首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interaction of atebrin with phosphatidylcholine and phosphatidylcholine-phosphatidic acid vesicles has been followed by equilibrium dialysis, and by photometric, fluorimetric and NMR techniques. The presence of negative charges in the phospholipids enhances the binding of atebrin. The absorbance and NMR spectral changes and fluorescence quenching occurring with phosphatidic acid are attributed to dimerization of the dye interacting electrostatically with negative groups.The dissociation constant of the binding of the dye to phosphatidylcholine vesicles was 1.4 mM; those of binding to the negative sites of phosphatidic acid were approx. 150 and 3 μM.The dye is probably located at the interphase with the acridine ring interacting with the anionic groups of phosphatidic acid and the tail freely floating in the aqueous phase. The results are discussed also in view of the use of atebrin as a probe of the energized state in natural membranes and of the suggestion that atebrin may be used as a transmembrane pH indicator in liposomes or natural membranes.  相似文献   

2.
The equilibrium uptake of hydrophilic solutes, D-glucose and L-carnitine, by large unilamellar phospholipid vesicles composed of egg lecithin (PC), phosphatidic acid (PA), and various concentrations of cholesterol (Chol) has been measured. Calculation of the encapsulated volume of PC-PA and PC-PA-Chol vesicles, based on electron-microscopy data, agreed with the values directly measured by fluorescence techniques. Likewise, vesicle surface areas determined directly and from electron microscopy were in good agreement. Equilibrium uptake experiments by these well-characterized vesicles showed that glucose was taken up in excess of that amount predicted on the basis of the encapsulated aqueous volume. In contrast, the equilibrium uptake of carnitine can be predicted solely on the basis of the vesicle encapsulated volume. Each excess glucose molecule was found to be associated with from 7 to 5200 phospholipid molecules for 100 and 0.1 mM glucose, respectively. Uptake of glucose by PC-PA-Chol vesicles is independent of the cholesterol concentration and is similar to that observed in PC-PA vesicles. The cholesterol concentration independence and oil/buffer partitioning studies with octane and octanol, coupled with previous studies, strongly suggest that excess glucose is located in the vicinity of the phospholipid head group. A probable mechanism would have phospholipid, water and glucose all involved in the interaction rather than a competition between water and glucose for the phospholipid surface, as has been suggested in the literature.  相似文献   

3.
Regulators of G-protein signaling (RGS) proteins are critical for attenuating G protein-coupled signaling pathways. The membrane association of RGS4 has been reported to be crucial for its regulatory activity in reconstituted vesicles and physiological roles in vivo. In this study, we report that RGS4 initially binds onto the surface of anionic phospholipid vesicles and subsequently inserts into, but not through, the membrane bilayer. Phosphatidic acid, one of anionic phospholipids, could dramatically inhibit the ability of RGS4 to accelerate GTPase activity in vitro. Phosphatidic acid is an effective and potent inhibitor of RGS4 in a G alpha(i1)-[gamma-(32)P]GTP single turnover assay with an IC(50) approximately 4 microm and maximum inhibition of over 90%. Furthermore, phosphatidic acid was the only phospholipid tested that inhibited RGS4 activity in a receptor-mediated, steady-state GTP hydrolysis assay. When phosphatidic acid (10 mol %) was incorporated into m1 acetylcholine receptor-G alpha(q) vesicles, RGS4 GAP activity was markedly inhibited by more than 70% and the EC(50) of RGS4 was increased from 1.5 to 7 nm. Phosphatidic acid also induced a conformational change in the RGS domain of RGS4 measured by acrylamide-quenching experiments. Truncation of the N terminus of RGS4 (residues 1-57) resulted in the loss of both phosphatidic acid binding and lipid-mediated functional inhibition. A single point mutation in RGS4 (Lys(20) to Glu) permitted its binding to phosphatidic acid-containing vesicles but prevented lipid-induced conformational changes in the RGS domain and abolished the inhibition of its GAP activity. We speculate that the activation of phospholipase D or diacylglycerol kinase via G protein-mediated signaling cascades will increase the local concentration of phosphatidic acid, which in turn block RGS4 GAP activity in vivo. Thus, RGS4 may represent a novel effector of phosphatidic acid, and this phospholipid may function as a feedback regulator in G protein-mediated signaling pathways.  相似文献   

