首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Schwannomas may develop sporadically or in association with NF2 and schwannomatosis. The fundamental aberration in schwannomas is the bi-allelic inactivation of the NF2 gene. However, clinical and molecular data suggest that these tumors share a common pathogenetic mechanism related to as yet undefined 22q-loci. Linkage studies in schwannomatosis, a condition related to NF2, have defined a candidate 22q-locus and excluded the NF2 gene as the causative germline mutation. Thus, analysis of aberrations in schwannomas may lead to the identification of putative gene(s) involved in the development of schwannoma/schwannomatosis. We profiled a series of 88 schwannomas and constitutional DNA using a tiling path chromosome 22 array. Array-CGH is a suitable method for high-resolution discrimination between germline and tumor-specific aberrations. Previously reported frequencies of 22q-associated deletions in schwannomas display large discrepancies, ranging from 30% to 80%. We detected heterozygous deletions in 53% of schwannomas and the predominant pattern was monosomy 22. In addition, three tumors displayed terminal deletions and four harbored overlapping interstitial deletions of various sizes encompassing the NF2 gene. When profiling constitutional DNA, we identified eight loci that were affected by copy number variation (CNV). Some of the identified CNVs may not be phenotypically neutral and the possible role of these CNVs in the pathogenesis of schwannomas should be studied further. We observed a correlation between the breakpoint position, present in tumor and/or constitutional DNA and the location of segmental duplications. This association implicates these unstable regions in rearrangements occurring both in meiosis and mitosis.  相似文献   

2.
3.
Lee JD  Kwon TJ  Kim UK  Lee WS 《PloS one》2012,7(1):e30418

Background

Mutations in the neurofibromatosis type 2 (NF2) tumor-suppressor gene have been identified in not only NF2-related tumors but also sporadic vestibular schwannomas (VS). This study investigated the genetic and epigenetic alterations in tumors and blood from 30 Korean patients with sporadic VS and correlated these alterations with tumor behavior.

Methodology/Principal Findings

NF2 gene mutations were detected using PCR and direct DNA sequencing and three highly polymorphic microsatellite DNA markers were used to assess the loss of heterozygosity (LOH) from chromosome 22. Aberrant hypermethylation of the CpG island of the NF2 gene was also analyzed. The tumor size, the clinical growth index, and the proliferative activity assessed using the Ki-67 labeling index were evaluated. We found 18 mutations in 16 cases of 30 schwannomas (53%). The mutations included eight frameshift mutations, seven nonsense mutations, one in-frame deletion, one splicing donor site, and one missense mutation. Nine patients (30%) showed allelic loss. No patient had aberrant hypermethylation of the NF2 gene and correlation between NF2 genetic alterations and tumor behavior was not observed in this study.

Conclusions/Significance

The molecular genetic changes in sporadic VS identified here included mutations and allelic loss, but no aberrant hypermethylation of the NF2 gene was detected. In addition, no clear genotype/phenotype correlation was identified. Therefore, it is likely that other factors contribute to tumor formation and growth.  相似文献   

4.
Neurofibromatosis type 2 (NF2) is an autosomal dominant disease that causes a predisposition to nervous system tumors. Deleterious point mutations have been found in about 55% of NF2 patients, and large genomic deletions account for approximately 33% of NF2 gene alterations. The majority of these deletions are larger than 50 kb, with a breakpoint usually lying outside the NF2 gene. We identified two cases of intragenic deletion with loss of 1.5 and 40 kb, respectively. In both cases, one boundary of the deletion was located in or at the proximity of an SVA sequence in NF2 intron 4. No sequence identity longer than 5 bases and no signal of specific recombination have been evidenced on either side of the deletion breakpoints. These observations are compatible with a nonhomologous recombination being responsible for the genomic deletions. In a third case, a paracentric inversion of chromosome 22 was found. This chromosomal rearrangement breaks the NF2 gene in two parts and carries the first NF2 exon in a juxta-centromeric position. The variability in position of the deletions and the observation of a new chromosomal rearrangement in the NF2 gene underscore the importance of FISH analysis in the molecular diagnosis of NF2.  相似文献   

