首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Li SJ  Bai JJ  Cai L  Ma DM  Du FF 《Mitochondrial DNA》2012,23(2):92-99
The largemouth bass belongs to the family Centrarchidae, which includes two subspecies: the northern subspecies, Micropterus salmoides salmoides, and the Florida subspecies, Micropterus salmoides floridanus. In this study, the complete mitochondrial genomes of the two subspecies were sequenced, and their genetic differences were identified. The mitogenomes of M. s. salmoides and M. s. floridanus are 16,486 and 16,479?bp in length, respectively. The two subspecies consisted of 37 genes (13 protein-coding genes, 2 ribosomal RNA, and 22 transfer RNA), which are typical for vertebrate mtDNA. Phylogenetic analysis provided statistical support for the monophyly of the family Centrarchidae. Comparison of the two subspecies' mitogenomes revealed a relatively high number (450) of single nucleotide polymorphisms (SNPs) in protein-coding genes. We characterized SNPs in the partial cytochrome c oxidase subunit 1 gene of different individuals from three cultured populations, one wild northern subspecies population, and one wild Florida subspecies population. Twenty-eight SNPs were fixed with alternative nucleotides in the two subspecies, which could be used for differentiating them. Based on this gene, phylogenetic tree and genetic distance analyses supported that cultured largemouth bass in China belongs to the northern subspecies.  相似文献   

2.
Russia and western Asia harbour trout populations that have been classified as distinct species and subspecies, most often on the basis of morphological and ecological variation. In order to assess their origins and to verify whether traditional taxonomy reflects their evolutionary distinctiveness, we documented their genetic relationships on the basis of mitochondrial DNA (mtDNA) RFLP, mtDNA sequence analysis, and allozyme variation. Both mtDNA and nuclear gene variation defined two ancient phylogenetic assemblages of populations distributed among northern (Baltic, White, Barents), and southern (Black, Caspian, Aral) sea basins, between which gene flow has been possible but limited in postglacial times. These results supported the traditional taxonomic differentiation between populations of these two regions. They provided weak support for the taxonomic distinction of southern brown trout (Salmo trutta) populations based on their basin of origin. They also refuted the hypothesis that L. Sevan trout (Salmo ischchan) diverged from a primitive brown trout ancestor. Nevertheless, all trout populations from southern sea basins possessed private alleles or mtDNA genotypes and were genetically distinct Therefore, they represent unique gene pools that warrant individual recognition for conservation and management.  相似文献   

3.
Nucleotide variation in an approximately 490 bp fragment of the mitochondrial DNA control region (mtDNA CR) was used to describe the genetic variation and phylogeographical pattern in the Eurasian beaver (Castor fiber) over its entire range. The sampling effort was focused on the relict populations that survived a drastic population bottleneck, caused by overhunting, at the end of the 19th century. A total of 152 individuals grouped into eight populations representing all currently recognized subspecies were studied. Sixteen haplotypes were detected, none of them shared among populations. Intrapopulation sequence variation was very low, most likely a result of the severe bottleneck. Extreme genetic structure could result from human-mediated extinction of intermediate populations, but it could also be an effect of prior substantial structuring of the beaver populations with watersheds of major Eurasian rivers acting as barriers to gene flow. Phylogenetic analysis revealed the presence of two mtDNA lineages: eastern (Poland, Lithuania, Russia and Mongolia) and western (Germany, Norway and France), the former comprising more divergent haplotypes. The low level of sequence divergence of the entire cytochrome b gene among six individuals representing six subspecies suggests differentiation during the last glacial period and existence of multiple glacial refugia. At least two evolutionary significant units (ESU) can be identified, the western and the eastern haplogroup. The individual relict populations should be regarded as management units, the eastern subspecies possibly also as ESUs. Guidelines for future translocations and reintroductions are proposed.  相似文献   

