首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H H el-Hajj  H Zhang    B Weiss 《Journal of bacteriology》1988,170(3):1069-1075
A chloramphenicol resistance gene was cloned into a plasmid-borne dut gene, producing an insertion mutation that was then transferred to the chromosome by allelic exchange. The mutation could not be acquired by haploid strains through substitutive recombination, even when two flanking markers were simultaneously transduced. The insertion was easily transferred, via generalized transduction, into the chromosomal dut region of strains harboring a lambda dut + transducing phage; however, the resulting dut mutant/lambda dut + merodiploid could not then be cured of the prophage. This apparent lethality of the mutation could not be explained by effects on adjacent genes; the dfp gene retained complementing activity, and a ttk insertion mutant was viable. The dut gene product, deoxyuridine triphosphatase, is known to reduce incorporation of uracil into DNA and to be required in the de novo synthesis of thymidylate. Therefore, an attempt was made to determine whether the dut insertion would be tolerated in strains carrying the following compensatory mutations: dcd (dCTP deaminase) and cdd (deoxycytidine deaminase), which should reduce dUTP formation; ung (uracil-DNA glycosylase), which should reduce fatally excessive excision repair; deoA (thymidine phosphorylase), which should enhance the utilization of exogenous thymidine; and sulA, which should reduce the lethal side effects of SOS regulon induction. These mutations, either alone or in various combinations, did not permit the survival of a haploid dut insertion mutant, suggesting that the dut gene product might have an essential function apart from its deoxyuridine triphosphatase activity.  相似文献   

2.
Mutants of Escherichia coli K-12 deficient in both exonuclease III (the product of the xth gene) and deoxyuridine triphosphatase (the dut gene product) are inviable at high temperatures and undergo filamentation when grown at such temperatures. In dut mutants, the dUTP pool is known to be greatly enhanced, resulting in an increased substitution of uracil for thymine in DNA during replication. The subsequent removal of uracil from the DNA by uracil-DNA glycosylase produces apyrimidinic sites, at which exonuclease III is known to have an endonucleolytic activity. The lethality of dut xth mutants, therefore, indicates that exonuclease III is important for this base-excision pathway and suggests that unrepaired apyrimidinic sites are lethal. Two confirmatory findings were as follows. (i) dut xth mutants were viable if they also had a mutation in the uracil-DNA glycosylase (ung) gene; such mutants should not remove uracil from DNA and should not, therefore, generate apyrimidinic sites. (ii) In the majority of the temperature-resistant revertants isolated, viability had been restored by a mutation in the dCTP deaminase (dcd) gene; such mutations should decrease dUTP production and hence uracil misincorporation. The results indicate that, in dut mutants, exonuclease III is essential for the repair of uracil-containing DNA and of apyrimidinic sites.  相似文献   

3.
B Weiss  L Wang 《Journal of bacteriology》1994,176(8):2194-2199
dcd (dCTP deaminase) mutants of Escherichia coli were reported not to require thymidine for growth even though most of the thymidylate that is synthesized de novo arises from cytosine nucleotides through a pathway involving dCTP deaminase. We found, however, that the fresh introduction of dcd mutations into many strains of E. coli produced a requirement for thymidine for optimum aerobic growth, but the mutants readily reverted to prototrophy via mutations in other genes. One such mutation was in deoA, the gene for deoxyuridine phosphorylase. However, a dcd deo mutant became thymidine dependent once again if a cdd mutation (affecting deoxycytidine deaminase) were introduced. The results indicate that dcd mutants utilize an alternative pathway of TMP synthesis in which deoxycytidine and deoxyuridine are intermediates. A cdd mutation blocks the pathway by preventing the conversion of deoxycytidine to deoxyuridine, whereas a deoA mutation enhances it by sparing deoxyuridine from catabolism. The deoxycytidine must arise from dCTP or dCDP via unknown steps. It is not known to what extent this pathway is utilized in wild-type cells, which, unlike the dcd mutants, do not accumulate dCTP.  相似文献   

