首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two populations of beluga whales (Delphinapterus leucas), the Eastern Beaufort Sea (BS) and Eastern Chukchi Sea (ECS), make extensive seasonal migrations into the Pacific Arctic. However, the extent to which these populations overlap in time and space is not known. We quantified distribution and migration patterns for BS and ECS belugas using daily locations from whales tracked with satellite-linked transmitters. Home ranges and core areas in summer (July and August) and in each month (July–November), daily displacement, dispersal from core areas, and autumn migration timing were estimated. Distinct summer and fall distribution patterns and staggered autumn migration timing were identified for BS and ECS whales. Summer home ranges for each population had less than 10 % overlap. Monthly home ranges were also relatively distinct between populations except in September (up to 88 % home range overlap). A distinct east–west shift in focal area use occurred in September that persisted into October, with the two populations essentially switching longitudinal positions. Highest daily displacements occurred during the migratory period in September for BS whales and October for ECS whales, further indicating westward fall migration was offset between populations. Sexual segregation of males and females within a population also varied monthly. Autumn migration timing as well as differences in spatial and temporal segregation between BS and ECS beluga populations may be a result of maternally driven philopatry and population-specific adaptations to dynamically available resources. Our results contribute to the management of these populations by identifying seasonal area use and differences in migration patterns.  相似文献   

2.
The Western Arctic bowhead whale (Balaena mysticetus) is highly adapted to sea ice and annually migrates through the Bering, Chukchi, and Beaufort seas. While the overall distribution and seasonal movements of bowhead whales are mostly understood, information about their distribution in the Alaskan Beaufort Sea in early to mid-summer has not been well documented. In July 2011, we conducted an exploratory flight in the Alaskan Beaufort Sea, north of Camden Bay (71°N 144°W), near the location of a single satellite-tagged bowhead whale. Eighteen bowhead whales were observed, and behavior consistent with feeding was documented. To our knowledge, this is the first documentation of behavior consistent with feeding north of Camden Bay in mid-July. Few studies have focused on bowhead whale distribution in the Alaskan Beaufort Sea in early to mid-summer, and no long-term, region-wide surveys have been conducted during summer. Bowhead whales are already exposed to anthropogenic disturbance in the Canadian Beaufort Sea in summer, the Alaskan Beaufort Sea in fall, and the Chukchi and Bering seas from fall through spring. The presence of bowhead whale aggregations in the Alaskan Beaufort Sea in summer should be considered when assessing the cumulative effects of human-related activities.  相似文献   

3.

Aim

Climate change is fundamentally altering habitats, with complex consequences for species across the globe. The Arctic has warmed 2–3 times faster than the global average, and unprecedented sea ice loss can have multiple outcomes for ice‐associated marine predators. Our goal was to assess impacts of sea ice loss on population‐specific habitat and behaviour of a migratory Arctic cetacean.

Location

Arctic Ocean.

Methods

Using satellite telemetry data collected during summer‐fall from sympatric beluga whale (Delphinapterus leucas) populations (“Chukchi” and “Beaufort” belugas), we applied generalized estimating equations to evaluate shifts in sea ice habitat associations and diving behaviour during two periods: 1993–2002 (“early”) and 2004–2012 (“late”). We used resource selection functions to assess changes in sea ice selection as well as predict trends in habitat selection and “optimal” habitat, based on satellite‐derived sea ice data from 1990 to 2014.

Results

Sea ice cover declined substantially between periods, and Chukchi belugas specifically used significantly lower sea ice concentrations during the late than early period. Use of bathymetric features did not change between periods for either population. Population‐specific sea ice selection, predicted habitat and the amount of optimal habitat also generally did not change during 1990–2014. Chukchi belugas tracked during 2007–2012 made significantly more long‐duration and deeper dives than those tracked during 1998–2002.

