首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The normal ventral and dorsal prostatic lobes of the young adult Syrian hamster were examined at the light and electron microscopic levels. Each lobe is composed of branched tubular secretory units separated from each other by loose interacinar connective tissue and draining into the urethra. The lumen of each acinus is lined by a simple epithelium composed of columnar secretory cells with occasional small basal cells. The epithelial layer, with the thin underlying lamina propria, forms a mucosa that is often highly folded. The whole acinus is bounded by a thick muscular stroma. In each of the ventral lobes, there are three main ducts, each one formed of tubular branched tributary secretory units. The walls of the secretory acini are moderately folded. Microvilli dominate the lumenal surface of the secretory epithelial cells. The Golgi complex is very extensive and shows dilated cisternae and secretory vesicles and vacuoles of various sizes. Membrane-bounded secretory granules populate the Golgi and apical areas and are released into the acinar lumen by exocytosis. The rough endoplasmic reticulum is dispersed throughout the cytoplasm, except in the region of the Golgi apparatus. In each of the dorsal lobes, there are several main tubular ducts that open into the urethra. Both proximal (ductal) and distal portions of the glandular tree are secretory in nature. Microvilli and cytoplasmic bulges and blebs dominate the lumenal surface of the secretory cells. The cells are also characterized by highly dilated cisternae of rough endoplasmic reticulum. The secretory cells show heterogeneity in the degree of dilation and distribution of rough endoplasmic reticulum, and this heterogeneity may reflect location in the glandular tree.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
To improve the current knowledge about the digestive system in opisthobranchs, light and electron microscopy methods were used to characterize the epithelial cells in the mid‐intestine of Aplysia depilans. This epithelium is mainly formed by columnar cells intermingled with two types of secretory cells, named mucous cells and granular cells. Columnar cells bear microvilli on their apical surface and most of them are ciliated. Mitochondria, multivesicular bodies, lysosomes and lipid droplets are the main components of the cytoplasm in the region above the nucleus of these cells. Peroxisomes are mainly found in middle and basal regions, usually close to mitochondria. Mucous cells are filled with large secretory vesicles containing thin electron‐dense filaments surrounded by electron‐lucent material in which acidic mucopolysaccharides were detected. The basal region includes the nucleus, several Golgi stacks and many dilated rough endoplasmic reticulum cisternae containing tubular structures. The granular cells are characterized by very high amounts of flat rough endoplasmic reticulum cisternae and electron‐dense spherical secretory granules containing glycoproteins. Enteroendocrine cells containing small electron‐dense granules are occasionally present in the basal region of the epithelium. Intraepithelial nerve fibres are abundant and seem to establish contacts with secretory and enteroendocrine cells.  相似文献   

3.
The epithelium of anterior midgut of adult Cenocorixa bifida was examined with light and electron microscopy. The folded epithelium is composed of tall columnar cells extending to the lumen, differentiating dark and light cells with interdigitating apices and regenerative basal cells in the nidi surrounded by villiform ridges that penetrate deeply into the epithelium. The columnar cells display microvilli at their luminal surface. Microvilli lined intercellular spaces and basal plasma membrane infoldings are associated with mitochondria. These ultrastructural features suggest their role in absorption of electrolytes and nutrients from the midgut lumen. The columnar cells contain large oval nuclei with prominent nucleoli. Their cytoplasm is rich in rough endoplasmic reticulum, Golgi complexes and electron-dense secretory granules indicating that they are also engaged in synthesis of digestive enzymes. The presence of secretory granules in close proximity of the apical plasma membrane suggests the release of secretion is by exocytosis. The presence of degenerating cells containing secretory granules at the luminal surface and the occurance of empty vesicles and cell fragments in the lumen are consistent with the holocrine secretion of digestive enzymes. Apical extrusions of columnar cells filled with fine granular material are most likely formed in response to the lack of food in the midgut. The presence of laminated concretions in the cytoplasm is indicative of storageexcretion of surplus minerals. The peritrophic membrane is absent from the midgut of C. bifida.  相似文献   