4.
The Far Eastern or Amur leopard (Panthera pardus orientalis) survives today as a tiny relict population of 25-40 individuals in the Russian Far East. The population descends from a 19th-century northeastern Asian subspecies whose range extended over southeastern Russia, the Korean peninsula, and northeastern China. A molecular genetic survey of nuclear microsatellite and mitochondrial DNA (mtDNA) sequence variation validates subspecies distinctiveness but also reveals a markedly reduced level of genetic variation. The amount of genetic diversity measured is the lowest among leopard subspecies and is comparable to the genetically depleted Florida panther and Asiatic lion populations. When considered in the context of nonphysiological perils that threaten small populations (e.g., chance mortality, poaching, climatic extremes, and infectious disease), the genetic and demographic data indicate a critically diminished wild population under severe threat of extinction. An established captive population of P. p. orientalis displays much higher diversity than the wild population sample, but nearly all captive individuals are derived from a history of genetic admixture with the adjacent Chinese subspecies, P. p. japonensis. The conservation management implications of potential restoration/augmentation of the wild population with immigrants from the captive population are discussed.  相似文献   

5.
Despite continuous historical distribution of the grey wolf (Canis lupus) throughout Eurasia, the species displays considerable morphological differentiation that resulted in delimitation of a number of subspecies. However, these morphological discontinuities are not always consistent with patterns of genetic differentiation. Here we assess genetic distinctiveness of grey wolves from the Caucasus (a region at the border between Europe and West Asia) that have been classified as a distinct subspecies C. l. cubanensis. We analysed their genetic variability based on mtDNA control region, microsatellite loci and genome-wide SNP genotypes (obtained for a subset of the samples), and found similar or higher levels of genetic diversity at all these types of loci as compared with other Eurasian populations. Although we found no evidence for a recent genetic bottleneck, genome-wide linkage disequilibrium patterns suggest a long-term demographic decline in the Caucasian population – a trend consistent with other Eurasian populations. Caucasian wolves share mtDNA haplotypes with both Eastern European and West Asian wolves, suggesting past or ongoing gene flow. Microsatellite data also suggest gene flow between the Caucasus and Eastern Europe. We found evidence for moderate admixture between the Caucasian wolves and domestic dogs, at a level comparable with other Eurasian populations. Taken together, our results show that Caucasian wolves are not genetically isolated from other Eurasian populations, share with them the same demographic trends, and are affected by similar conservation problems.  相似文献   

6.
The Sundarbans tiger inhabits a unique mangrove habitat and are morphologically distinct from the recognized tiger subspecies in terms of skull morphometrics and body size. Thus, there is an urgent need to assess their ecological and genetic distinctiveness and determine if Sundarbans tigers should be defined and managed as separate conservation unit. We utilized nine microsatellites and 3 kb from four mitochondrial DNA (mtDNA) genes to estimate genetic variability, population structure, demographic parameters and visualize historic and contemporary connectivity among tiger populations from Sundarbans and mainland India. We also evaluated the traits that determine exchangeability or adaptive differences among tiger populations. Data from both markers suggest that Sundarbans tiger is not a separate tiger subspecies and should be regarded as Bengal tiger (P. t. tigris) subspecies. Maximum likelihood phylogenetic analyses of the mtDNA data revealed reciprocal monophyly. Genetic differentiation was found stronger for mtDNA than nuclear DNA. Microsatellite markers indicated low genetic variation in Sundarbans tigers (He= 0.58) as compared to other mainland populations, such as northern and Peninsular (Hebetween 0.67- 0.70). Molecular data supports migration between mainland and Sundarbans populations until very recent times. We attribute this reduction in gene flow to accelerated fragmentation and habitat alteration in the landscape over the past few centuries. Demographic analyses suggest that Sundarbans tigers have diverged recently from peninsular tiger population within last 2000 years. Sundarbans tigers are the most divergent group of Bengal tigers, and ecologically non-exchangeable with other tiger populations, and thus should be managed as a separate “evolutionarily significant unit” (ESU) following the adaptive evolutionary conservation (AEC) concept.  相似文献   