4.
J Bramhall 《Biochemistry》1986,25(13):3958-3962
The amphiphilic fluorescent dye N-[(5-dimethylamino)naphth-1-ylsulfonyl]glycine (dansylglycine) can be used to monitor the magnitude and stability of transmembrane proton gradients. Although freely soluble in aqueous media, the dye readily adsorbs to the surfaces of lipid vesicles. Because membrane-bound dye fluoresces at a higher frequency, and with greater efficiency, than dye in aqueous solution, it is easy to isolate the fluorescence emission from those dye molecules adsorbed to the lipid surface. When dansylglycine is mixed with phospholipid vesicles, the dye molecules attain a partition equilibrium between buffer and the outer, proximal surface of the vesicles. This is a rapid, diffusion-limited process that is indicated by a fast phase of fluorescence intensity increase monitored at 510 nm. In a second step, the inner, distal surface of each vesicle becomes populated with dye, a process that involves permeation through the lipid bilayer and that is generally much slower than the original adsorption step. Dansylglycine is a weak acid that permeates as an electrically neutral species; the flux of dye across the bilayer is thus strongly dependent on the degree of protonation of the dye's carboxylate moiety. When the external pH is lower than that of the vesicle lumen, the inward flux of dye is greater than that in the opposite direction, and dye accumulates in the lumen. This leads to a local elevation of dansylglycine concentration in the inner membrane monolayer, which in turn results in an elevated fluorescence intensity proportional to the membrane pH gradient.  相似文献   

5.
Changes in the mobility of phospholipid molecules in liposomes membranes under adsorption ferricytochrome c on its surface were studied by means of NMR and EPR spectroscopy. It is found that the interaction of cytochrome molecules with vesicles causes the broadening of 1H-NMR signals of hydrophobic as well as polar groups in cardiolipin and phosphatidylcholine in the presence of lauric or phosphatidic acid. This broadening of 1H-NMR signals in hydrophobic groups may be caused by decrease in the rate of lateral diffusion of phospholipid molecules. The changes in the correlation time of hydrophobic spin-proub in liposomes containing phosphatydiloholine and cardiolipin with the increase of ferricytochrome c concentration were also observed. These changes suggest that the formation of protein-phospholipid clusters results in the impair of the regular structure of phospholipid bilayer.  相似文献   

6.
Spherical phospholipid bilayers, or vesicles, were prepared layer by layer using a double-emulsion technique, which allows the outer layer of the vesicles to be formed with two phospholipids that have different head groups: phosphatidylcholine (PC) and phosphatidylethanolamine. At the outer layer of the vesicles, the phospholipase D (PLD) catalyzed for the conversion of PC to phosphatidic acid. The reaction caused by PLD induced the curvature change of the vesicles, which eventually led to the rupture of the vesicles. Before the investigation, the ratio of dioleoylphosphatidylethanolamine to oleoylhydroxyphosphatidylethanolamine was found as a condition such that the vesicles made with the mixed lipids were as stable as those made with pure dioleoylphosphatidylcholine. Response time from the PLD injection to vesicle rupture was monitored by the composition of the outer layer by the fluorescence intensity change of pH-sensitive dye encapsulated in the vesicles. The response time began to be slowed at approximately 30?% PC. The response times for the compositions were associated with the surface density of PC at the outer layer. These results also seem to be determined by the size of PLD, specifically the PLD active site.  相似文献   

