and censored survival phenotypes. The proposed method also allows covariate adjustments and correlation in the phenotype variable that is encountered in longitudinal, cluster-sampled, and paired designs. These are accomplished by combining the regression-based test statistic for each individual gene in a pathway of interest into a pathway-level test statistic. Applications of the proposed method are illustrated with two real pathway-analysis examples: one evaluating relapse-associated gene expression involving a matched-pair binary phenotype in children with acute lymphoblastic leukemia; and the other investigating gene expression in breast cancer tissues in relation to patients' survival (a censored survival phenotype). Implementations for various phenotypes are available in R. Additionally, an Excel Add-in for a user-friendly interface is currently being developed.  相似文献   

18.
19.
Techniques for analyzing genome-wide expression profiles, such as the microarray technique and next-generation sequencers, have been developed. While these techniques can provide a lot of information about gene expression, selection of genes of interest is complicated because of excessive gene expression data. Thus, many researchers use statistical methods or fold change as screening tools for finding gene sets whose expression is altered between groups, which may result in the loss of important information. In the present study, we aimed to establish a combined method for selecting genes of interest with a small magnitude of alteration in gene expression by coupling with proteome analysis. We used hypercholesterolemic rats to examine the effects of a crude herbal drug on gene expression and proteome profiles. We could not select genes of interest by using standard methods. However, by coupling with proteome analysis, we found several effects of the crude herbal drug on gene expression. Our results suggest that this method would be useful in selecting gene sets with expressions that do not show a large magnitude of alteration.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号