7.
Aim To examine the phylogeography and population structure of three dung beetle species of the genus Trypocopris (Coleoptera, Geotrupidae). We wanted to test whether genetic differences and genealogies among populations were in accordance with morphologically described subspecies and we aimed to establish times of divergence among subspecies to depict the appropriate temporal framework of their phylogeographical differentiation. We also wished to investigate the historical demographic events and the relative influences of gene flow and drift on the distribution of genetic variability of the different populations. Location Europe (mostly Italy). Methods We collected adult males from dung pats from 15 Italian localities over the period 2000–2002. For sequence analysis, some dried specimens from Albania, Croatia, Slovakia and Spain were also used. We applied cytochrome oxidase I mitochondrial DNA sequencing and the amplified fragment length polymorphism (AFLP) technique to determine whether phylogeographical patterns within the three species support the proposed hypotheses of subspecies designations, and to detect further structure among populations that might mediate diversification. Results and main conclusions The results show a high concordance between the distribution of mtDNA variation and the main morphological groups recognized as subspecies, which thus may represent independent evolutionary units. The degree of mitochondrial divergence suggests that speciation events occurred during the Pliocene, while diversification of the main subspecific lineages took place in the Pleistocene, from c. 0.3 to 1.5 Ma. Mitochondrial and nuclear data also reveal that there is phylogeographical structuring among populations within each of the main groups and that both contemporary and historical processes determined this pattern of genetic structure. Geographical populations form monophyletic clades in both phylogenetic and network reconstructions. Despite the high levels of intrapopulational diversity, FST values indicate moderate but significant genetic differentiation among populations, and a Bayesian clustering analysis of the AFLP data clearly separates the geographical populations. Nucleotide and gene diversity estimates reveal interspecific differences in the degree of diversification among populations that may be related to the different ecological requirements of the three species.  相似文献   

8.
Gene flow among small fragmented populations is critical for maintaining genetic diversity, and therefore the evolutionary potential of a species. Concern for two New Zealand endemic subspecies, the Hector’s (Cephalorhynchus hectori hectori) and Maui’s (C. h. maui) dolphins, arises from their low abundance, slow rate of reproduction, and susceptibility to fisheries-related mortality. Our work examined genetic differentiation and migration between the subspecies and among regional and local Hector’s dolphin populations using mitochondrial (mt) DNA and microsatellite genotypes from 438 samples. Results confirmed earlier reports of a single unique mtDNA control region haplotype fixed in the Maui’s dolphin, and provided new evidence of reproductive isolation from Hector’s dolphins (9-locus microsatellite F ST?=?0.167, P?<?0.001). Independent evolutionary trajectories were also supported for Hector’s dolphin populations of the East Coast, West Coast, Te Waewae Bay and Toetoe Bay. Low asymmetrical migration rates were found among several Hector’s dolphin populations and assignment tests identified five Hector’s dolphins likely to have a migrant father from another regional population. There appears to be sufficient step-wise gene flow to maintain genetic diversity within the East and West Coasts; however, the two local South Coast populations exhibited a high degree of differentiation given their close proximity (~100?km). To maintain the evolutionary potential and long-term survival of both subspecies, genetic monitoring and conservation management must focus on maintaining corridors to preserve gene flow and prevent further population fragmentation and loss of genetic diversity, in addition to maintaining local population abundances.  相似文献   

9.
Mitochondrial DNA (mtDNA) sequences of the COI gene and the control region were used to examine the genetic population structure of Aglais urticae L. (Lepidoptera) over its entire geographic range, i.e., the Palaearctic. The phylogenetic relationships within and between A. urticae subspecies were determined and patterns of mtDNA divergence and ecological differentiation were compared. High gene flow together with a recent and sudden population expansion characterise the genetic population structure of this species. No geographically induced differentiation was observed, nor were subspecies identified as separate evolutionary units. The discrepancy between the genetic and ecological variation is most likely due to the slower rate of mtDNA evolution compared to ecological differentiation. The control region proved to be a less useful molecular marker for the population genetics and the phylogenetic reconstruction of closely related taxa in A. urticae than it has for other species. The extreme bias in adenine and thymine content (A+T=90.91%) probably renders this region highly susceptible to homoplasy, resulting in a less informative molecular marker.  相似文献   

10.
Eight traditional subspecies of tiger (Panthera tigris),of which three recently became extinct, are commonly recognized on the basis of geographic isolation and morphological characteristics. To investigate the species' evolutionary history and to establish objective methods for subspecies recognition, voucher specimens of blood, skin, hair, and/or skin biopsies from 134 tigers with verified geographic origins or heritage across the whole distribution range were examined for three molecular markers: (1) 4.0 kb of mitochondrial DNA (mtDNA) sequence; (2) allele variation in the nuclear major histocompatibility complex class II DRB gene; and (3) composite nuclear microsatellite genotypes based on 30 loci. Relatively low genetic variation with mtDNA,DRB,and microsatellite loci was found, but significant population subdivision was nonetheless apparent among five living subspecies. In addition, a distinct partition of the Indochinese subspecies P. t. corbetti in to northern Indochinese and Malayan Peninsula populations was discovered. Population genetic structure would suggest recognition of six taxonomic units or subspecies: (1) Amur tiger P. t. altaica; (2) northern Indochinese tiger P. t. corbetti; (3) South China tiger P. t. amoyensis; (4) Malayan tiger P. t. jacksoni, named for the tiger conservationist Peter Jackson; (5) Sumatran tiger P. t. sumatrae; and (6) Bengal tiger P. t. tigris. The proposed South China tiger lineage is tentative due to limited sampling. The age of the most recent common ancestor for tiger mtDNA was estimated to be 72,000-108,000 y, relatively younger than some other Panthera species. A combination of population expansions, reduced gene flow, and genetic drift following the last genetic diminution, and the recent anthropogenic range contraction, have led to the distinct genetic partitions. These results provide an explicit basis for subspecies recognition and will lead to the improved management and conservation of these recently isolated but distinct geographic populations of tigers.  相似文献   