4.
Recent findings suggest that DNA nicks stimulate homologous recombination by being converted into double-strand breaks, which are mended by RecA-catalysed recombinational repair and are lethal if not repaired. Hyper-rec mutants, in which DNA nicks become detectable, are synthetic-lethal with recA inactivation, substantiating the idea. Escherichia coli dut mutants are the only known hyper-recs in which presumed nicks in DNA do not cause inviability with recA, suggesting that nicks stimulate homologous recombination directly. Here, we show that dut recA mutants are synthetic-lethal; specifically, dut mutants depend on the RecBC-RuvABC recombinational repair pathway that mends double-strand DNA breaks. Although induced for SOS, dut mutants are not rescued by full SOS induction if RecA is not available, suggesting that recombinational rather than regulatory functions of RecA are needed for their viability. We also detected chromosomal fragmentation in dut rec mutants, indicating double-strand DNA breaks. Both the synthetic lethality and chromosomal fragmentation of dut rec mutants are suppressed by preventing uracil excision via inactivation of uracil DNA-glycosylase or by preventing dUTP production via inactivation of dCTP deaminase. We suggest that nicks become substrates for recombinational repair after being converted into double-strand DNA breaks.  相似文献   

5.
Cloning of the dut (deoxyuridine triphosphatase) gene of Escherichia coli   总被引:9,自引:0,他引:9  
A F Taylor  P G Siliciano  B Weiss 《Gene》1980,9(3-4):321-336
Through the molecular cloning of DNA, cells were obtained that could produce a 300-fold increased level of deoxyuridine triphosphatase (dUTPase). First, lambda pyrE-dut phages were constructed from restriction endonuclease fragments. They contained a segment of Escherichia coli DNA that spanned the structural genes for dUTPase (dut) and orotidylate pyrophosphorylase (pyrE). The initial isolates demonstrated poor enzyme production and impaired growth. Improved enzyme yields were then obtained from large-plaque derivatives and from mutants with partial deletions of the cloned DNA. The deletion mutants were isolated after the induction of a recombinant prophage whose DNA was too large to be packaged. Finally, a 3.3-kb segment of DNA, containing the dut gene, was transferred to plasmid vectors. The recombinants and their levels of dUTPase overproduction (relative to that of wild type cells) were as follows: a thermoinducible lambda pyrE-dut phage, 45-fold (10-fold for orotidylate pyrophosphorylase); a dut-ColE1 type plasmid, 15-fold; and a thermoinducible dut-lambda-ColE1 chimera, 14-fold before induction and 300-fold after induction.  相似文献   

6.
The nucleotide sequence of the dUTPase structural gene, dut, of Escherichia coli has been determined. The DNA sequence predicts a polypeptide chain of 150 amino acid residues (mol. wt. 16 006) corresponding in size and composition to the purified dUTPase subunit. In a tentative promoter region preceding the dut gene, the -35 and -10 regions are separated by a SacI (SstI) site. Cloning of the dut gene utilization this SacI site was previously shown to reduce dut expression dramatically. The nucleotide sequence also contains a 210-codon open reading frame 106 bp downstream of dut and co-directional with dut. Previous protein synthesis experiments using dut plasmids allocated the gene of a polypeptide of mol. wt. 23 500 to this DNA region. The open reading frame thus may correspond to a protein of unknown function co-transcribed with the dut gene.  相似文献   

7.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.  相似文献   

8.
Escherichia coli mutants deficient in deoxyuridine triphosphatase.   总被引:15,自引:12,他引:3       下载免费PDF全文
Mutants deficient in deoxyuridine triphosphatase (dUTPase) were identified by enzyme assays of randomly chosen heavily mutagenized clones. Five mutants of independent origin were obtained. One mutant produced a thermolabile enzyme, and it was presumed to have a mutation in the structural gene for dUTPase, designated dut. The most deficient mutant had the following associated phenotypes: less than 1% of parental dUTPase activity, prolonged generation time, increased sensitivity to 5'-fluorodeoxyuridine, increased rate of spontaneous mutation, increased rate of recombination (hyper-Rec), an inhibition of growth in the presence of 2 mM uracil, and a decreased ability to support the growth of phage P1 (but not T4 or lambda). This mutation also appeared to be incompatible with pyrE mutations. A revertant selected by its faster growth had regained dUTPase activity and lost its hyper-Rec phenotype. Many of the properties of the dut mutants are compatible with their presumed increased incorporation of uracil into DNA and the subsequent transient breakage of the DNA by excision repair.  相似文献   