7.
The property of the dyes, acridine orange and methylene blue, to exhibit metachromatic changes upon binding to negatively charged groups that are within a defined spatial separation was employed to study the lateral and transverse topography of sulfatide and gangliosides GM1 and GD1a mixed with dipalmitoylphosphatidylcholine (DPPC) in unilamellar vesicles. The spectral changes of the dyes in the presence of liposomes containing anionic glycosphingolipids (GSLs) (hypochromism and frequency shift) are typical of polyanionic lattices while minor changes are found for neutral lipids. The metachromatic changes are abolished by the presence of Ca2+ in the external medium. The proportion of anionic GSLs accessible to the dyes on the external surface of the liposomes is greater as the GSLs are more complex (sulfatide less than GM1 less than GD1a) and as its proportion in the mixture decreases. The number of molecules of anionic GSLs that are laterally distributed on the external surface in a position favorable for the formation of dye dimers (at intermolecular distances not exceeding 1 nm) is greater for sulfatide than for ganglioside. This is correlated to the greater intermolecular distances and delocalization in ganglioside-, compared to sulfatide-containing interfaces. The experimental values indicate that the mixture with DPPC of any of the anionic GSLs studied behaves as if it was more enriched in the GSLs compared to the proportions of the whole mixture.  相似文献   

8.
Using large (5-10 microns) vesicles formed in the presence of phospholipids fluorescently labeled on the acyl chain and visualized using a fluorescence microscope, charge-coupled-device camera, and digital image processor, we examined the effects of membrane proteins on phospholipid domain formation. In vesicles composed of phosphatidic acid and phosphatidylcholine, incubation with cytochrome c induced the reorganization of phospholipids into large phosphatidic acid-enriched domains with the exclusion of phosphatidylcholine. Cytochrome c binding was demonstrated to be highest in the phosphatidic acid-enriched domain of the vesicle using the absorbance of the heme moiety for visualization. Both binding of cytochrome c and phospholipid reorganization were blocked by pretreatment of the vesicles with 0.1 M NaCl. The pore forming peptide gramicidin was examined for the effects of an integral protein on domain formation. Initially, gramicidin distributed randomly within the vesicle and showed no phospholipid specificity. Phosphatidic acid domain formation in the presence of 2.0 mM CaCl2 or 100 microM cytochrome c was not affected by the presence of 5 mol % gramicidin within the vesicles. In both cases, gramicidin was preferentially excluded from the phosphatidic acid-enriched domain and became associated with phosphatidylcholine-enriched areas of the vesicle. Thus, cytochrome c caused a major reorganization of both the phospholipids and the proteins in the bilayer.  相似文献   

9.
Egg white lysozyme was rapidly and extensively hydrolyzed by chymotrypsin in the presence of negatively charged phospholipid vesicles. The extent of hydrolysis of lysozyme by chymotrypsin depended on the amount of phospholipid present. The optimum amount of phospholipid varied with the amounts of both lysozyme and chymotrypsin. The proteolysis was strongly inhibited at high ionic strength. The amidolytic activity of chymotrypsin against a synthetic substrate was inhibited by phospholipid. Purified phosphatidic acid and phosphatidylethanolamine from egg yolk induced susceptibility of lysozyme to chymotrypsin, whereas synthetic dimyristoyl phosphatidylcholine did not. The extent of the hydrolysis was smaller with phosphatidic acid and phosphatidylethanolamine than with phospholipid mixture, indicating that vesicles of phospholipid mixture were more effective than those of phosphatidic acid or phosphatidylethanolamine in enhancing the proteolysis of lysozyme by chymotrypsin.  相似文献   

10.
The interaction of Tetanus toxin with phospholipid vesicles containing gangliosides (GD1a, GD1b or GT1b) or phosphatidic acid has been investigated at neutral or acidic pH. Change in the thermotropic properties of the vesicles occurred only after addition of the toxin at acidic pH, and led to surface binding or membrane insertion of the protein, dependent on the physical state of the membrane. Most remarkably, toxin addition at acidic pH to dipalmitoyl-phosphatidylcholine vesicles containing GT1b ganglioside, caused formation of ganglioside microdomains on the vesicle surface.  相似文献   

