首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 851 毫秒
1.
K R Hill  M Hajjou  J Y Hu    R Raju 《Journal of virology》1997,71(4):2693-2704
Sindbis virus (SIN), a mosquito-transmitted animal RNA virus, carries a 11.7-kb positive-sense RNA genome which is capped and polyadenylated. We recently reported that the SIN RNA-dependent RNA polymerase (RdRp) could initiate negative-strand RNA synthesis from a 0.3-kb 3'-coterminal SIN RNA fragment and undergo template switching in vivo (M. Hajjou, K. R. Hill, S. V. Subramaniam, J. Y. Hu, and R. Raju, J. Virol. 70:5153-5164, 1996). To identify and characterize the viral and nonviral sequences which regulate SIN RNA synthesis and recombination, a series of SIN RNAs carrying altered 3' ends were tested for the ability to produce infectious virus or to support recombination in BHK cells. The major findings of this report are as follows: (i) the 3'-terminal 20-nucleotides (nt) sequence along with the abutting poly(A) tail of the SIN genome fully supports negative-strand synthesis, genome replication, and template switching; (ii) a full-length SIN RNA carrying the 3'-terminal 24 nt but lacking the poly(A) tail is noninfectious; (iii) SIN RNAs which carry 3' 64 nt or more without the poly(A) tail are infectious and regain their poly(A) tail in vivo; (iv) donor templates lacking the poly(A) tail do not support template switching; (v) full-length SIN RNAs lacking the poly(A) tail but carrying 3' nonviral extensions, although debilitated to begin with, evolve into rapidly growing poly(A)-carrying mutants; (vi) poly(A) or poly(U) motifs positioned internally within the acceptor templates, in the absence of other promoter elements within the vicinity, do not induce the jumping polymerase to reinitiate at these sites; and (vii) the junction site selection on donor templates occurs independently of the sequences around the acceptor sites. In addition to furthering our understanding of RNA recombination, these studies give interesting clues as to how the alphavirus polymerase interacts with its 3' promoter elements of genomic RNA and nonreplicative RNAs. This is the first report that an in vitro-synthesized alphavirus RNA lacking a poly(A) tail can initiate infection and produce 3' polyadenylated viral genome in vivo.  相似文献   

2.
Poliovirus replicase- and host factor-catalyzed copying of 3'-terminal polyadenylic acid [poly(A)] of poliovirion RNA was studied. Host factor-stimulated synthesis of polyuridylic acid [poly(U)] by the replicase required ATP in addition to UTP. ATP was not required for the oligouridylic acid-primed copying of 3'-terminal poly(A) of virion RNA. GTP, CTP, and AMP-PCP (5'-adenylyl beta-gamma methylenediphosphate, an ATP analog) could not replace ATP in host factor-stimulated synthesis of poly(U). Antibodies to poliovirus genome-linked protein (VPg) specifically precipitated in vitro-synthesized poly(U) from a host factor-stimulated reaction. The poly(U) synthesized in a host factor-stimulated reaction was shown to be attached to VPg precursor polypeptide(s) via a tyrosine-phosphate bond as found in poliovirion VPg-RNA.  相似文献   

3.
4.
A series of low molecular weight RNAs (4.5 to 5.5S) as well as other 4 to 7S RNAs were dissociated from genomic RNA of spleen focus forming virus (SFFV) by heating. On two dimensional polyacrylamide gel electrophoresis, this series of RNAs gave a series of more than thirty spots. RNase T1 fingerprints of these spots were identical except for differences in 3'-terminal oligonucleotides, which were mainly due to different numbers of uridylic acid residues, larger RNA-molecules containing poly(U)sequences at their 3'-termini. This series of RNAs is also associated with poly(A)-containing nuclear and cytoplasmic RNAs from SFFV-infected cells.  相似文献   