Main conclusions

Taken together, our results suggest bathymetric parameters are consistent predictors of summer‐fall beluga habitat rather than selection for specific sea ice conditions during recent sea ice loss. Beluga whales were able to mediate habitat change despite their sea ice associations. However, trends towards prolonged and deeper diving possibly indicate shifting foraging opportunities associated with ecological changes that occur in concert with sea ice loss. Our results highlight that responses by some Arctic marine wildlife can be indirect and variable among populations, which could be included in predictions for the future.
  相似文献   

4.
This paper compares the behavior of bowhead whales of the Davis Strait/Baffin Bay stock, as observed along the east coast of Baffin Island in 1979–1986, with behavior of the Bering/Chukchi/Beaufort Sea stock observed in the Beaufort Sea in 1980–1986. All data used here were collected during late summer and early autumn in the absence of acute human disturbance. The behavioral repertoires of the two populations were similar. However, quantitative differences were found for whales engaged in all three activities studied: (1) Bowheads feeding in deep water off Isabella Bay, Baffin Island, had longer dives and surfacings, on average, than noted for bowheads feeding in the Beaufort Sea. (2) Among whales socializing in shallow water, we saw sexual interactions more often at Isabella Bay than in the Beaufort Sea. Calls emitted by socializing whales off Baffin Island were similar to those heard in the Chukchi and Beaufort Seas. However, pulsed tonal calls were longer off Baffin Island, and previously undescribed mechanical "crunch" sounds were recorded there near socializing bowheads. (3) During autumn migration, "fluke-out" dives were less common, and dive durations were longer, in the Beaufort Sea than off Baffin Island (P<0.001). Multivariate and other analyses indicated that some but not all differences can be ascribed to regional differences in the natural environment or in whale activities, However, during 1974–1986, Bering/Chukchi/Beaufort bowheads were exposed to more industrial, hunting and other human activity than Davis Strait/Baffin Bay bowheads. The "inconspicuous" behavior during autumn migration in the Beaufort may have been attributable to human activities, but causative links cannot be isolated.  相似文献   

5.
At least five populations (stocks) of beluga whales (Delphinapterus leucas) are thought to winter in the Being Sea, including the Bristol Bay, Eastern Bering Sea (Norton Sound), Anadyr, Eastern Chukchi Sea, and Eastern Beaufort Sea (Mackenzie) populations. Belugas from each population have been tagged with satellite‐linked transmitters, allowing us to describe their winter (January–March) distribution. The objectives of this paper were to determine: (1) If each population winters in the Bering Sea, and if so, where? (2) Do populations return to the same area each year (i.e., are wintering areas traditional)? (3) To what extent do the winter ranges of different populations overlap? Tagged belugas from all five populations either remained in, or moved into, the Bering Sea and spent the winter there. Each population wintered in a different part of the Bering Sea and populations with multiple years of data (four of five) returned to the same regions in multiple years. When data were available from two populations that overlapped in the same year, they did not occupy the shared area at the same time. Although our sample sizes were small, the evidence suggests belugas from different populations have traditional winter ranges that are mostly exclusive to each population.  相似文献   

6.
Seasonal migrations of beluga whales from the Sakhalin-Amur aggregation in the Sea of Okhotsk were investigated with the use of satellite telemetry. Satellite tags were attached to four females captured near Chkalova Island, Sakhalin Bay, in August 2007. At 5 weeks after tagging, the belugas left the Chkalova Island area and moved to the Nikolaya and Ul’banskii Bays in the Shantar Sea. The animals stayed in these bays (mainly in Nikolaya Bay) until the end of autumn and then traveled northward to deeper waters. In winter and spring, they preferred to stay in the regions with dense ice cover or close to the ice edge. During the winter migration, the tagged whales, as a rule, did not keep together, although they followed the same course with a little time lag. The female whose tag transmitted the longest (9.5 months) returned to Chkalova Island in late May and thus completed the seasonal migration cycle. Based on the data on the migration routes of the tagged belugas, we suggest that the Sakhalin-Amur and Shantar aggregations interact in autumn. It is also possible that they have similar winter migratory paths  相似文献   