5.
Neurofibromatosis type 2 (NF2) is an autosomal dominant disorder that predisposes to the development of bilateral vestibular schwannomas (sometimes associated with schwannomas at other locations), meningiomas, and ependymomas. Point mutations that inactivate the NF2 tumor suppressor gene, located in 22q12, have been found in 45-85% of NF2 patients; in addition, large genomic deletions can be found. To evaluate the presence of genomic NF2 rearrangements, we have developed a fluorescent semiquantitative multiplex PCR method. Briefly, short fragments corresponding to the 17 exons, the promoter region, and the 3' end of the NF2 gene were co-amplified by PCR using dye primers. An additional fragment, corresponding to another gene used as an internal control, was systematically amplified in each multiplex PCR. Initially, we validated the method by using monosomic 22q and trisomic 22 samples. The fluorescent multiplex PCR method was then used to analyze 21 NF2 individuals in which single-strand conformational polymorphism (SSCP) analysis and/or direct sequencing had revealed no NF2 point mutations; we were able to detect two deletions and one duplication in NF2 in 3 patients. In conclusion, the method we developed could easily be applied in detecting NF2 deletions and duplications. Discovering genomic duplications is invaluable because they are probably the most difficult molecular alterations to detect with conventional methods and, as a consequence, might be an underestimated cause of NF2.  相似文献   

6.
Neurofibromatosis 2 (NF2) is an autosomal inherited disorder that predisposes carriers to nervous system tumors. To examine genotype-phenotype correlations in NF2, we performed mutation analyses and gadolinium-enhanced magnetic resonance imaging of the head and full spine in 59 unrelated NF2 patients. In patients with vestibular schwannomas (VSs) or identified NF2 mutations, the mild phenotype was defined as <2 other intracranial tumors and ≤ 4 spinal tumors, and the severe phenotype as either ≥ 2 other intracranial tumors or > 4 spinal tumors. Nineteen mutations were found in 20 (34%) of the patients and were distributed in 12 of the 17 exons of the NF2 gene, including intron-exon boundaries. Seven mutations were frameshift, six were nonsense, four were splice site, two were missense, and one was a 3-bp in frame deletion. The nonsense mutations included one codon 57 and two codon 262 C→T transitions in CpG dinucleotides. The frameshift and nonsense NF2 mutations occurred primarily in patients with severe phenotypes. The two missense mutations occurred in patients with mild phenotypes, and three of the four splice site mutations occurred in families with both mild and severe phenotypes. Truncating NF2 mutations are usually associated with severe phenotypes, but the association of some mutations with mild and severe phenotypes indicates that NF2 expression is influenced by stochastic, epigenetic, or environmental factors. Received: 4 July 1996  相似文献   

7.
The autosomal dominant syndrome neurofibromatosis type 2 (NF2) is characterized by the development of bilateral vestibular schwannomas, meningiomas, ependymomas and gliomas. The NF2 gene, recently isolated from chromosome 22, is mutated in both sporadic and NF2 tumors such as schwannomas, meningiomas and ependymomas. Mutations of the gene have been described not only in the neoplasms usually associated with NF2, but also in 30% of the melanomas and 41% of the mesotheliomas analyzed. In particular, the finding of mutations in melanomas supports the hypothesis that the NF2 gene is involved in the genesis of several tumor types that arise from the embryonic neural crest. In this study we examined, by single-strand conformation polymorphism (SSCP) analysis, 41 tumors of the central nervous system (11 schwannomas and 30 gliomas), 19 melanomas and 15 Merkel cell carcinoma specimens for mutations in the coding sequence of the NF2 gene. We found three inactivating mutations of the NF2 gene in schwannomas. No alterations of the gene were detected by SSCP analysis of the other tumors. These results confirm the role of NF2 in pathogenesis of schwannomas, but do not define its significance in the genesis of the other neuroectodermal tumors studied. Received: 27 July 1995 / Revised: 11 September 1995  相似文献   