11.
African wild dogs are large, highly mobile carnivores that are known to disperse over considerable distances and are rare throughout much of their geographical range. Consequently, genetic variation within and differentiation between geographically separated populations is predicted to be minimal. We determined the genetic diversity of mitochondrial DNA (mtDNA) control region sequences and microsatellite loci in seven populations of African wild dogs. Analysis of mtDNA nucleotide diversity suggests that, historically, wild dog populations have been small relative to other large carnivores. However, population declines due to recent habitat loss have not caused a dramatic reduction in genetic diversity. We found one historical and eight recent mtDNA genotypes in 280 individuals that defined two highly divergent clades. In contrast to a previous, more limited, mtDNA analysis, sequences from these clades are not geographically restricted to eastern or southern African populations. Rather, we found a large admixture zone spanning populations from Botswana, Zimbabwe and south-eastern Tanzania. Mitochondrial and microsatellite differentiation between populations was significant and unique mtDNA genotypes and alleles characterized the populations. However, gene flow estimates (Nm) based on microsatellite data were generally greater than one migrant per generation. In contrast, gene flow estimates based on the mtDNA control region were lower than expected given differences in the mode of inheritance of mitochondrial and nuclear markers which suggests a male bias in long-distance dispersal.  相似文献   

12.
A comprehensive study of the phylogeography and population genetics of the largest wild artiodactyl in the arid and cold‐temperate South American environments, the guanaco (Lama guanicoe) was conducted. Patterns of molecular genetic structure were described using 514 bp of mtDNA sequence and 14 biparentally inherited microsatellite markers from 314 samples. These individuals originated from 17 localities throughout the current distribution across Peru, Bolivia, Argentina and Chile. This confirmed well‐defined genetic differentiation and subspecies designation of populations geographically separated to the northwest (L. g. cacsilensis) and southeast (L. g. guanicoe) of the central Andes plateau. However, these populations are not completely isolated, as shown by admixture prevalent throughout a limited contact zone, and a strong signal of expansion from north to south in the beginning of the Holocene. Microsatellite analyses differentiated three northwestern and 4–5 southeastern populations, suggesting patterns of genetic contact among these populations. Possible genetic refuges were identified, as were source‐sink patterns of gene flow at historical and recent time scales. Conservation and management of guanaco should be implemented with an understanding of these local population dynamics while also considering the preservation of broader adaptive variation and evolutionary processes.  相似文献   

13.
At least four species of New Zealand snipes (Coenocorypha) became extinct following the introduction of predatory mammals, and another two species suffered massive range reductions. To investigate species limits and population differentiation in six of the seven remaining offshore populations, we assayed variation in nine microsatellite loci and 1,980 base pairs of four mitochondrial DNA (mtDNA) genes. Genetic diversity in all populations except the largest one on Adams Island in the Auckland Islands was very low in both genomes. Alleles were fixed at many microsatellite loci and for single mtDNA haplotypes, particularly in the populations in the Chathams, Snares, Antipodes and Campbell Islands. Strong population structure has developed, and Chathams and Snares Islands populations are effectively genetically isolated from one another and from the more southern island populations. Based on reciprocal monophyly of lineages and their morphological distinctiveness we recommend that three phylogenetic species should be recognized, C. pusilla in the Chatham Islands, C. huegeli in the Snares Islands and C. aucklandica in the southern islands. The populations of C. aucklandica in the Auckland Islands, Antipodes Island and Campbell Island may warrant recognition as subspecies, and all should be managed as separate conservation units.  相似文献   