7.
Beluga whales (Delphinapterus leucas) are the most abundant odontocetes in Arctic waters and are thus thought to influence food web structure and function. The diet of the Beaufort Sea beluga population is not well known, partly due to the inherent difficulty of observing feeding behaviour in Arctic marine cetaceans. To determine which prey items are critical to the Beaufort Sea beluga diet we first examine and describe the Mackenzie Delta and Beaufort Sea food web using fatty acid analyses. Fatty acid profiles effectively partitioned prey items into groups associated with their habitat and feeding ecology. Next, the relative contribution of various prey items to beluga diet was investigated using fatty acids. Finally, beluga diet variability was examined as a function of body size, a known correlate of habitat use. Beluga appeared to feed predominantly on Arctic cod (Boreogadus saida) collected from near shore and offshore regions. Size related dietary differences suggested larger sized beluga preferred offshore Arctic cod given the shared high levels of long chain monounsaturates, whereas smaller sized beluga appeared to feed on prey in their near shore habitats that included near shore Arctic cod. The presence of Arctic cod groups in shallow near shore and deep offshore habitats may facilitate the behavioural segregation of beluga habitat use as it relates to their size and resource requirements. Given Arctic cod are a sea ice associated fish combined with the accelerated sea ice loss in this region, beluga whales may need to adapt to new dietary regimes.  相似文献   

8.
Population structure in many Arctic marine mammal species reflects a dynamic interplay between physical isolating mechanisms and the extent to which dispersal opportunities are met. We examined variation within mtDNA and eight microsatellite markers to investigate population structure and demographic history in beluga whales in the North Atlantic. Genetic heterogeneity was observed between Svalbard and West Greenland that reveals limited gene flow over ecological time scales. Differentiation was also recorded between Atlantic belugas and two previously studied populations in the North Pacific, the Beaufort Sea and Gulf of Alaska. However, Bayesian cluster analysis of the nDNA data identified two population clusters that did not correspond to the respective ocean basins, as predicted, but to: (1) Arctic (Svalbard–White Sea–Greenland–Beaufort Sea) and (2) Subarctic (Gulf of Alaska) regions. Similarly, the deepest phylogeographic signal was between the Arctic populations and the Gulf of Alaska. Fitting an isolation-with-migration model yielded genetic abundance estimates that match census estimates and revealed that Svalbard and the Beaufort Sea likely diverged 7,600–35,400 years ago but have experienced recurrent periods with gene flow since then, most likely via the Russian Arctic during subsequent warm periods. Considering current projections of continued sea ice losses in the Arctic, this study identified likely routes of future contact among extant beluga populations, and other mobile marine species, which have implications for genetic introgression, health, ecology and behavior.  相似文献   

9.
An unusual number of killer whales appeared in inshore waters of the southeastern Bering Sea in summer 1989 and 1990. Multiple sightings occurred in Bristol and Kuskokwim bays where killer whales had been seen only rarely in previous years. Three animals became stranded on mud flats in Kuskokwim Bay but were able to free themselves on a high tide. Killer whales were observed interacting with salmon, harbor seals, Steller sea lions, walruses, and beluga whales. Detailed observations were made of killer whales attacking belugas in the Naknek River. Local conditions and behavioral adaptations may reduce the susceptibility of belugas to killer whale predation. Continued killer whale activity in this area would be unlikely to affect fish resources, but might have some influence on beluga whales.  相似文献   

10.
Under a U.S.-U.S.S.R. cooperative Marine Mammal Project, shipboard cruises were made in 1979, 1980 and 1982, primarily to determine whether there is a substock of western Arctic bowhead whales ( Balaena mysticetus ) that summers in the western Chukchi Sea instead of migrating to the Beaufort Sea. More than 100 bowheads were sighted along the north Chukotka coast of Siberia in October 1979, and more than 200 bowheads were sighted there in September 1980. None were seen anywhere in the Chukchi Sea in late July and August 1982. We conclude that the September and October sightings were of animals returning early from the Beaufort Sea and that, other than occurrences peripheral to the main migration, there are no large concentrations in the Chukchi in the summer and there is apparently no western Chukchi substock.  相似文献   