8.
Meningiomas are benign tumors of the central nervous system. They are usually sporadic but can also occur associated with the neurofibromatosis type 2 (NF2) syndrome. The gene responsible for NF2, recently isolated from chromosome 22, encodes a membrane-organizing protein that shows high sequence homology to a protein family thought to link the cytoskeleton with membrane proteins. Mutations of the NF2 gene have been described in sporadic meningiomas, exclusively in tumors that show loss of heterozygosity (LOH) of 22q. These preliminary results indicate that the NF2 gene is involved in the pathogenesis of at least a subset of meningiomas, where it does indeed behave as a tumor suppressor gene. In order to characterize better the role of the NF2 gene in the genesis of meningiomas we have examined the entire coding sequence of the gene in 125 meningiomas by single-strand conformational polymorphism analysis; furthermore, LOH analysis for markers of 22q has been carried out. Inactivating mutations were identified in 30% of our samples, all of which also showed LOH of 22q. The majority of mutations identified were frameshifts and nonsense mutations, which are predicted to produce a truncated or non-functional protein. We also found two missense and three in-frame deletions that may pinpoint specific regions of the protein critical to its function. Furthermore, the distribution of mutations throughout the gene, suggested that exons 2, 3, 5, 11 and 13 are more frequently involved. Our results reconfirm the importance of the NF2 gene in the pathogenesis of meningiomas and also suggest that there may be a nonrandom clustering of mutations throughout the gene.  相似文献   

9.
Neurofibromatosis type 2 (NF2) is a genetic autosomal-dominant disorder characterized by multiple benign tumors of the nervous system. Bilateral vestibular schwannomas, known as acoustic neuromas, are the hallmark of NF2 and can be found in more than 90% of patients, causing progressive hearing loss and not infrequently leading to deafness. Spinal tumors (schwannoma, meningioma and ependymoma) develop with similarly high frequency among NF2 patients, while approximately only 1/3 of these lead to neurological symptoms. Cranial non-vestibular schwannomas and meningiomas are also frequent in NF2 patients. The clinical spectrum of NF2 further includes ophthalmological lesions and polyneuropathy. With a birth incidence of around 1 in 25,000, the genetic cause for NF2 is the heterozygous inactivation of the NF2 tumor suppressor gene on 22q. More than half (50%–80%) of NF2 patients are found to bear de novo mutations which are frequently present in a mosaic fashion (25%–30%). This review presents clinical and genetic aspects of NF2, as well as recent developments in its pharmacological treatment.  相似文献   

10.
The gene predisposing to neurofibromatosis type 2 (NF2) on human chromosome 22 has revealed a wide variety of different mutations in NF2 individuals. These patients display a marked variability in clinical presentation, ranging from very severe disease with numerous tumors at a young age to a relatively mild condition much later in life. To investigate whether this phenotypic heterogeneity is determined by the type of mutation in NF2, we have collected clinical information on 111 NF2 cases from 73 different families on whom we have performed mutation screening in this gene. Sixty-seven individuals (56.2%) from 41 of these kindreds revealed 36 different putative disease-causing mutations. These include 26 proposed protein-truncating alterations (frameshift deletions/insertions and nonsense mutations), 6 splice-site mutations, 2 missense mutations, 1 base substitution in the 3' UTR of the NF2 cDNA, and a single 3-bp in-frame insertion. Seventeen of these mutations are novel, whereas the remaining 19 have been described previously in other NF2 individuals or sporadic tumors. When individuals harboring protein-truncating mutations are compared with cases with single codon alterations, a significant correlation (P < .001) with clinical outcome is observed. Twenty-four of 28 patients with mutations that cause premature truncation of the NF2 protein, schwannomin, present with severe phenotypes. In contrast, all 16 cases from three families with mutations that affect only a single amino acid have mild NF2. These data provide conclusive evidence that a phenotype/genotype correlation exists for certain NF2 mutations.  相似文献   