5.
During electrophoresis in polyacrylamide gels containing 7M urea the major discrete components of preparations of rat liver mitochondrial poly(A)+ and poly(A)- RNA species have similar mobilities. Poly(A)- RNA components hybridize to the 16S rRNA gene of mtDNA. Analysis of 5'-terminal sequences of these components revealed their identity to the 5'-terminal sequence of 16S rRNA. These results show that poly(A)- RNA components are fragmentation products of 16S rRNA. Fragmentation occurs nonrandomly from the 3'-end of the original rRNA molecules and lead to formation of products with electrophoretic mobilities similar to those of poly(A)+ RNA components.  相似文献   

6.
The hepatitis C virus (HCV)-encoded protease/helicase NS3 is likely to be involved in viral RNA replication. We have expressed and purified recombinant NS3 (protease and helicase domains) and Delta pNS3 (helicase domain only) and examined their abilities to interact with the 3'-terminal sequence of both positive and negative strands of HCV RNA. These regions of RNA were chosen because initiation of RNA synthesis is likely to occur at or near the 3' untranslated region (UTR). The results presented here demonstrate that NS3 (and Delta pNS3) interacts efficiently and specifically with the 3'-terminal sequences of both positive- and negative-strand RNA but not with the corresponding complementary 5'-terminal RNA sequences. The interaction of NS3 with the 3'-terminal negative strand [called 3'(-) UTR(127)] was specific in that only homologous (and not heterologous) RNA competed efficiently in the binding reaction. A predicted stem-loop structure present at the 3' terminus (nucleotides 5 to 20 from the 3' end) of the negative-strand RNA appears to be important for NS3 binding to the negative-strand UTR. Deletion of the stem-loop structure almost totally impaired NS3 (and Delta pNS3) binding. Additional mutagenesis showed that three G-C pairs within the stem were critical for helicase-RNA interaction. The data presented here also suggested that both a double-stranded structure and the 3'-proximal guanosine residues in the stem were important determinants of protein binding. In contrast to the relatively stringent requirement for 3'(-) UTR binding, specific interaction of NS3 (or Delta pNS3) with the 3'-terminal sequences of the positive-strand RNA [3'(+) UTR] appears to require the entire 3'(+) UTR of HCV. Deletion of either the 98-nucleotide 3'-terminal conserved region or the 5' half sequence containing the variable region and the poly(U) and/or poly(UC) stretch significantly impaired RNA-protein interaction. The implication of NS3 binding to the 3'-terminal sequences of viral positive- and negative-strand RNA in viral replication is discussed.  相似文献   

7.
Up to about 50% of the total radioactivity in pulse-labeled RNA in Bacillus brevis 47-5, a high-protein-producing bacterium, was found in the polyadenylated fraction [termed poly(A)-RNA] isolated by adsorption to oligodeoxythymidylic acid-cellulose. Labeled RNA was bound to the cellulose regardless of whether the radioactive precursor was [3H]adenosine or [3H]uridine, showing that the adsorbed material was poly(A)-RNA rather than free poly(A). Poly(A) tracts, isolated after digestion of pulse-labeled RNA with pancreatic and T1 RNases, were homogeneous, with a length of about 95 nucleotides. Susceptibility of the isolated poly(A) tracts to degradation by snake venom phosphodiesterase and polynucleotide phosphorylase indicated that the poly(A) sequences were located directly at the 3'-terminal of the RNA molecules. Comparison of the poly(A)-RNA content in high-protein-producing and nonprotein-producing cells of B. brevis 47 showed much higher levels in the former. Electrophoretic analysis in both denaturing and denaturing polyacrylamide gels of the poly(A)-RNAs showed a heterogeneous population of molecules ranging in size from 23S to 4S. Comparison of the molecular-weight distribution patterns revealed that a significantly greater amount of high-molecular-weight poly(A)-RNA (comigrating with 23S RNA) was present under conditions in which extracellular protein production was high. The possibility that a substantial fraction of the poly(A)-RNA might be involved in the synthesis of extracellular proteins in B. brevis 47 is discussed.  相似文献   