11.
The Pacific Arctic marine ecosystem has undergone rapid changes in recent years due to ocean warming, sea ice loss, and increased northward transport of Pacific-origin waters into the Arctic. These climate-mediated changes have been linked to range shifts of juvenile and adult subarctic (boreal) and Arctic fish populations, though it is unclear whether distributional changes are also occurring during the early life stages. We analyzed larval fish abundance and distribution data sampled in late summer from 2010 to 2019 in two interconnected Pacific Arctic ecosystems: the northern Bering Sea and Chukchi Sea, to determine whether recent warming and loss of sea ice has restricted habitat for Arctic species and altered larval fish assemblage composition from Arctic- to boreal-associated taxa. Multivariate analyses revealed the presence of three distinct multi-species assemblages across all years: (1) a boreal assemblage dominated by yellowfin sole (Limanda aspera), capelin (Mallotus catervarius), and walleye pollock (Gadus chalcogrammus); (2) an Arctic assemblage composed of Arctic cod (Boreogadus saida) and other common Arctic species; and (3) a mixed assemblage composed of the dominant species from the other two assemblages. We found that the wind- and current-driven northward advection of warmer, subarctic waters and the unprecedented low-ice conditions observed in the northern Bering and Chukchi seas beginning in 2017 and persisting into 2018 and 2019 have precipitated community-wide shifts, with the boreal larval fish assemblage expanding northward and offshore and the Arctic assemblage retreating poleward. We conclude that Arctic warming is most significantly driving changes in abundance at the leading and trailing edges of the Chukchi Sea larval fish community as boreal species increase in abundance and Arctic species decline. Our analyses document how quickly larval fish assemblages respond to environmental change and reveal that the impacts of Arctic borealization on fish community composition spans multiple life stages over large spatial scales.  相似文献   

12.
Data on the distribution of marine mammals, including beluga whales (Delphinapterus leucas Pallas, 1766), in the Arctic are scarce because of various causes and conditions, including the vast expanses of the region, its poor accessibility, severe climate, long polar night, and high cost of research. Nevertheless, the results of aerial observations during ice reconnaissance and onboard observations during sea voyages (Kleinenberg et al., 1964; Geptner et al., 1976; Belikov, Boltunov, and Gorbunov, 2002; Belikov and Boltunov, 2002; Ezhov, 2005; Matishov and Ognetov, 2006; Biologiya i okeanografiya??, 2007; Lukin and Ognetov, 2009) have provided a general idea of the distribution pattern of beluga whales in the Russian Arctic seas. More detailed data concern the distribution of these whales in the White Sea, where aerial surveys of the water area were performed previously and have been resumed in recent years (Nazarenko et al., 2008; Glazov et al., 2010, 2011). The relevant data on the Barents, Kara, Laptev, and East Siberian seas are much poorer. In the summer (ice-free) period, beluga whales concentrate in coastal waters. They have been recorded most frequently off Franz Josef Land, Novaya Zemlya, Vaygach Island, and in Czech Bay in the Barents Sea; in Baydaratskaya Bay, Gulf of Ob, and Yenisei Gulf in the Kara Sea; off the northeastern coast of Taimyr and in estuaries of the Anabar, Olenyok, and Lena rivers in the Laptev Sea; and in the estuaries of the Indigirka (where the whales come from the west) and the Kolyma and Ked??ma rivers (where they come from the east) in the East Siberian Sea. The amount of information obtained in other seasons is very limited. In autumn, mass migration of beluga whales from the Kara Sea to the Barents Sea have been recorded in the Karskie Vorota Strait and off Cape Zhelaniya in the north of Novaya Zemlya. In winter, almost no records of these whales have been made in the Kara, Laptev, and East Siberian seas. These data are based on previous observations and have practically not been complemented in recent years.  相似文献   