14.
The geographical distribution of genetic variation within western lowland gorillas (Gorilla gorilla gorilla) was examined to clarify the population genetic structure and recent evolutionary history of this group. DNA was amplified from shed hair collected from sites across the range of the three traditionally recognized gorilla subspecies: western lowland (G. g. gorilla), eastern lowland (G. g. graueri) and mountain (G. g. beringei) gorillas. Nucleotide sequence variation was examined in the first hypervariable domain of the mitochondrial control region and was much higher in western lowland gorillas than in either of the other two subspecies. In addition to recapitulating the major evolutionary split between eastern and western lowland gorillas, phylogenetic analysis indicates a phylogeographical division within western lowland gorillas, one haplogroup comprising gorilla populations from eastern Nigeria through to southeast Cameroon and a second comprising all other western lowland gorillas. Within this second haplogroup, haplotypes appear to be partitioned geographically into three subgroups: (i) Equatorial Guinea, (ii) Central African Republic, and (iii) Gabon and adjacent Congo. There is also evidence of limited haplotype admixture in northeastern Gabon and southeast Cameroon. The phylogeographical patterns are broadly consistent with those predicted by current Pleistocene refuge hypotheses for the region and suggest that historical events have played an important role in shaping the population structure of this subspecies.  相似文献   

15.
We investigated genetic diversity within the southeastern beach mouse (SEBM-Peromyscus polionotus niveiventris) and also tested the hypothesis that the subspecies recognition of P.p. niveiventris, based on size and color differences, is congruent with this taxon representing a discrete evolutionary lineage. We used ten polymorphic microsatellite loci and mitochondrial cytochrome-b gene DNA sequences to investigate genetic diversity and population structure within the SEBM, and to determine the level of divergence between the SEBM and the nearest known inland subspecies of the oldfield mouse (Peromyscus polionotus rhoadsi). Moderate genetic distances were observed between the SEBM and the inland oldfield mouse based on microsatellite data, with F ST values ranging from 0.11 to 0.22 between these taxa. Additionally, mitochondrial DNA haplotypes of the SEBM formed a distinct monophyletic group relative to haplotypes sampled from P. p. rhoadsi. Based on previous estimates of rates of mitochondrial DNA evolution in rodents, we inferred that Pleistocene sea-level fluctuations are likely responsible for the historical isolation of the SEBM lineage from mainland P. polionotus. Our data demonstrate the genetic distinctiveness of the SEBM, justifying the current subspecies designation for the SEBM and its continued protection under the United States Endangered Species Act. We classify the Cape Canaveral and Smyrna Dunes Park populations of SEBM as a single evolutionary significant unit. The two known extant allopatric populations of the SEBM showed some differentiation in microsatellite frequencies and were moderately reciprocally distinguishable based on assignment to distinct genetic clusters by a Bayesian admixture procedure. These results justify the classification of these two extant SEBM populations as distinct management units that should be independent targets of management and conservation attention.  相似文献   

16.
Samples of 162 impala antelope (Aepyceros melampus) from throughout its distribution range in sub-Saharan Africa were surveyed using eight polymorphic microsatellite loci. Furthermore, 155 previously published mitochondrial DNA (mtDNA) sequences from the same localities were reanalyzed. Two subspecies of impala are presently recognized--the isolated black-faced impala (Aepyceros melampus petersi) in southwest Africa and the common impala (Aepyceros melampus melampus) abundant in southern and east Africa. All tests performed indicated significant genetic differentiation at the subspecific level. Furthermore, individual-based analyses split the common impala subspecies into two distinct genetic groups, conforming with regional geographic affiliation to southern or east Africa. This was supported by assignment tests, genetic distance measures, pairwise theta values, and analysis of molecular variance. We suggest that the presence of such previously unknown regional structuring within the subspecies reflects a pattern of colonization from a formerly large panmictic population in southern Africa toward east Africa. This scenario was supported by a progressive decline in population diversity indices toward east Africa and a significant increase in the quantity theta/(1 - theta). Both microsatellite and mtDNA data indicated a genetic distinctiveness of the Samburu population in Kenya.  相似文献   

17.
The genetic structure and the phylogenetic relationships among five Balkan populations of trout Salmo trutta that have been classified earlier into five different taxa were studied, using microsatellite and mitochondrial DNA (mtDNA) analyses. The pattern of population differentiation observed at microsatellites differed to that depicted by mtDNA variation, yet both methods indicated a very strong partitioning of the genetic variation among sampling locations. Results thus suggest that conservation strategies should be directed towards preserving the genetic integrity and uniqueness of each population.  相似文献   