11.
The larger subunit of blood coagulation factor Va was covalently labeled with iodoacetamido derivatives of fluorescein and rhodamine without loss of functional activity, as measured by either the one-stage clotting assay or the ability to accelerate prothrombin activation in a purified system. The spectral properties of the dyes were not altered by the presence or absence of the smaller subunit of factor Va, Ca2+, prothrombin, factor Xa, or phosphatidylcholine/phosphatidylserine (PC/PS, 4:1) vesicles. When fluorescein-labeled protein (factor VaF) was titrated with PC/PS vesicles containing either octadecylrhodamine or 5-(N-hexadecanoylamino)eosin, fluorescence energy transfer was observed between the protein-bound donor dyes and the acceptor dyes at the outer surface of the phospholipid bilayer. The extent of energy transfer correlated directly with the extent of protein binding to the vesicles monitored by light scattering. The distance of closest approach between the fluorescein on factor Va and the bilayer surface averaged 90 A for the two different acceptors. Association of factor VaF with factor Xa on the phospholipid surface reduced this separation by 7 A, but association with prothrombin did not alter the distance between the labeled domain on factor VaF and the surface. The efficiency of diffusion-enhanced energy transfer between rhodamine-labeled factor Va and terbium dipicolinate entrapped inside PC/PS vesicles was less than 0.01, consistent with the location of the dye far above the inner surface of the vesicle. Thus, a domain of membrane-bound factor Va is located a minimum of 90 A above the phospholipid surface.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Abstract

The dispersion of soybean lecithin in water leads to the formation of multilamellar vesicles (MLVs), which on sonication (4hrs approx.) break down to small unilamellar vesicles of ~ 50nm diameter. The addition of polymeric molecules in the liposomal system provides increased steric stabilization. The molecules used were (tri-)block copolymers (Synperonics) containing a central hydrophobic part (polypropylene oxide-PPO) and two hydrophillic chains (polyethylene oxide-PEO) extending from either side. The interaction of these molecules with the vesicle bilayer is thought to be of upmost importance to the mechanical stress, thermodynamic restrictions and steric stability that may be induced. The exact localisation of the copolymer molecules was attempted using a multiprobe technique. The full spectrum of two hydrophobic dyes, namely Nile red (NIL) and Pinacyanol chloride (PCYN), were compared while solubilized inside the liposome bilayer. The sensitivity of their spectral characteristics to polarity and molecular mobility produced a monitor of the bilayer micropolarity and fluidity. The relatively high hydrophobicity of Nile red (NIL) provides an accurate polarity sensor of the bilayer microenvironment. The formation of Pinacyanol chloride (PCYN) dimers (and their respective peak) was directly related to the distance between the dye molecules. Shifts of the maximum absorbance (Xmax) for both dyes showed that the bilayer environment was becoming more apolar with increasing copolymer concentration. The absorbance intensity decreased with increasing copolymer concentration, denoting a reduction in the solubilization of both dyes and therefore of the bilayer population. The absorbance peak of Pinacyanol chloride (PCYN) due to dimer formation increased at moderate copolymer concentrations, showing signs of possible incorporation inside the bilayer. These experiments provided information about the bilayer structure. Adding block copolymers at an optimum concentration may increase the stability of the liposome by incorporation, following various models proposed. However, at high content of copolymer some bilayer solubilization and mixed micelle formation may occur.  相似文献   