11.
The neurofibromatosis type 2 (NF2) gene has been hypothesized to be a recessive tumor suppressor, with mutations at the same locus on chromosome 22 that lead to NF2 also leading to sporadic tumors of the types seen in NF2. Flanking markers for this gene have previously been defined as D22S1 centromeric and D22S28 telomeric. Identification of subregions of this interval that are consistently rearranged in the NF2-related tumors would aid in better defining the disease locus. To this end, we have compared tumor and constitutional DNAs, isolated from 39 unrelated patients with sporadic and NF2-associated acoustic neuromas, meningiomas, schwannomas, and ependymomas, at eight polymorphic loci on chromosome 22. Two of the tumors studied revealed loss-of-heterozygosity patterns, which is consistent with the presence of chromosome 22 terminal deletions. By using additional polymorphic markers, the terminal deletion breakpoint found in one of the tumors, an acoustic neuroma from an NF2 patient, was mapped within the previously defined NF2 region. The breakpoint occurred between the haplotyped markers D22S41/D22S46 and D22S56. This finding redefines the proximal flanking marker and localizes the NF2 gene between markers D22S41/D22S46 and D22S28. In addition, we identified a sporadic acoustic neuroma that reveals a loss-of-heterozygosity pattern consistent with mitotic recombination or deletion and reduplication, which are mechanisms not previously seen in studies of these tumors. This finding, while inconsistent with models of tumorigenesis that invoke single deletions and their gene-dosage effects, lends further support to the recessive tumor-suppressor model.  相似文献   

12.
Neurofibromatosis type 1 (NF1) is a frequent hereditary disorder. The disease is characterized by a very high mutation rate (up to 1/10000 gametes per generation). NF1-related loci in the human genome have been implicated in the high mutation rate by hypothesizing that these carry disease-causing mutations, which can be transferred to the functional NF1 gene on chromosome arm 17q by interchromosomal gene conversion. To test this hypothesis, we want to identify and characterize the NF1-related loci in the human genome. In this study, we have localized an NF1-related locus in the most centromeric region of the long arm of chromosome 22. We demonstrate that this locus contains sequences homologous to cDNAs that include the GAP-related domain of the functional NF1 gene. However, the GAP-related domain itself is not represented in this locus. In addition, cosmids specific to this locus reveal, by in situ hybridization, NF1-related loci in the pericentromeric region of chromosome arm 14q and in chromosomal band 2q21. These cosmids will enable us to determine whether identified disease-causing mutations are present at the chromosome 22-associated NF1-related locus. Received: 18 December 1995 / Revised: 5 February 1996  相似文献   

13.
Neurofibromatosis 2 or bilateral acoustic neurofibromatosis (NF2) is a severe autosomal dominant disorder characterized by the development of multiple tumors of the nervous system, including meningiomas, gliomas, neurofibromas, ependymomas, and particularly acoustic neuromas. Polymorphic DNA markers have revealed frequent loss of one copy of chromosome 22 in the tumor types associated with NF2. Family studies have demonstrated that the primary defect in NF2 is linked to DNA markers on chromosome 22, suggesting that it involves inactivation of a tumor suppressor gene. We have employed a combination of multipoint linkage analysis and examination of deletions in primary tumor specimens to precisely map the NF2 locus between flanking polymorphic DNA markers on chromosome 22. The 13-cM region bracketed by these markers corresponds to 13% of the genetic length of the long arm of chromosome 22 and is expected to contain less than 5 x 10(6) bp of DNA. The delineation of flanking markers for NF2 should permit accurate presymptomatic and prenatal diagnosis for the disorder and greatly facilitate efforts to isolate the defective gene on the basis of its location.  相似文献   