13.
Sea ice is believed to be a major factor shaping gene flow for polar marine organisms, but it remains unclear to what extent it represents a true barrier to dispersal for arctic cetaceans. Bowhead whales are highly adapted to polar sea ice and were targeted by commercial whalers throughout Arctic and subarctic seas for at least four centuries, resulting in severe reductions in most areas. Both changing ice conditions and reductions due to whaling may have affected geographic distribution and genetic diversity throughout their range, but little is known about range‐wide genetic structure or whether it differed in the past. This study represents the first examination of genetic diversity and differentiation across all five putative stocks, including Baffin Bay‐Davis Strait, Hudson Bay‐Foxe Basin, Bering‐Beaufort‐Chukchi, Okhotsk, and Spitsbergen. We also utilized ancient specimens from Prince Regent Inlet (PRI) in the Canadian Arctic and compared them with modern stocks. Results from analysis of molecular variance and demographic simulations are consistent with recent and high gene flow between Atlantic and Pacific stocks in the recent past. Significant genetic differences between ancient and modern populations suggest PRI harbored unique maternal lineages in the past that have been recently lost, possibly due to loss of habitat during the Little Ice Age and/or whaling. Unexpectedly, samples from this location show a closer genetic relationship with modern Pacific stocks than Atlantic, supporting high gene flow between the central Canadian Arctic and Beaufort Sea over the past millennium despite extremely heavy ice cover over much of this period.  相似文献   

14.
An understanding of the adaptability of belugas (Delphinapterus leucas) to changing ice conditions is required to interpret and predict possible changes in habitat selection in response to projected loss of sea ice throughout the circumpolar Arctic. We analyzed beluga observations made during spring aerial surveys for ringed seals conducted from 1975 to 1979 in the eastern Beaufort Sea. Despite inter-annual variability in the extent and distribution of sea ice, belugas consistently selected areas with water depths of 200–500 m and heavy ice concentrations (8/10 to 10/10) while areas of open water to light ice concentrations (0/10 to 1/10) were not selected. Belugas were also found in proximity to regions with ≥0.5 degrees seafloor slope which include the continental slope and other areas with the potential for oceanographic upwellings. In most years (4 of 5), fast-ice edges and coastal areas were not selected. In the lightest ice year analyzed, belugas showed less specificity in habitat selection as their distribution expanded and shifted shoreward to fast-ice edges. The observed distribution is discussed in terms of predator–prey relationships particularly with reference to beluga feeding on polar cod (Boreogadus saida). More research is required to examine and compare possible changes in distribution since the late 1970s and to investigate the factors driving the patterns described.  相似文献   

15.
Five belugas, or white whales (Delphinapterus leucas), were tracked by satellite from Creswell Bay, Somerset Island, in the Canadian high Arctic towards West Greenland in autumn 2001. After 1 October, three of the whales stayed in the North Water polynya and the other two whales moved to West Greenland. One of the whales that moved to Greenland migrated south along the west coast, following a route and timing similar to another beluga tracked in 1996. The belugas that moved towards West Greenland from Canada did so before or near 1 October. The movements of both these whales followed a similar timing and assumed migratory route of belugas hunted in autumn in West Greenland. In Greenland, the hunt begins in September, where the first whales are taken in the northernmost community of Qaanaaq. Hunting takes place farther south in Upernavik in October, and finally in November and December, belugas are taken even farther south in Uummannaq and Disko Bay. The whales that remain in the North Water after 1 October most likely do not contribute to the harvest in West Greenland. Based on the total number of belugas satellite-tracked in Canada between 1995 and 2001 with tags that lasted beyond 1 October, approximately 0.15 (95% CI 0.06-0.35; n=26) of the summering stock of belugas in the Canadian high Arctic move to West Greenland for the winter. Genetic studies have indicated that belugas moving east through Lancaster Sound are significantly differentiated from belugas taken in the autumn hunt in West Greenland. These conflicting results suggest molecular genetics cannot be solely relied on to reveal the stock identity of these belugas.  相似文献   