13.
The location of the active site of the membrane-bound anticoagulant complex of thrombin and thrombomodulin has been determined relative to the membrane surface using fluorescence energy transfer. Thrombin was reacted with 5-(dimethylamino)-1-naphthalenesulfonylglutamylglycylarginyl chloromethyl ketone (DEGR-CK) to yield DEGR-thrombin, an analogue of thrombin with a fluorescent dye covalently attached to its active site. When DEGR-thrombin was titrated with thrombomodulin that had been reconstituted into phospholipid vesicles containing octadecylrhodamine, singlet-singlet energy transfer was observed between the donor dyes, each in an active site of a DEGR-thrombin bound to thrombomodulin, and the acceptor dyes at the outer surface of the phospholipid bilayer. The extent of energy transfer reached a maximum when DEGR-thrombin and thrombomodulin were equimolar in the sample, as expected for the formation of a 1:1 complex between thrombin and thrombomodulin. This energy transfer was dependent upon the binding of DEGR-thrombin to thrombomodulin because no energy transfer was observed with vesicles that lacked thrombomodulin, and the extent of energy transfer was reduced greatly by the addition of excess unmodified nonfluorescent thrombin to compete with DEGR-thrombin for binding to the thrombomodulin. From the dependence of the energy transfer upon the acceptor density and assuming kappa 2 = 2/3, the distance of closest approach between a dye in the active site of the thrombin-thrombomodulin complex and a dye at the membrane surface was determined to average 66 A (65 +/- 3 A for phosphatidylcholine vesicles without and 67 +/- 5 A for those with 20% phosphatidylserine). This distance was also insensitive to the presence or absence of Ca2+. These direct measurements indicate that the active site of the membrane-bound thrombin-thrombomodulin complex is located far above the phospholipid surface, that the peptide bond cleaved during the activation of protein C is situated about 66 A above the membrane, that the thrombin binding site on thrombomodulin is positioned more than 45 A above the membrane, ant that thrombin, with a diameter near 40 A, is not positioned alongside thrombomodulin near the membrane to form the thrombin-thrombomodulin complex but is instead bound "on top" of thrombomodulin.  相似文献   

14.
The size and size distribution of unilamellar phospholipid vesicles present in unsonicated phosphatidic acid and mixed phosphatidic acid/phosphatidylcholine dispersions were determined by gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy. The vesiculation in these dispersions was induced by a transient increase in pH as described previously (Hauser, H. and Gains, N. (1982) Proc. Natl. Acad. Sci. USA 79, 1683–1687). The resulting phospholipid dispersions are heterogeneous consisting of small unilamellar vesicles (average radius r < 50 nm) and large unilamellar vesicles (average r ranging from about 50 to 500 nm). The smallest vesicles with r = 11 ± 2 nm are observed with dispersions of pure phosphatidic acid, the population of these vesicles amounting to about 80% of the total lipid. With increasing phosphatidylcholine content the radius of the small unilamellar vesicles increases and at the same time the population of small unilamellar vesicles decreases. The average radius of small unilamellar vesicles present in phosphatidic acid/phosphatidylcholine dispersions (mole ratio, 1:1) is 17.5 ± 2 nm, the population of these vesicles amounting to about 70% of the total lipid. By a combination of gel filtration, quasi-elastic light scattering and freeze-fracture electron microscopy it was possible to characterize the large unilamellar vesicles. This population is heterogeneous with its mean radius also increasing with increasing phosphatidylcholine content. After separating the large unilamellar vesicles from small unilamellar vesicles on Sepharose 4B it can be shown by quasi-elastic light scattering that in pure phosphatidic acid dispersions 80–90% of the large unilamellar vesicle population consist of vesicles with a mean radius of 170 nm. In mixed phosphatidic acid/phosphatidylcholine dispersions this radius increases to about 265 nm as the phosphatidylcholine content is raised to 90 mol%.  相似文献   