9.
By the sequential action of dCTP deaminase and dUTPase, dCTP is converted to dUMP, the precursor of thymidine nucleotides. In addition, dUTPase has an essential role as a safeguard against uracil incorporation in DNA. The putative dCTP deaminase (MJ0430) and dUTPase (MJ1102) from the hyperthermophilic archaeon Methanocaldococcus jannaschii were overproduced in Escherichia coli. Unexpectedly, we found the MJ0430 protein capable of both reactions, i.e. hydrolytic deamination of the cytosine ring and hydrolytic cleavage of the phosphoanhydride bond between the alpha- and beta-phosphates. When the reaction was followed by thin layer chromatography using [3H]dCTP as substrate, dUMP and not dUTP was identified as a reaction product. In the presence of unlabeled dUTP, which acted as an inhibitor, no label was transferred from [3H]dCTP to the pool of dUTP. This finding strongly suggests that the two consecutive steps of the reaction are tightly coupled within the enzyme. The hitherto unknown bifunctionality of the MJ0430 protein appears beneficial for the cells because the toxic intermediate dUTP is never released. The MJ0430 protein also catalyzed the hydrolysis of dUTP to dUMP but with a low affinity for the substrate (Km >100 micro m). According to limited proteolysis, the C-terminal residues constitute a flexible region. The other protein investigated, MJ1102, is a specific dUTPase with a Km for dUTP (0.4 micro m) comparable in magnitude with that found for previously characterized dUTPases. Its physiological function is probably to degrade dUTP derived from other reactions in nucleotide metabolism.  相似文献   

10.
Disruption of the dCMP deaminase (DCD1) gene, or provision of excess dTMP to a nucleotide-permeable strain, produced dramatic increases in the dCTP or dTTP pools, respectively, in growing cells of the yeast Saccharomyces cerevisiae. The mutation rate of the SUP4-o gene was enhanced 2-fold by the dCTP imbalance and 104-fold by the dTTP imbalance. 407 SUP4-o mutations that arose under these conditions, and 334 spontaneous mutations recovered in an isogenic strain having balanced DNA precursor levels, were characterized by DNA sequencing and the resulting mutational spectra were compared. Significantly more (greater than 98%) of the changes resulting from nucleotide pool imbalance were single base-pair events, the majority of which could have been due to misinsertion of the nucleotides present in excess. Unexpectedly, expanding the dCTP pool did not increase the fraction of A.T----G.C transitions relative to the spontaneous value nor did enlarging the dTTP pool enhance the proportion of G.C----A.T transitions. Instead, the elevated levels of dCTP or dTTP were associated primarily with increases in the fractions of G.C----C.G or A.T----T.A. transversions, respectively. Furthermore, T----C, and possibly A----C, events occurred preferentially in the dcd1 strain at sites where dCTP was to be inserted next. C----T and A----T events were induced most often by dTMP treatment at sites where the next correct nucleotide was dTTP or dGTP (dGTP levels were also elevated by dTMP treatment). Finally, misinsertion of dCTP or dTTP did not exhibit a strand bias. Collectively, our data suggest that increased levels of dCTP and dTTP induced mutations in yeast via nucleotide misinsertion and inhibition of proofreading but indicate that other factors must also be involved. We consider several possibilities, including potential roles for the regulation and specificity of proofreading and for mismatch correction.  相似文献   