8.
本文利用双脱氧序列分析法对我国大麦条纹花叶病毒新疆株(BSMV-XJ)RNA2 cDNA的3′端进行序列分析,证明XJ株RNA2 3′端239个核苷酸与国外典型株3′端相应部位有高度的序列同源性。通过序列分析及使用寡核苷酸定位裂解法和分子杂交确定,在紧邻239个核苷酸的上游有一个Poly(A)结构,3′终端为一个类tRNA结构,亦与国外典型株相同。经分析认为BSMV-XJ3个基因组RNA具有相同的3′端结构。  相似文献   

9.
10.
Total polysomal RNA from yellow lupin root nodules was fractionated by double oligo(dT)-cellulose chromatography. Poly(A)-containing and poly(A)-lacking RNA fractions showed considerable messenger activity in wheat germ and rabbit reticulocyte cell-free systems. The sizing of poly(A)-lacking RNA on sucrose-density gradient gives rise to separation of 14S mRNA from 22-24S mRNA species. A single polypeptide with molecular weight of 22,000 was coded for by 14S mRNA, while two polypeptides with an apparent mol. wt. of 90,000 and 87,000 were the main products of 22-24S mRNA fraction. High concentrations of unfractionated poly(A)-lacking RNA as well as the addition of poly(A) led to preferential synthesis of the 22,000 product. Preliminary results suggest the presence of m7GpppX cap structure at 5' terminus of the separated 14S and 22-24S mRNA species. This comes from the competition experiments with m7GMP and m7GTP as well as from the fact that the poly(A)-lacking RNA preparation was susceptible to methylation by methyl-transferase from vaccinia virus (methylated is the 2'-O-nucleotide adjacent to 7-methylguanosine). Digestion by T1 RNAase of methylated poly(A)-lacking RNA produced two short 5'-terminal oligonucleotides 10 and 17 nucleotides in length.  相似文献   

11.
Cycloleucine (1-aminocyclopentane-1-carboxylic acid) is a potent inhibitor of RNA methylation in B77 sarcoma virus-infected chicken embryo fibroblasts. Under conditions where 40 mM cycloleucine is present, internal N-6-methyladenosine and 5'-terminal can 2'-O-ribose methylations of poly(A)+ RNA are inhibited greater than 90%. The methylation of the 5'-terminal 7-methylguanosine, however, does not appear to be significantly affected. The poly(A)+ RNA synthesized in cycloleucine-treated cells is transported from the nucleus to the cytoplasm and associates with polyribosomes at rates comparable to poly(A)+ RNA in untreated cells. On the other hand, the transport and utilization of newly synthesized ribosomal RNA in cycloleucine-treated cells is impaired, and the accumulation of mature 18 S and 28 S rRNA is reduced.  相似文献   

12.
Analysis of terminal structures of RNA from potato virus X.   总被引:10,自引:3,他引:7       下载免费PDF全文
The 5'-end structure of potato virus X RNA was determined following enzymatic methylation in vitro. A single 3H-methyl group was introduced into the 2'-position of the 5'-penultimate residue and the end structure was determined as m7GpppG(m)pAp(Xp)3G. This part of the RNA apparently is involved in binding to ribosomes since it can be partially protected against RNase digestion by wheat germ 40S ribosomes. PVX RNA was not retained by poly(U)-sepharose, indicating that it does not contain a 3'-terminal poly(A) tract.  相似文献   

13.
RNA labeled with [methyl-3H]methionine and/or [32P]orthophosphate was isolated from the polyribosomes of herpes simplex virus (HSV) types 1-infected cells and separated into polyadenylylated [poly(A+)]and non-polyadenylylated [poly(A-)] fractions. Virus-specific RNA was obtained by hybridization in liquid to either excess HSV DNA or filters containing immobilized HSV DNA. Analysis in denaturing sucrose gradients indicated that HSV-specific poly(A+) RNA sedimented in a broad peak, with a modal S value of 20. The ratio of [3H]methyl to 32P decreased with increasing size of RNA, suggesting that each RNA chain contains a similar sumber of methyl groups. Further analysis indicated an average of one RNase-resistant structure of the type m7G(5')pppNmpNp or m7G(5')pppNmpNmpNp per 2,780 nucleotides. The following components were identified in the 5'-terminal oligonucleotides of polyribosome-associated HSV-specific poly(A+) and poly(A-) RNA: 7-methylguanosine, N6,2'-O-dimethyladenosine, and the 2'-O-methyl derivatives of guanosine, adenosine, uridine, and denosine, and the 2'-O-methyl derivatives of guanosine, adenosine, uridine, and cytidine. The most common 5'-terminal sequences were m7G(5')pppm6Am and m7G(5')pppGm. An additional modified nucleoside, N6-methyladenosine, was present in an internal position of HSV-specific RNA.  相似文献   