4.
Human deep posterior lingual glands (von Ebner's glands) are located beneath the circumvallate papillae. They are formed by tubuloalveolar adenomeres, intercalated ducts and excretory ducts coming together in the main excretory duct. The tubuloalveolar cells, pyramid-shaped, show large and dense secretory granules (clear cored) throughout the cytoplasm, rare basal folds and packed cisternae of rough endoplasmic reticulum (RER) at the basal pole. The columnar cells of the intercalated ducts are arranged in a monolayer. They are characterized by dense, clear-core secretory granules (mostly in the apical cytoplasm), a basal nucleus, well-developed RER and Golgi apparatus, and thin filaments distributed in supra- and perinuclear cytoplasm. Striated ducts are absent. Excretory ducts, coming together in the main duct, are lined by a bistratified epithelium. The inner layer consists of columnar cells showing bundles of tonofilaments with scarce secretory activity. The outer layer is composed of basal cells lying on the basal lamina. The main excretory duct, which opens at the bottom of the vallum, shows a stratified epithelium. The outer side is composed of 2-3 layers of malpighian cells lying on the basal lamina. The inner side consists of a single layer of cuboidal-columnar cells with dense apical granules and well-developed organelles synthesizing and condensing secretions. These cells interpolate with goblet cells, rare mitochondria-rich cells, ciliated cells and numerous small globous cells showing a clear matrix and lacking secretory granules. The cilia show a 9 + 2 microtubular structure with basal bodies provided with striated rootlets. Myoepithelial cells surround with their processes the basal portions of the secretory cells and the intercalated ducts. The conclusions concern some comparative aspects and some hypothesis on the functional role of goblet cells, ciliated cells and epithelial cells lining the different ducts, also in relation to the final secretory product.  相似文献   

5.
The coagulating gland of the rat synthesizes two prevalent secretory proteins (transglutaminase and 115 K) that are discharched in a different manner, one being secreted in an apocrine fashion (transglutaminase) and the other one in a merocrine way (115 K). Differences in the intra- cellular pathway and the release of either protein were studied using immunofluorescence on semithin sections, immunoelectron microscopy of preembedding-processed chopper sections and postembedding-processed ultrathin sections of rat coagulating gland. Immunohistochemical staining using an anti-transglutaminase antibody resulted in dense labeling of the cytoplasm of secretory cells and their apical blebs, whereas the cisternae of the rough endoplasmic reticulum and the Golgi apparatus were completely unlabeled. When, on the contrary, the anti-115 K antiserum was used, dense labeling of the cisternae of the rough endoplasmic reticulum, the Golgi apparatus, and the secretory granules was seen. Intraluminal secretion was also labeled, but the secretory blebs remained unlabeled. Our findings show that, in the coagulating gland of the male rat, the two secretory proteins studied are processed in parallel, but at completely different intracellular pathways. They are released via different extrusion mechanisms. Transglutaminase is synthesized outside the endoplasmic reticulum, reaches the apical cell pole by free flow in the cytoplasm, and is released via apocrine blebs, the membranes of which appear to be derived from the apical plasma membrane. The protein 115 K, on the other hand, follows the classic route, being synthesized within the cisternae of rough endoplasmic reticulum, subsequently glycosylated in the Golgi apparatus, and released in a merocrine fashion. The mutual exclusion of the two secretory pathways and the regulation of the alternative release mechanism are still unresolved issues.  相似文献   

6.
Three different types of lingual papilla were observed by scanning electron microscopy on the dorsal lingual epithelium of the lizard Gekko japonicus. Dome-shaped lingual papillae were located at the apex. Flat, fan-shaped lingual papillae were seen in the widest area of the lingual body. Long, scale-like lingual papillae were arranged on the latero-posterior dorsal surface. At higher magnification, microvilli and microridges were seen to be widely distributed over the surface of the papillae. By light microscopy, the epithelium of the dome-shaped papillae was composed of single, columnar epithelial cells filled with secretory granules. The tip of the epithelium of the fan-shaped and scale-like papillae was composed of stratified squamous epithelial cells without granules. The major part of the epithelium of these two types of papilla, except the tip area, was also composed of single, columnar epithelial cells with secretory granules. By transmission electron microscopy, a nucleus without a defined shape was seen to be located in the basal part of each of the single, columnar epithelial cells. Rough-surfaced endoplasmic reticulum and Golgi apparatus were well developed around the nucleus. The other, major part of the cytoplasm was filled with the spherical secretory granules, a large number of which had very electron-dense cores and moderately electron-dense peripheral regions. In the stratified squamous epithelium, a nucleus, which tended to be condensed on the free-surface side, was located in the center of each cell. Mitochondria, endoplasmic reticulum, and vesicles were observed in the cytoplasm.  相似文献   