11.
Ribonucleotide reductase (RNR) and deoxycytidylate deaminase (dCMP deaminase) are pivotal allosteric enzymes required to maintain adequate pools of deoxyribonucleoside triphosphates (dNTPs) for DNA synthesis and repair. Whereas RNR inhibition slows DNA replication and activates checkpoint responses, the effect of dCMP deaminase deficiency is largely unknown. Here, we report that deleting the Schizosaccharomyces pombe dcd1+ dCMP deaminase gene (SPBC2G2.13c) increases dCTP ∼30-fold and decreases dTTP ∼4-fold. In contrast to the robust growth of a Saccharomyces cerevisiae dcd1Δ mutant, fission yeast dcd1Δ cells delay cell cycle progression in early S phase and are sensitive to multiple DNA-damaging agents, indicating impaired DNA replication and repair. DNA content profiling of dcd1Δ cells differs from an RNR-deficient mutant. Dcd1 deficiency activates genome integrity checkpoints enforced by Rad3 (ATR), Cds1 (Chk2), and Chk1 and creates critical requirements for proteins involved in recovery from replication fork collapse, including the γH2AX-binding protein Brc1 and Mus81 Holliday junction resolvase. These effects correlate with increased nuclear foci of the single-stranded DNA binding protein RPA and the homologous recombination repair protein Rad52. Moreover, Brc1 suppresses spontaneous mutagenesis in dcd1Δ cells. We propose that replication forks stall and collapse in dcd1Δ cells, burdening DNA damage and checkpoint responses to maintain genome integrity.  相似文献   

12.
Restriction endonuclease mapping of previously constructed dut plasmids has been carried out using the enzymes PvuI, PvuII and SacI. Various dut plasmids were also tested in the "maxicell" protein-synthesizing system. They all show two protein bands in common, one of Mr 16000 in agreement with the size previously reported for the purified dUTPase subunit (Shlomai and Kornberg, 1978). With the information obtained the structural gene for dUTPase can be assigned to a 950-bp SacI-PvuII fragment of the E. coli genome. Studies, described in the preceding paper, on the overproduction of dUTPase by bacterial strains carrying different dut plasmids strongly suggest that the dut gene is transcribed in the direction from the SacI site towards the PvuII site and that the SacI site is located within the dut control region. The second protein band observed in the "maxicell" experiments has an Mr of 23500. Its identity is unknown but it may represent a precursor of dUTPase or the product of a separate gene located between dut and pyrE.  相似文献   

13.
dUTPase is a ubiquitous and essential enzyme responsible for regulating cellular levels of dUTP. The dut gene exists as single, tandemly duplicated, and tandemly triplicated copies. Crystallized single-copy dUTPases have been shown to assemble as homotrimers. dUTPase is encoded as an auxiliary gene in a number of virus genomes. The origin of viral dut genes has remained unresolved since their initial discovery. A comprehensive analysis of dUTPase amino acid sequence relationships was performed to explore the evolutionary dynamics of dut in viruses and their hosts. Our data set, comprised of 24 host and 51 viral sequences, includes representative sequences from available eukaryotes, archaea, eubacteria cells, and viruses, including herpesviruses. These amino acid sequences were aligned by using a hidden Markov model approach developed to align divergent data. Known secondary structures from single-copy crystals were mapped onto the aligned duplicate and triplicate sequences. We show how duplicated dUTPases might fold into a monomer, and we hypothesize that triplicated dUTPases also assemble as monomers. Phylogenetic analysis revealed at least five viral dUTPase sequence lineages in well-supported monophyletic clusters with eukaryotic, eubacterial, and archaeal hosts. We have identified all five as strong examples of horizontal transfer as well as additional potential transfer of dut genes among eubacteria, between eubacteria and viruses, and between retroviruses. The evidence for horizontal transfers is particularly interesting since eukaryotic dut genes have introns, while DNA virus dut genes do not. This implies that an intermediary retroid agent facilitated the horizontal transfer process between host mRNA and DNA viruses.  相似文献   