14.
Short lengths (18 residues) of poly(A), covalently linked to the 3'-termini of Escherichia coli 5 S rRNA, induce powerful inhibitions (38-87%) of the activities of RNAases (ribonucleases) from Citrobacter sp., Enterobacter sp., bovine pancreas, human spleen and human plasma. As the polypurine chain length is extended, enzyme activity declines. Furthermore, poly(A) sequences, present only on a small subpopulation of RNA, and accounting for less than 1% of total RNA, serve to protect all RNA, polyadenylated or not, from enzyme-catalysed degradation. The quantity of 3'-terminal adenylic acid residues, relative to the amount of substrate, determines enzyme activity. The exact distribution of a fixed amount of poly(A) residues on the 3'-termini of substrate molecules is unimportant in this respect. Comparison of the efficacies of inhibition of RNAase activity, by using linked poly(A) and similar quantities of free poly(A), revealed that although the free polypurine inhibits RNAase activity, covalent linkage of poly(A) to RNA is more advantageous to the stability of an RNA substrate. However, the ratio of inhibited activities obtained by using linked or free poly(A) may change considerably with alterations in either substrate concentration or polyadenylic acid segment length.  相似文献   

15.
16.
Many steps in nuclear RNA processing, surveillance, and degradation require TRAMP, a complex containing the poly(A) polymerase Trf4p, the Zn-knuckle protein Air2p, and the RNA helicase Mtr4p. TRAMP polyadenylates RNAs designated for decay or trimming by the nuclear exosome. It has been unclear how polyadenylation by TRAMP differs from polyadenylation by conventional poly(A) polymerase, which produces poly(A) tails that stabilize RNAs. Using reconstituted S. cerevisiae TRAMP, we show that TRAMP inherently suppresses poly(A) addition after only 3-4 adenosines. This poly(A) tail length restriction is controlled by Mtr4p. The helicase detects the number of 3'-terminal adenosines and, over several adenylation steps, elicits precisely tuned adjustments of ATP affinities and rate constants for adenylation and TRAMP dissociation. Our data establish Mtr4p as a critical regulator of polyadenylation by TRAMP and reveal that an RNA helicase can control the activity of another enzyme in a highly complex fashion and in response to features in RNA.  相似文献   

17.
To facilitate design of short isoenergetic hybridization probes for RNA, we report the influence of adding 5'- or 3'-terminal 2'-O-methylguanosine (GM), LNA-guanosine (GL), or 3'-terminal pyrene pseudo-nucleotide (PPN) on the thermodynamic stability of 2'-O-methyl-RNA/RNA (2'-O-Me-RNA/RNA) duplexes with sequences 5'CMGMGMCMAM/3'AAXGCCGUXAA, where X is A, C, G, or U. A 3'-terminal GM or GL added to the 2'-O-Me-RNA strand to form a G-A, G-G or G-U mismatch enhances thermodynamic stability (DeltaDeltaG degrees 37) of the 2'-O-Me-RNA/RNA duplexes on average by 0.7 and 1.5 kcal/mol, respectively. A 3'-terminal GM or GL in a GM-C or GL-C pair stabilizes the 2'-O-Me-RNA/RNA duplex by 2.6 and 3.4 kcal/mol, respectively. A 5'-terminal GM or GL in a G-A or G-G mismatch provided less stabilization in comparison with a 3'-terminal G-A or G-G mismatch, but more stabilization in a G-C or G-U pair. In contrast to guanosine derivatives, pyrene residue (P) as PPN at the 3'-terminal position enhances thermodynamic stability of the 2'-O-Me-RNA/RNA duplexes on average by 2.3 +/- 0.1 kcal/mol, relatively independent of the type of ribonucleotide placed in the opposite strand. The thermodynamic data can be applied to design 2'-O-Me-RNA/RNA duplexes with enhanced thermodynamic stability that is also sequence independent. This is useful for design of hybridization probes to interrogate RNA structure and/or expression by microarray and other methods.  相似文献   