7.
The peritrophic membrane of Drosophila melanogaster consists of four layers, each associated with a specific region of the folded epithelial lining of the cardia. The epithelium is adapted to produce this multilaminar peritrophic membrane by bringing together several regions of foregut and midgut, each characterized by a distinctively differentiated cell type. The very thin, electron-dense inner layer of the peritrophic membrane originates adjacent to the cuticular surface of the stomadeal valve and so appears to require some contribution by the underlying foregut cells. These foregut cells are characterized by dense concentrations of glycogen, extensive arrays of smooth endoplasmic reticulum, and pleated apical plasma membranes. The second and thickest layer of the peritrophic membrane coalesces from amorphous, periodic acid-Schiff-positive material between the microvilli of midgut cells in the neck of the valve. The third layer of the peritrophic membrane is composed of fine electron-dense granules associated with the tall midgut cells of the outer cardia wall. These columnar cells are characterized by cytoplasm filled with extensive rough endoplasmic reticulum and numerous Golgi bodies and by an apical projection filled with secretory vesicles and covered by microvilli. The fourth, outer layer of the peritrophic membrane originates over the brush border of the cuboidal midgut cells, which connect the cardia with the ventriculus.  相似文献   

8.
The lining epithelium of secretory end pieces and central glandular duct in the seminal vesicle of the water buffalo (Bubalus bubalis) consists of columnar principal and small polymorphous basal cells. A system of intercellular and even intracellular canaliculi enlarges the secretory surface. The most prominent organelle of the columnar principal cells is the granular endoplasmic reticulum, forming large aggregates of parallel lamellae. Using antibodies against the neural cell adhesion molecule L1 and the neural marker protein gene product 9.5 (PGP 9.5), the innervation pattern of the seminal vesicle becomes evident. The muscular layer surrounding the propria contains a dense network of unmyelinated fibers. Thicker bundles traverse the muscular layer to reach the propria. Around glandular secretory tubules and below the epithelial lining of the glandular duct a tightly woven subepithelial plexus is observed which sends short penetrating branches into the basal zone of the epithelium. These intraepithelial nerves are devoid of Schwann cells and basal lamina (naked axons) and are situated within the intercellular spaces between principal and basal cells. Acetylcholinesterase histochemistry with short (1-2 h) incubation times, dopamine-beta-hydroxylase immunohistochemistry and ultrastructural study of transmitter-containing vesicles was performed. The results suggest that muscular contraction in the seminal vesicle is predominantly under the influence of the sympathetic nervous system, whereas secretory epithelial function is regulated by both sympathetic and parasympathetic fibers.  相似文献   

9.
The tubular accessory reproductive glands of the male mealworm beetle consist of a secretory epithelium surrounded by a thin muscular sheath. Each columnar secretory cell is divisible into three zones: basal which is adjacent to the muscle layer and contains rough endoplasmic reticulum and Golgi, intermediate, which contains endoplasmic reticulum and Golgi zones in the immature gland and is filled with secretory vesicles in the mature gland, and apical. Maturation also involves proliferation and organization of the rough endoplasmic reticulum in the basal and intermediate zone. The process appears to be complete at four days after ecdysis. Parallels with other insect glands and with the mammalian prostate are striking.  相似文献   