14.
dCMP deaminase from Bacillus subtilis has been purified 700-fold. In addition to the substrate, dCMP, the enzyme requires dCTP, Zn2+, and 2-mercaptoethanol, Mg2+ cannot substitute for Zn2+. The dCMP saturation curve is hyperbolic in the presence of saturating concentrations of dCTP and Zn2+. The dCTP saturation curve is sigmoidal, the sigmoidicity being dependent on the Zn2+ and dCMP concentrations. The molecular weight as determined by gel filtration is 170,000 both in the presence and in the absence of dCTP and Zn2+. In the absence of thiols, the enzyme is highly unstable. At 0 degrees, the half-life of the enzyme activity is 30 min. Addition of Zn2+ and dCTP protects against this inactivation. In the presence of a thiol, dCTP and Zn2+ protect the enzyme against heat inactivation at 50 degrees. A mutant lacking dCMP deaminase (dcd) was isolated. Labeling of the pyrimidine nucleotide pools reveals that in the parent strain, 45% of the dTTP pool is derived via dCMP deamination, the residual 55% being derived via reduction of a uridine nucleotide. Since the dcd mutant grows with the same doubling time as the parent strain, we conclude that uridine nucleotide reduction alone is capable of supplying sufficient dUMP for normalthymidine nucleotide synthesis.  相似文献   

15.
Bacteriophage T5 induces a deoxyuridine 5'-triphosphate nucleotidohydrolase (dUTPase) activity during infection of Escherichia coli. A T5 mutant (T5 dut) unable to induce this dUTPase activity has been isolated. Although this mutant is viable, the E. coli dUTPase activity is not sufficiently active to exclude uracil from the progeny DNA and about 3% of the thymine is replaced by uracil. When the mutant is grown in an E. coli dut host about 12% of the thymine in the progeny DNA is replaced by uracil. T5 phage containing 12% uracil can replicate in uracil-DNA glycosylase-deficient (ung) hosts with high efficiency, but fail to replicate in ung+ hosts. The amount of thymine replaced by uracil in the progeny produced in dut hosts is nearly independent of the ung genotype, indicating that the host uracil-DNA glycosylase-dependent repair pathway is not operating efficiently to remove uracil from T5 progeny DNA.  相似文献   

16.
The trimeric dCTP deaminase produces dUTP that is hydrolysed to dUMP by the structurally closely related dUTPase. This pathway provides 70-80% of the total dUMP as a precursor for dTTP. Accordingly, dCTP deaminase is regulated by dTTP, which increases the substrate concentration for half-maximal activity and the cooperativity of dCTP saturation. Likewise, increasing concentrations of dCTP increase the cooperativity of dTTP inhibition. Previous structural studies showed that the complexes of inactive mutant protein, E138A, with dUTP or dCTP bound, and wild-type enzyme with dUTP bound were all highly similar and characterized by having an ordered C-terminal. When comparing with a new structure in which dTTP is bound to the active site of E138A, the region between Val120 and His125 was found to be in a new conformation. This and the previous conformation were mutually exclusive within the trimer. Also, the dCTP complex of the inactive H121A was found to have residues 120-125 in this new conformation, indicating that it renders the enzyme inactive. The C-terminal fold was found to be disordered for both new complexes. We suggest that the cooperative kinetics are imposed by a dTTP-dependent lag of product formation observed in presteady-state kinetics. This lag may be derived from a slow equilibration between an inactive and an active conformation of dCTP deaminase represented by the dTTP complex and the dUTP/dCTP complex, respectively. The dCTP deaminase then resembles a simple concerted system subjected to effector binding, but without the use of an allosteric site.  相似文献   

17.
Mutants of Escherichia coli that are severely defective in the enzyme dUTPase (dut) accumulate short (4 to 5 S) Okazaki fragments following brief pulses with [3H]thymidine. The transient appearance of DNA fragments in these mutants is plausibly explained by the misincorporation of uracil in DNA as a result of an increase in available dUTP, followed by its rapid excision and repair. The evidence in support of this interpretation is the following: (1) accumulation of short DNA fragments can be partially suppressed by a mutation in dCTP deaminase, presumably by decreasing the intracellular level of dUTP relative to dTTP; (2) accumulation of the short DNA fragments can be almost completely suppressed by a mutation in uracil N-glycosidase, probably by preventing the introduction of nicks at the sites of uracil incorporation; (3) introduction of DNA polymerase I or DNA ligase mutations into dUTPase-defective strains results in the persistence of the 4 to 5 S fragments and rapid cessation of DNA synthesis. Uracil N-glycosidase, DNA polymerase I and DNA ligase must therefore be involved in the excision repair of uracil-containing DNA.  相似文献   