14.
Vestibular schwannomas (VSs) are common benign tumors of Schwann cell origin and are frequently found in patients with neurofibromatosis type 2 (NF2). We analyzed 15 sporadic VSs for mutations in the NF2 gene. We detected mutations in three of the tumors, two of which contained loss of heterozygosity (LOH). One of the tumors contained a novel mutation, a 19-bp deletion in exon 4. The two other tumors contained an identical mutation, a complete exon 4 deletion. The exon 4 deletion represents the second most frequently reported mutation of the NF2 gene in VSs.  相似文献   

15.
Neurofibromatosis 2 (NF2) is a clinically variable autosomal dominant disorder, caused by mutations in the NF2 tumor suppressor gene on chromosome 22q12, that predisposes to nervous system tumors and ocular abnormalities. To assess intrafamilial phenotypic variability, we performed mutation analysis and clinical assessment on two multigeneration NF2 families with five patients and seven asymptomatic first-degree relatives of patients. One family had a point mutation of agCC→ggCC at position 1447–2 at the exon 13/14 boundary predicted to lead to an altered splice acceptor sequence and exon deletion. The other family had an insertion of 2 base pairs (TC) at position 761 in exon 8, leading to a frameshift. Both mild and severe phenotypes occurred in each family, indicating that phenotypic variability in NF2 can be caused by factors other than NF2 mutations. Genetic counseling of NF2 families should include the possibility that presymptomatic NF2 mutation carriers can develop a different phenotype than previously diagnosed patients. Received: 4 January 1996 / Revised: 26 March 1996  相似文献   

16.
We describe the development and implementation of a neurofibromatosis type 2 (NF2) mutation scanning service based on novel techniques. All 17 exons of the NF2 gene are amplified in four polymerase chain reaction (PCR) reactions, using the meta-PCR technique to link the NF2 exons into chimeric concatamers. The meta-PCR products are then scanned for point mutations by direct sequencing. A four-exon dosage assay is used to test for large deletion/duplication mutations. In certain cases when tumour studies are necessary, these techniques are also combined with loss of heterozygosity analysis with three highly polymorphic microsatellite markers located within or close to the NF2 gene. Over a period of 2 years, we have applied these techniques in a service setting to the analysis of 271 patient samples (245 lymphocyte DNA; 26 schwannoma DNA). Meta-PCR and sequencing identified 90 point mutations in the 271 blood and tumor samples, 48 of which have not been reported previously. Dosage analysis identified large deletions in 12 of the lymphocyte DNA samples. In addition, over 84% of mutations were identified in 23 schwannoma DNA samples in which complete analysis was possible. Adoption of this novel strategy has increased the overall mutation detection rate in familial NF2 cases to 88% and sporadic NF2 cases to 59%. It has also allowed us to decrease our reporting turnaround times, and because of a low overall failure rate, permitted the running of an efficient and cost-effective service.  相似文献   

17.
Mucosal malignant melanoma (MMM) is a rare and aggressive tumor. Despite effective local therapies, tumor recurrence and metastasis remain frequent. The genetics of MMM remain incompletely understood. This study is aimed to identify actionable genetic alterations by next-generation sequencing. Fifteen MMM samples were analyzed by next-generation and Sanger sequencing. Gene copy number alterations were analyzed by MLPA. Mutation status was correlated with pERK, pAKT, and Ki-67 expression and follow-up data. Inactivating mutations and intragenic deletions in neurofibromatosis type-1 (NF1) were identified in 3 and 2 cases, respectively, (in total 5/15, 33%) and activating mutations in NRAS and KRAS (3/15, 20%) cases. Other mutated genes included CDKN2A, APC, ATM, MITF, FGFR1, and FGFR2. BRAF and KIT mutations were not observed. Cases with NF1 alterations tended to have worse overall survival. The mutational status was not associated with pERK, pAKT, or Ki-67 immunostaining. MMM carries frequent gene mutations activating the MAPK pathway, similar to cutaneous melanoma. In contrast, NF1 is the most frequently affected gene. Intragenic NF1 deletions have not been described before and may go undetected by sequencing studies. This finding is clinically relevant as NF1-mutated melanomas have worse survival and could benefit from therapy with immune checkpoint and MEK inhibitors.  相似文献   