10.
Morphology of the bovine epididymis   总被引:1,自引:0,他引:1  
The epididymis of the bull was divided into six regions, and morphological differences between regions were studied. The epithelium of all regions contained four cell types: principal and basal epithelial cells, and intraepithelial lymphocytes and macrophages. The epithelium of regions II-V also contained a few apical cells. Principal cells of all regions possessed an endocytotic apparatus including stereocilia underlain by canaliculi, coated vesicles, and subapical vacuoles (up to 1 micron in diameter); however, large vacuoles with a flocculent content and multivesicular bodies (up to 5 microns in diameter) were most numerous in regions II, III, and IV. The unique features of principal cells of region I were the presence of well-developed Golgi bodies, few lipid droplets, and whorls of smooth endoplasmic reticulum in the supranuclear cytoplasm. Numerous mitochondria, distended cisternae of rough endoplasmic reticulum, and dense granules characterized the infranuclear cytoplasm of the principal cells of regions II-VI; however, these features were more developed in region V. Apical cells were characterized by the apical location of the nucleus, many mitochondria in the apical cytoplasm, and few microvilli at the luminal border. Basal cells with few cytoplasmic lipid droplets were present throughout the length of the epididymis but appeared more numerous in region V. Intraepithelial lymphocytes were present at all levels of the epithelium but were never seen in the lumen. Intraepithelial macrophages containing heterogeneous granules, eccentric nuclei, and pseudopods were invariably seen near the basal area of the epithelium in all regions. These observations are discussed in an effort to define the role of each cell type in the epididymal epithelium.  相似文献   

11.
The head, body, and tail regions of the epididymal duct (or caput, corpus, and cauda epididymis) in two healthy and sexually mature Sus domesticus males were examined by light microscopy and by scanning or transmission electron microscopy. The epididymal duct is lined with a pseudostratified epithelium with stereocilia and covered by a muscular-connective tissue sheath that is thickest in the tail region. Diameter of the epididymal duct and height of epididymal epithelium are maximal in the head region. Length of the sterocilia and spermatic density are higher in the head and body regions. Somatic cells are abundant in the tail region. The epididymal epithelium is made up of five cell types: basal cells, principal cells, clear cells, narrow cells, and basophilic cells. Abundant secretory units are observed in the supranuclear cytoplasm of columnar principal cells. Each mature secretory unit is constituted by electron-dense secretion granules covered by more than eight layers of cisternae of reticulum between which the mitochondria are intercalated. In the apical cytoplasm the isolated secretion granules become larger and less electron dense. The apical surface is covered by numerous sterocilia. Basal cells are pyramidal and less high than principal cells. The clear cells, arranged between the principal cells, are characterized by the presence of abundant vesicular elements and electron-lucid secretion granules, and by an apocrine secretory process. The narrow cells are characterized by their highly vacuolized cytoplasm. Intermediate cell typologies can be found among basal, principal, clear, and narrow cells, which could be four developmental stages of the same cell type. The basophilic cells are spheroidal and are found at different levels between the epithelial cells and in the connective tissue underlying the epithelium. © 1993 Wiley-Liss, Inc.  相似文献   

12.
The ultrastructure of the parathyroid glands of adult Japanese lizards (Takydromus tachydromoides) in the spring and summer season was examined. The parenchyma of the gland consists of chief cells arranged in cords or solid masses. Many chief cells contain numerous free ribosomes and mitochondria, well-developed Golgi complexes, a few lysosome-like bodies, some multivesicular bodies and relatively numerous lipid droplets. The endoplasmic reticulum is mainly smooth-surfaced. Cisternae of the rough endoplasmic reticulum are distributed randomly in the cytoplasm. Small coated vesicles of 700-800 Å in diameter are found occasionally in the cytoplasm, especially in the Golgi region. The chief cells contain occasional secretory granules of 150-300 nm in diameter that are distributed randomly in the cytoplasm and lie close to the plasma membrane. Electron dense material similar to the contents of the secretory granules is observed in the enlarged intercellular space. These findings suggest that the secretory granules may be discharged into the intercellular space by an eruptocrine type of secretion. Coated vesicles (invaginations) connected to the plasma membrane and smooth vesicles arranged in a row near the plasma membrane are observed. It is suggested that such coated vesicles may take up extracellular proteins. The accumulation of microfilaments is sometimes recognized. Morphological evidence of synthetic and secretory activities in the chief cells suggests active parathyroid function in the Japanese lizard during the spring and summer season.  相似文献   