15.
Spherical phospholipid bilayers, vesicles, were formed with respect to phase of each layer via a double emulsion technique. At the outer layer of the vesicles, phospholipase D catalyzed for the conversion of phosphatidylcholine (PC) to phosphatidic acid (PA). The reaction caused by phospholipase D (PLD) induced a curvature change in the vesicles, which eventually led them to rupture. Response time from the PLD injection to the rupture was monitored for the phase of each layer by using fluorescence intensity changes of pH-sensitive dye encapsulated in the vesicles. It was found that low ionic strength and asymmetric phase retarded response time. The retardation seems to be related to the stability of the vesicles, which is due to the interaction between the lipid molecules. In the liquid phases of the outer lipid layers, the unexpected slow response time may be attributed either to the fast lateral diffusion, which relieves the curvature change of the vesicles, or to the low concentration of PCs, which are less for the reaction compared to the solid phase of the outer lipid layer, rather than the stability.  相似文献   

16.
Summary The mechanism by which the light absorption of cyanine and oxonol dyes changes in response to changes in transmembrane electrical potential has been studied. Trains of membrane potential steps produce changes in the intensity of light passing through glycerylmonooleate (GMO) bilayer lipid membranes (BLM) in the presence of these dyes. The size of the signal-averaged absorbance change for one of the cyanine dyes diS-C2-(5) is 10–5. The response time for the absorbance change of all of the dyes was 10 sec. In order for an absorption signal to be observed, the concentration of dye on both sides of the membrane must be different. Since GMO bilayer membranes are permeable to the charged dyes that were studied, the dye concentration asymmetry necessary for the optical signal had to be maintained with a constant dc membrane potential, onto which the trains of potential steps were superimposed. The more hydrophobic dyes were the most permeant. Inclusion of cholesterol in the GMO bilayers decreased the permeance of the positively charged cyanine dyes, but increased the permeance of the negatively charged oxonol dyes. The magnitude and the size of the BLM absorbance change depended on the wavelength of illumination. Comparisons of the wavelength dependence of the BLM spectra with absorption difference spectra obtained with model membrane systems allow us to postulate a mechanism for a BLM absorbance change. For the cyanine and oxonol dyes, the data are consistent with an ON-OFF mechanism where a quantity of dye undergoes a rapid potential-dependent movement between a hydrocarbon-like binding site on the membrane and the aqueous salt solution near the membrane. For some dyes, which readily aggregate on the membrane, part of the absorbance change may possibly be explained by a potential dependent change in the state of aggregation of dye molecules localized on the membrane. Mechanisms involving a potential dependent change in the polarizability of the environment of membrane-localized dye molecules cannot be excluded, but seem unlikely.  相似文献   

17.
R E Burrier  P Brecher 《Biochemistry》1984,23(22):5366-5371
Sonicated dispersions of egg yolk phosphatidylcholine and triolein as vesicles and microemulsions have been used as substrates for the assay of a purified acid lipase. Previous studies have also shown that triolein localized in the surface phase of emulsions is the preferred substrate. In this study, we examined enzyme activity following several surface modifications using both vesicles and microemulsions. When the acidic phospholipids phosphatidylserine and phosphatidic acid were incorporated into both vesicles and microemulsions at up to 10 mol % of the total phospholipid, a dose-dependent reduction in the apparent Km was observed. Using the vesicles as substrate, a dose-dependent decrease in Vmax was also observed. Agarose gel electrophoresis was used to verify suspected changes in net particle charge. Analogous inclusion of phosphatidylethanolamine, sphingomyelin, or cholesterol did not affect kinetic parameters. Addition of oleic acid to sonication mixtures produced vesicles with a decreased apparent Km and Vmax, but triolein hydrolysis in microemulsions was not significantly altered. Triolein-containing vesicles prepared by using dimyristoyl- or dipalmitoylphosphatidylcholine were hydrolyzed maximally at the gel liquid-crystalline transition temperatures of the appropriate phospholipid. Differential scanning calorimetry was used to verify the temperatures of transition in these vesicles. The results indicate that acid lipase activity is influenced by the charge or physical state of the surface phase of model substrates and suggest that degradation of core components of naturally occurring substrates such as lipoprotein may be influenced by chemical changes on the surface of these particles.  相似文献   