18.
Two mutant dCTP deaminase-dUTPases from Methanocaldococcus jannaschii were crystallised and the crystal structures were solved: E145A in complex with the substrate analogue α,β-imido-dUTP and E145Q in complex with diphosphate. Both mutant enzymes were defect in the deaminase reaction and had reduced dUTPase activity. In the structure of E145Q in complex with diphosphate, the diphosphate occupied the same position as the β- and γ-phosphoryls of the nucleotide analogue in the E145A complex. The C-terminal region that is unresolved in the apo-form of the enzyme was ordered in both complexes and closed over the active site by interacting with the phosphate backbone of the nucleotide or with the diphosphate. A magnesium ion was readily observed to complex with all three phosphoryls in the nucleotide complex or with the diphosphate. A water molecule that is likely to be involved in the nucleotidyl diphosphorylase reaction was observed in the E145A:α,β-imido-dUTP complex and positioned similarly as in the monofunctional trimeric dUTPase. A comparison of the active sites of the bifunctional enzyme and the monofunctional family members, dCTP deaminase and dUTPase, suggests similar reaction mechanisms. The similar side chain conformations in the deaminase site between the nucleotide and diphosphate complexes indicated a concerted re-arrangement, or induced fit, of the whole active site promoted by enzyme and nucleotide phosphoryl interactions. A pre-steady state kinetic analysis of the bifunctional reaction and the dUTPase half-reaction supported a conformational change upon substrate binding in both reactions and a concerted catalytic step for the bifunctional reaction.  相似文献   

19.
dCTP deaminase (EC 3.5.4.13) catalyzes the deamination of dCTP forming dUTP that via dUTPase is the main pathway providing substrate for thymidylate synthase in Escherichia coli and Salmonella typhimurium. dCTP deaminase is unique among nucleoside and nucleotide deaminases as it functions without aid from a catalytic metal ion that facilitates preparation of a water molecule for nucleophilic attack on the substrate. Two active site amino acid residues, Arg(115) and Glu(138), were identified by mutational analysis as important for activity in E. coli dCTP deaminase. None of the mutant enzymes R115A, E138A, or E138Q had any detectable activity but circular dichroism spectra for all mutant enzymes were similar to wild type suggesting that the overall structure was not changed. The crystal structures of wild-type E. coli dCTP deaminase and the E138A mutant enzyme have been determined in complex with dUTP and Mg(2+), and the mutant enzyme also with the substrate dCTP and Mg(2+). The enzyme is a third member of the family of the structurally related trimeric dUTPases and the bifunctional dCTP deaminase-dUTPase from Methanocaldococcus jannaschii. However, the C-terminal fold is completely different from dUTPases resulting in an active site built from residues from two of the trimer subunits, and not from three subunits as in dUTPases. The nucleotides are well defined as well as Mg(2+) that is tridentately coordinated to the nucleotide phosphate chains. We suggest a catalytic mechanism for the dCTP deaminase and identify structural differences to dUTPases that prevent hydrolysis of the dCTP triphosphate.  相似文献   

20.
Studies of trpA reversions revealed that G:C leads to A:T transitions were stimulated about 30-fold in E. coli ung mutants, whereas other base substitutions were not affected. A dUTPase (dut) mutation, which increases the incorporation of uracil into DNA in place of thymine, had no significant effect on the rate of G:C leads to A:T transitions. The results support the proposal that the glycosylase functions to reduce the mutation rate in wild-type cells by acting in the repair of DNA cytosine residues that have undergone spontaneous deamination to uracil. Further support was provided by the finding that when lambda bacteriophages were treated with bisulfite, an agent known to produce cytosine deamination, the frequency of clear-plaque mutants was increased an additional 20-fold by growth on an ung host. Bisulfite-induced mutations of the cellular chromosome, however, were about equal in ung+ and ung strains; it was found that during the treatment of ung+ cells with bisulfite, the glycosylase was inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号