13.
An electron microscopic study was made on the structure of the testicular transitional zone (TZ) in the adult rat. The TZ proper consists of modified Sertoli cellss, with only a few spermatogonia and macrophages, surrounding distally a very narrow lumen. The TZ Sertoli cells have nuclei with a somewhat coarser matrix and more peripheral heterochromatin than Sertoli cell nuclei of the nearby seminiferous tubules, and the electron density of the cytoplasm varies from cell to cell. Smooth endoplasmic reticulum is abundant, but usually there are also scattered ribosomal rosettes and an occasional profile of rough endoplasmic reticulum. Microtubules are very numerous in the columnar portion of the cell, and laminar structures seemingly joining the cell surfaces are sometimes seen. Lipid droplets and lysosmal structures are frequent cellular components in proximal TZ Sertoli cells. Empty intracellular vacuoles are abundant, sometimes arranged around areas of smooth endoplasmic reticulum. Occasionally, membrane-limited fine granules and vacuoles are seen within Sertoli cells and also in the TZ lumen, suggesting a possible secretory activity by these cells. The apical processes of the Sertoli cells form large vacuolar structures, and in the basal parts of the epithelium vacuoles with capillary-like appearance are frequently seen. Phagocytosis of germinal cells by the Sertoli cells occurs in the proximal region of the TZ. Round waste bodies in contact with the Sertoli cell apices protruding into the tubulus rectus, are also common. The tunica propria of the TZ is thickened and somewhat wrinkled, and in the proximal region the myoid cell layer loses its continuity and is replaced by fibroblasts. The epithelium of the tubulus rectus adjacent to the TZ consists of several overlapping epithelial cells. The typical junctional complexes between TZ Sertoli cells appear to be impermeable to the lanthanum tracer.  相似文献   

14.
Podisus nigrispinus Dallas (Hemiptera: Pentatomidae) is a zoophytophagous insect with a potential for use as a biological control agent in agriculture because nymphs and adults actively prey on various insects by inserting mouthparts and regurgitating the contents of the salivary glands inside the prey, causing rapid paralysis and death. However, the substances found in saliva of P. nigrispinus that causes the death of the prey are unknown. As a first step to identify the component of the saliva of P. nigrispinus, this study evaluated the ultrastructure and cytochemistry of the salivary glands of P. nigrispinus. The salivary system of P. nigrispinus has a pair of principal salivary glands, which are bilobed with a short anterior lobe and a long posterior lobe, and a pair of tubular accessory glands. The principal gland epithelium is composed of a single layer of cells enclosing a large lumen. Epithelial cells of the principal salivary gland vary from cubic to columnar shape, with one or two spherical and well-developed nuclei. Cells of the anterior lobe of the principal salivary gland have an apical surface with narrow, short, and irregular plasma membrane foldings; apical and perinuclear cytoplasm rich in rough endoplasmic reticulum; and mitochondria with tubular cristae. The basal portion of the secretory cells has mitochondria associated with many basal plasma membrane infoldings that are short but form large extracellular canals. Secretory granules with electron-dense core and electron-transparent peripheral are dispersed throughout the cytoplasm. Cells of the posterior lobe of the principal salivary gland are similar to those of the anterior lobe, except for the presence of mitochondria with transverse cristae. The accessory salivary gland cells are columnar with apical microvilli, have well-developed nucleus and cytoplasm rich in rough endoplasmic reticulum, and have secretory granules. Cytochemical tests showed positive reactions for carbohydrate, protein, and acid phosphatase in different regions of the glandular system. The principal salivary glands of P. nigrispinus do not have muscle cells attached to its wall, suggesting that saliva-releasing mechanism may occurs with the participation of some thorax muscles. The cytochemical and ultrastructural features suggest that the principal and accessory salivary glands play a role in protein synthesis of the saliva.  相似文献   