18.
Subspecies complexes may provide valuable insights into the early stages of the speciation process. The bluethroat (Luscinia svecica) consists of many morphologically distinct subspecies that differ most strikingly in the ornamental colour pattern of the male throat. We investigated the genetic and phenotypic differentiation in this subspecies complex, using (i) microsatellite genotyping (11 loci) of a sample of 364 individuals from bluethroat populations in Europe and Asia, and (ii) spectrometric and morphological measurements of a sample of 131 museum skin specimens. Population genetic analyses, based on microsatellite allele frequency variation, revealed a slight but significant overall population differentiation (F(ST) = 0.042). There was a well-differentiated southern group of subspecies with white or no throat spots and a less-differentiated northern group of chestnut-spotted populations. Phylogenetic analyses indicated that the southern all-blue and white-spotted forms are ancestral to the chestnut-spotted subspecies. In addition to the qualitative variation in throat plumage pattern already described in the literature, we found significant quantitative variation among subspecies in hue, chroma and brightness of the ultraviolet (UV)/blue throat coloration, and this variation seemed to be unrelated to the phylogenetic distance between subspecies.  相似文献   

19.
To assess the genetic diversity of Japanese native horse populations, we examined seven such populations using mitochondrial DNA (mtDNA) and microsatellite analyses. Four reference populations of Mongolian horses and European breeds were employed as other equids. In the mtDNA analysis, the control region (D-loop) of 411 bp was sequenced, and 12 haplotypes with 33 variable sites were identified in the Japanese native horses. The phylogenetic tree constructed by haplogrouping and using worldwide geographic references indicated that the haplotypes of the Japanese native horses were derived from six equid clusters. Compared with the foreign populations, the Japanese native populations showed lower within-population diversity and higher between-population differentiation. Microsatellite analysis, using 27 markers, found an average number of alleles per locus of 9.6 in 318 native and foreign horses. In most native populations, the within-population diversity was lower than that observed in foreign populations. The genetic distance matrix based on allelic frequency indicated that several native populations had notably high between-population differentiation. The molecular coancestry-based genetic distance matrix revealed that the European populations were differentiated from the Japanese and Mongolian populations, and no clear groups could be identified among the Japanese native horse populations. The genetic distance matrices had few correlations with the geographic distribution of the Japanese native populations. Based on the results of both mtDNA and microsatellite analyses, it could be speculated that each native population was formed by the founder populations derived from Mongolian horses. The genetic construction of each population appears to have been derived from independent breeding in each local area since the time of population fission, and this was accompanied by drastic genetic drift in recent times. This information will help to elucidate the ancestry of Japanese native horses. An erratum to this article can be found at  相似文献   

20.
Populations of an organism living in marked geographical or evolutionary isolation from other populations of the same species are often termed subspecies and expected to show some degree of genetic distinctiveness. The common chimpanzee (Pan troglodytes) is currently described as four geographically delimited subspecies: the western (P. t. verus), the nigerian‐cameroonian (P. t. ellioti), the central (P. t. troglodytes) and the eastern (P. t. schweinfurthii) chimpanzees. Although these taxa would be expected to be reciprocally monophyletic, studies have not always consistently resolved the central and eastern chimpanzee taxa. Most studies, however, used data from individuals of unknown or approximate geographic provenance. Thus, genetic data from samples of known origin may shed light on the evolutionary relationship of these subspecies. We generated microsatellite genotypes from noninvasively collected fecal samples of 185 central chimpanzees that were sampled across large parts of their range and analyzed them together with 283 published eastern chimpanzee genotypes from known localities. We observed a clear signal of isolation by distance across both subspecies. Further, we found that a large proportion of comparisons between groups taken from the same subspecies showed higher genetic differentiation than the least differentiated between‐subspecies comparison. This proportion decreased substantially when we simulated a more clumped sampling scheme by including fewer groups. Our results support the general concept that the distribution of the sampled individuals can dramatically affect the inference of genetic population structure. With regard to chimpanzees, our results emphasize the close relationship of equatorial chimpanzees from central and eastern equatorial Africa and the difficult nature of subspecies definitions. Am J Phys Anthropol 156:181–191, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号