18.

Background  

The bacterial Sm-like protein Hfq is known as an important regulator involved in many reactions of RNA metabolism. A prominent function of Hfq is the stimulation of RNA polyadenylation catalyzed by E. coli poly(A) polymerase I (PAP). As a member of the nucleotidyltransferase superfamily, this enzyme shares a high sequence similarity with an other representative of this family, the tRNA nucleotidyltransferase that synthesizes the 3'-terminal sequence C-C-A to all tRNAs (CCA-adding enzyme). Therefore, it was assumed that Hfq might not only influence the poly(A) polymerase in its specific activity, but also other, similar enzymes like the CCA-adding enzyme.  相似文献   

19.
On the basis of a comparative analysis of published sequences, models for the secondary structure of the 3'-terminal [poly(A)-preceding] untranslated region of the entero- and rhinovirus RNAs were worked out. The models for all these viruses share a common core element, but there are an extra enterovirus-specific element and still an additional element characteristic of a subset of enterovirus RNAs. The two latter models were verified for poliovirus and coxsackievirus B genomes by testing with single-strand and double-strand specific enzymatic and chemical probes. A tRNA-like tertiary structure model for the 3'-terminal folding of enterovirus RNAs was proposed. A similar folding was proposed for the 3' termini of the negative RNA strands as well as for the 5' termini of the positive strand of all entero- and rhinovirus RNAs. Implications of these data for template recognition during negative and positive RNA strands synthesis and for the evolution of the picornavirus genomes are discussed.  相似文献   

20.
The topography and the length of the non-ribosomal sequences present in 7-S RNA, the immediate precursor of 5.8-S ribosomal RNA, from the yeast Saccharomyces carlsbergensis were determined by analyzing the nucleotide sequences of the products obtained after complete digestion of 7-S RNA with RNase T1. The results show that 7-S RNA contains approximately 150 non-ribosomal nucleotides. The majority (90%) of the 7-S RNA molecules was found to have the same 5'-terminal pentadecanucleotide sequence as mature 5.8-S rRNA. The remaining 10% exhibited 5'-terminal sequences identical to those of 5.9-S RNA, which has the same primary structure as 5.8-S rRNA except for a slight extension at the 5' end [Rubin, G.M. (1974) Eur. J. Biochem. 41, 197--202]. These data show that the non-ribosomal nucleotides present in 7-S RNA are all located 3'-distal to the mature 5.8-S rRNA sequence. Moreover, it can be concluded that 5.9-S RNA is a stable rRNA rather than a precursor of 5.8-S rRNA. The 3'-terminal sequence of 5.8-S rRNA (U-C-A-U-U-UOH) is recovered in a much longer oligonucleotide in the T1 RNase digest of 7-S RNA having the sequence U-C-A-U-U-U-(C-C-U-U-C-U-C)-A-A-A-C-A-(U-U-C-U)-Gp. The sequences enclosed in brackets are likely to be correct but could not be established with absolute certainty. The arrow indicates the bond cleaved during processing. The octanucleotide sequence -A-A-A-C-A-U-U-C- located near the cleavage site shows a remarkable similarity to the 5'-terminal octanucleotide sequence of 7-S RNA (-A-A-A-C-U-U-U-C-). We suggest that these sequences may be involved in determining the specificity of the cleavages resulting in the formation of the two termini of 5.8-S rRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号