15.
The stratified epithelium of the central collecting duct of the elasmobranch(Scylliorhinus canicula, Galeorhinus galeus andRaja batis) rectal gland consists of 3 to 6 layers of cells: one superficial, and several basal cell layers. In the superficial layer normally three different types of cells can be distinguished (a) goblet cells, (b) cells with apical secretory granules and (c) flask-shaped cells. The superficial layer ofScylliorhinus canicula reveals a further cell type, so-called mitochondria-rich cells. The epithelial areas built by these cells are always single-layered. The goblet-cells are very similar to goblet cells found in the intestine of vertebrates. Their dominant structures are a well developed ergastoplasm, a large Golgi-apparatus and mucous granules compactly filling the apical cell region. The cells with apical secretory granules are columnar or dumbbell shaped. They contain a rough-surfaced endoplasmic reticulum and a well developed Golgi-apparatus. The secretory granules are loosely distributed within the Golgi-field and are arranged in one or more rows just below the cell apex. The flask shaped cells are characterized by a cytoplasm rich in small vesicles. They posses few dictyosomes and several small mitochondria. There is some evidence for endocytotic activity. The mitochondria-rich cells are characterized by lateral cell interdigitations, by a basal labyrinth and by numerous mitochondria. They are similar to the excretory cells of rectal gland parenchyma. The cells of the basal epithelium layers are differenciated only to a small extent. They are joined in a loose formation with white blood cells often found in the intercellular spaces. The function of the elasmobranch rectal gland is not restricted to the excretion of concentrated salt solutions. There is also a significant secretion of mucous substances. The tubule glands are primarily excretory, the epithelium cells of the central collecting duct mainly secretory in function.  相似文献   

16.
The ventriculus and the midgut caeca of the fed females of Anystis baccarum (L.) were investigated by using light and electron microscopy. In addition to the main type of polyfunctional digestive cells, special secretory cells were detected in the anterior region of the ventriculus. The shape and the ultrastructure of the digestive cells vary depending on their physiological state. Intracellular digestion, absorption or excretion processes prevail at different stages of the cell cycle. The secretory cells are characterized by the presence of extensive rough endoplasmic reticulum, filling whole space of the cell. These cells do not contain the apical network of pinocytotic canals, which are typical for the digestive cells. Three types of secretory granules were found in the cytoplasm of the secretory cells that probably correspond to three sequential stages of granulogenesis. The primary secretory granules are formed by the fusion of Golgi vesicles. The primary granules fuse to form complex vesicles with heterogeneous contents. These secondary granules aggregate to form very large inclusions of high electron density (tertiary secretory granules), which probably represent the storage of the secretory product. All types of secretory granules were observed close to the apical plasmalemma.  相似文献   

17.
The oesophagus and crop epithelium of Aplysia depilans consist in a single layer of columnar cells with apical microvilli, and some of them also possess cilia. Cell membrane invaginations, small vesicles, multivesicular bodies and many dense lysosomes were observed in the apical region of the cytoplasm. In most cells, a very large lipid droplet was observed above the nucleus and a smaller one was frequently found below the nucleus; glycogen granules are also present. Considering these ultrastructural features, it seems that these cells collect nutritive substances from the lumen by endocytosis, digest them in the apical lysosomes and store the resulting products. The cell bodies of mucus secreting flask-shaped cells are subepithelial in the oesophagus and intraepithelial in the crop. Histochemistry methods showed that the secretion stored in these cells contains acidic polysaccharides. Secretory vesicles with thin electron-dense filaments scattered in an electron-lucent background fill most of these cells, and the basal nucleus is surrounded by dilated rough endoplasmic reticulum cisternae containing small tubular structures. Considering the relatively low number of secretory cells, mucus production cannot be high. Moreover, since protein secreting cells were not observed in either oesophagus or crop, extracellular digestion in the lumen of these anterior segments of the digestive tract most probably depend on the enzymes secreted by the salivary and digestive glands.  相似文献   