18.
Neurofibromatosis type 1 (NF1) is one of the most common autosomal dominant disorders. It is caused by mutations in the NF1 gene which comprises 60 exons and is located on chromosome 17q. The NF1 gene product, neurofibromin, displays partial homology to GTPase-activating protein (GAP). The GAP-related domain (GRD), encoded by exons 20–27a, is the only region of neurofibromin to which a biological function has been ascribed. A total of 320 unrelated NF1 patients were screened for mutations in the GRD-encoding region of the NF1 gene. Sixteen different lesions in the NF1 GRD region were identified in a total of 20 patients. Of these lesions, 14 are novel and together comprise three missense, two nonsense and three splice site mutations plus six deletions of between 1 and 4 bp. The effect of one of the missense mutations (R1391S) was studied by in vitro expression of a site-directed mutant and GAP activity assay. The mutant protein, R1391S, was found to be some 300-fold less active than wild-type NF1 GRD. The mutations reported in this study therefore provide further material for the functional analysis of neurofibromin as well as an insight into the mutational spectrum of the NF1 GRD. Received: 13 July 1996 / Revised: 6 August 1996  相似文献   

19.
Vestibular schwannomas (VSs) are benign tumors arising from eighth cranial nerve and most often occur sporadically in individuals of middle age group. Sporadic VSs are rarely reported in the young population. In this study, we evaluated clinical behaviors of 12 young sporadic VSs by the statistical comparison with a matched series of 145 adult cases. We found that young tumors were characterized by an earlier onset of initial symptom, shorter duration from the first symptom to diagnosis, and larger tumor size than adult ones. Standard sequencing demonstrated the presence of NF2 mutations in eight tumors. All NF2 mutations identified were truncating mutations (nonsense, frameshift, and splicing-site mutations). Earlier formation of VSs in young patients was evidenced by the high incidence of NF2 mutations (66.7 %) far beyond our previous study in the adult case series (34.5 %). Furthermore, young tumors exhibited deficient merlin or heightened phosphorylated merlin that was subsequently demonstrated to be well correlated with increased tumor size. Finally, we compared protein levels of four pathogenesis-related molecules between young and adult group but there was no significant difference. These results led us to suggest that high frequency of NF2 mutations may play a critical role in early tumorigenesis of young VSs. Moreover, merlin deficiency or phosphorylation status of merlin was involved in their earlier development. Further study remains to fully understand the mechanism for the rapid growth of young VSs.  相似文献   

20.
Patients with multiple schwannomas without vestibular schwannomas have been postulated to compose a distinct subclass of neurofibromatosis (NF), termed "schwannomatosis." To compare the molecular-genetic basis of schwannomatosis with NF2, we examined the NF2 locus in 20 unrelated schwannomatosis patients and their affected relatives. Tumors from these patients frequently harbored typical truncating mutations of the NF2 gene and loss of heterozygosity of the surrounding region of chromosome 22. Surprisingly, unlike patients with NF2, no heterozygous NF2-gene changes were seen in normal tissues. Examination of multiple tumors from the same patient revealed that some schwannomatosis patients are somatic mosaics for NF2-gene changes. By contrast, other individuals, particularly those with a positive family history, appear to have an inherited predisposition to formation of tumors that carry somatic alterations of the NF2 gene. Further work is needed to define the pathogenetics of this unusual disease mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号