18.
Dipalmitoyl phosphatidylcholine vesicles incubated in the presence of increasing amounts of myristic acid showed a progressive translocation of phospholipid molecules across a dialysis membrane. The rate of phospholipid translocation increased abruptly at a ‘critical’ value of myristic acid concentration. The translocation rate of mixed dipalmitoyl phosphatidylcholine/myristic acid vesicles obtained by cosonicating the two components was also dependent on a ‘critical’ fatty acid concentration. A marked release of K+ and different responses of fluorescent probes to the fatty acid addition were observed at this concentration.  相似文献   

19.
Purified Acetylcholine Receptor (AcChR) from Torpedo has been reconstituted at low (approximately 1:3500) and high (approximately 1:560) protein to phospholipid molar ratios into vesicles containing egg phosphatidylcholine, cholesterol, and different dimyristoyl phospholipids (dimyristoyl phosphatidylcholine, phosphatidylserine, phosphatidylglycerol and phosphatidic acid) as probes to explore the effects of the protein on phospholipid organization by differential scanning calorimetry, infrared, and fluorescence spectroscopy. All the experimental results indicate that the presence of the AcChR protein, even at the lower protein to phospholipid molar ratio, directs lateral phase separation of the monoanionic phosphoryl form of the phosphatidic acid probe, causing the formation of specific phosphatidic acid-rich lipid domains that become segregated from the bulk lipids and whose extent (phosphatidic acid sequestered into the domain, out of the total population in the vesicle) is protein-dependent. Furthermore, fluorescence energy transfer using the protein tryptophan residues as energy donors and the fluorescence probes trans-parinaric acid or diphenylhexatriene as acceptors, establishes that the AcChR is included in the domain. Other dimyristoyl phospholipid probes (phosphatidylcholine, phosphatidylserine, phosphatidylglycerol) under identical conditions could not mimic the protein-induced domain formation observed with the phosphatidic acid probe and result in ideal mixing of all lipid components in the reconstituted vesicles. Likewise, in the absence of protein, all the phospholipid probes, including phosphatidic acid, exhibit ideal mixing behavior. Since phosphatidic acid and cholesterol have been implicated in functional modulation of the reconstituted AcChR, it is suggested that such a specific modulatory role could be mediated by domain segregation of the relevant lipid classes.  相似文献   

20.
(Ca2+ + Mg2+)ATPase (EC 3.6.1.3) was solubilized from human erythrocyte membranes by detergent extraction with Triton N-101 (0.5 mg/mg membrane protein) and purified by calmodulin affinity chromatography. ATPase activity was assayed in mixtures of Triton N-101 and phospholipid, without reconstitution into bilayer vesicles. At low levels of phospholipid (5 micrograms/ml), the ATPase activity was highly sensitive to the detergent concentration, with maximal activity occurring at or near the critical micelle concentration of the detergent. With increased amounts of phospholipid (50 micrograms/ml), detergent concentrations greater than the critical micelle concentration were required for maximal activity. Detergent alone did not support ATPase activity. Sonicated phospholipid in the form of vesicles was equally ineffective. Activity seemed to be dependent on the presence of detergent/phospholipid mixed micelles. The acidic phospholipids, phosphatidylserine and phosphatidylinositol, as well as the commercial phospholipid preparation, Asolectin, gave activities five to eight times greater than the same amount of phosphatidylcholine. Mixtures of phosphatidylserine and phosphatidylcholine produced intermediate ATPase activities, with the maximal value dependent on the phosphatidylserine concentration. Addition of phosphatidylcholine to fixed concentrations of phosphatidylserine caused a rise in activity that was independent of the ratio of the two phospholipids or the total phospholipid concentration. Phosphatidylcholine may therefore be irreplaceable for some aspect of ATPase function. The number of phospholipid molecules present in mixed micelles at maximal ATPase activity was calculated to be near 50. This value implied that the hydrophobic surface of the ATPase molecule must be completely coated by a single layer of phospholipid molecules for maximum activity to occur.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号