18.
The epithelium lining the digestive tubules of Cardium edule consists of three cell types, namely mature digestive cells, mature secretory cells and immature flagellated cells. Both the secretory and flagellated cells exhibit a pronounced basiphilia and occur in well-defined crypts. The secretory cells are pyramidal in shape and characterized by the possession of a well-developed granular endoplasmic reticulum and Golgi apparatus. Golgi vesicles derived from the latter migrate to the apical region of the cell where they release their contents into the lumen of the tubules. It is possible that the secretion contains enzymes and although it is likely that such enzymes would function primarily in the lumen of the tubules they may also be the source of the weak proteolytic activity which has been recorded in the gastric fluid of many bivalves. The immature flagellated cells are columnar in shape and possess a poorly developed endoplasmic reticulum and numerous free ribosomes. Although no evidence for this was obtained it is suggested that they may serve to replace either or both of the mature cell types. The digestive cells vary from cuboidal to columnar, possess distinctive Golgi elements with characteristic intracisternal membranous elements, and are capable of ingesting exogenous material from the lumen of the tubule. The process of ingestion was examined following feeding experiments with (a) a mixture of iron oxide and colloidal graphite (Aquadag), (b) whole blood from pigeon and (c) ferritin. Individual particles of graphite were enclosed in phagosomes by a process of phagocytosis, while the proteins haemoglobin and ferritin were ingested by a process of pinocytosis; the membrane enclosing the pinocytic vesicles possesses a characteristic outer granular coat. The contents of both the phagocytic and pinocytic vesicles were transferred to larger bodies considered to be primarily phagosomes in the sub-apical regions of the cell. These possess an interconnecting system of membrane-bound channels which ramifies through the apical cytoplasm. Phagolysosomes deeper in the cytoplasm of the cell were identified by the presence of exogenous material and a positive reaction to tests for acid phosphatase activity. They showed changes in appearance which could be put into a series suggestive of the progressive intracellular digestion of the ingested material.  相似文献   

19.
The midgut of the females of Syringophilopsis fringilla (Fritsch) composed of anterior midgut and excretory organ (=posterior midgut) was investigated by means of light and transmission electron microscopy. The anterior midgut includes the ventriculus and two pairs of midgut caeca. These organs are lined by a similar epithelium except for the region adjacent to the coxal glands. Four cell subtypes were distinguished in the epithelium of the anterior midgut. All of them evidently represent physiological states of a single cell type. The digestive cells are most abundant. These cells are rich in rough endoplasmic reticulum and participate both in secretion and intracellular digestion. They form macropinocytotic vesicles in the apical region and a lot of secondary lysosomes in the central cytoplasm. After accumulating various residual bodies and spherites, the digestive cells transform into the excretory cells. The latter can be either extruded into the gut lumen or bud off their apical region and enter a new digestive cycle. The secretory cells were not found in all specimens examined. They are characterized by the presence of dense membrane-bounded granules, 2–4 μm in diameter, as well as by an extensive rough endoplasmic reticulum and Golgi bodies. The ventricular wall adjacent to the coxal glands demonstrates features of transporting epithelia. The cells are characterized by irregularly branched apical processes and a high concentration of mitochondria. The main function of the excretory organ (posterior midgut) is the elimination of nitrogenous waste. Formation of guanine-containing granules in the cytoplasm of the epithelial cells was shown to be associated with Golgi activity. The excretory granules are released into the gut lumen by means of eccrine or apocrine secretion. Evacuation of the fecal masses occurs periodically. Mitotic figures have been observed occasionally in the epithelial cells of the anterior midgut.  相似文献   

20.
The tubular accessory gland consists of a simple secretory epithelium surrounded by a muscular coat. Over the pupal instar, the gland increases ten-fold in volume and 15-fold in length. Pupal development is divisible into a phase of mitosis and one of cell growth. During the mitotic phase, cytoplasmic membranes are sparse and nuclei move toward the luminal face of the epithelium to undergo division. In the cell growth phase, the cells become more columnar, a few stacks of rough endoplasmic reticulum are formed, and small dense secretory vesicles appear near the apical surface. The hormonal control of the developmental sequence is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号