16.
We describe the annual distribution of beluga whales (Delphinapterus leucas) in Bristol Bay, Alaska, using data from 31 satellite‐linked transmitters during 2002–2011. Bristol Bay has one of the largest and best studied Pacific salmon (Oncorhynchus spp.) fisheries in the world, allowing us to link the seasonal distribution of belugas to that of salmon. During salmon migrations, beluga movements were restricted to river entrances. Belugas generally did not relocate to different river entrances or change bays during peak salmon periods. However, the location of belugas was not related to the number of salmon passing counting towers, suggesting that belugas were either selecting locations that were good for catching salmon or there were simply more salmon than belugas needed to supply their nutritional needs. The distribution of belugas expanded after salmon runs ended, and was greatest in winter when belugas ranged beyond the inner bays, traveling as far west as Cape Constantine. Belugas continued to frequent the inner bays in winter whenever sea ice conditions allowed, e.g., when winds moved sea ice offshore; however, they were never located south of the southern ice edge in open water or outside of Bristol Bay.  相似文献   

17.
Large-scale ocean-atmosphere physical dynamics can have profound impacts on the structure and organization of marine ecosystems. These changes have been termed “regime shifts”, and five different episodes have been detected in the North Pacific Ocean, with concurrent changes also occurring in the Bering and Beaufort Seas. Belugas from the Eastern Beaufort Sea (EBS) use the Bering Sea during winter and the Beaufort Sea during summer, yet the potential effects of regime shifts on belugas have not been assessed. We investigated whether body size and survivorship of EBS belugas harvested in the Mackenzie River delta region between 1993 and 2003 have been affected by previous purported regime shifts in the North Pacific. Residuals from the relationship between body length and age were calculated and compared among belugas born between 1932 and 1989. Residual body size was not significantly related to birth year for any regime, nor to the age group individuals belonged to during any regime. The percentage deviation in number of belugas born in any given year that survived to be included in the hunt (survivorship) did not show any significant trend within or between regimes. Accounting for lags of 1–5 years did not reveal any evidence of delayed effects. Furthermore, neither population index was significantly related to changes in major climatic variables that precede regime shifts. Our results suggest that EBS beluga body size and survivorship have not been affected by the major regime shifts of the North Pacific and the adjacent Bering and Beaufort Seas. EBS belugas may have been able to modify their diet without compromising their growth and survivorship. Diet and reproductive analyses over large and small time scales can help understand the mechanisms enabling belugas to avoid significant growth and reproductive effects of past regime shifts. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

19.
Abstract

Four major factors bid the United States and Canada to move toward more formalized arrangements for cooperative ocean management in the Arctic. Ocean currents in the Beaufort Sea region have the potential of transporting marine pollutants from one country to the other. Living resources, such as bowhead and beluga whales, undertake extensive transboundary migrations. Alaskan and Canadian Inuit depend heavily on renewable marine resources and raise the need for ocean management on an ecological basis. Cost savings could occur by coordinating development of offshore cold‐water technologies and shipping safety systems. This paper suggests six options for moving toward a more regionalized approach to the management of Arctic waters: a Beaufort Sea Boundary Agreement, a Beaufort Marine Cooperation Agreement, a Northwest Passage Agreement, an Equal Access Agreement, a Marine Mammal Cooperation Agreement, and an Arctic Regional Action Plan.  相似文献   

20.
Based on satellite tracking of eight beluga whale males in the White Sea, their habitats in the autumn, winter, and spring periods have been identified. A correlation between the distribution of beluga whales, ice dynamics, and migration of Atlantic salmon has been revealed. It has been found than beluga whale males do not leave the White Sea during the entire ice period. The results obtained confirm the hypothesis that the White Sea population of beluga whales is isolated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号