首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Due to climate warming, alpine ecosystems are changing rapidly. Ongoing upward migrations of plants and thus an increase of easily decomposable substrates will strongly affect the soil microbiome. To understand how belowground communities will respond to such changes, we set up an incubation experiment with permafrost and active soil layers from northern (NW) and southern (SE) slopes of a mountain ridge on Muot da Barba Peider in the Swiss Alps and incubated them with or without artificial root exudates (AREs) at two temperatures, 4°C or 15°C. The addition of AREs resulted in elevated respiration across all soil types. Bacterial and fungal alpha diversity decreased significantly, coinciding with strong shifts in microbial community structure in ARE-treated soils. These shifts in bacterial community structure were driven by an increased abundance of fast-growing copiotrophic taxa. Fungal communities were predominantly affected by AREs in SE active layer soils and shifted towards fast-growing opportunistic yeast. In contrast, in the colder NW facing active layer and permafrost soils fungal communities were more influenced by temperature changes. These findings demonstrate the sensitivity of soil microbial communities in high alpine ecosystems to climate change and how shifts in these communities may lead to functional changes impacting biogeochemical processes.  相似文献   

2.
Plants grown in distinct soils typically harbor distinct microbial communities, but the degree of the soil microbiome influence on plant microbiome assembly remains largely undetermined. We also know that the microbes associated with seeds can contribute to the plant microbiome, but the magnitude of this contribution is likely variable. We quantified the influence of soil and seed microbiomes on the bacterial community composition of seedlings by independently inoculating seeds from a single cultivar of wheat (Triticum aestivum) with 219 unique soil slurries while holding other environmental factors constant, determining the composition of the seed, soil, and seedling bacterial communities via cultivation-independent methods. Soil bacterial communities exert a strong, but variable, influence on seedling bacterial community structure, with the extent of the soil bacterial contribution dependent on the soil in question. By testing a wide range of soils, we were able to show that the specific composition of the seedling microbiome is predictable from knowing which bacterial taxa are found in soil. Although the most ubiquitous taxa associated with the seedlings were seed derived, the contributions of the seed microbiome to the seedling microbiome were variable and dependent on soil bacterial community composition. Together this work improves our predictive understanding of how the plant microbiome assembles and how the seedling microbiome could be directly or indirectly manipulated to improve plant health.Subject terms: Microbial ecology, Next-generation sequencing, Microbial ecology  相似文献   

3.
Although ammonia-oxidizing bacteria (AOB) are likely to play a key role in the soil nitrogen cycle, we have only a limited understanding of how the diversity and composition of soil AOB communities change across ecosystem types. We examined 23 soils collected from across North America and used sequence-based analyses to compare the AOB communities in each of the distinct soils. Using 97% 16S rRNA sequence similarity groups, we identified only 24 unique AOB phylotypes across all of the soils sampled. The majority of the sequences collected were in the Nitrosospira lineages (representing 80% of all the sequences collected), and AOB belonging to Nitrosospira cluster 3 were particularly common in our clone libraries and ubiquitous across the soil types. Community composition was highly variable across the collected soils, and similar ecosystem types did not always harbor similar AOB communities. We did not find any significant correlations between AOB community composition and measures of N availability. From the suite of environmental variables measured, we found the strongest correlation between temperature and AOB community composition; soils exposed to similar mean annual temperatures tended to have similar AOB communities. This finding is consistent with previous studies and suggests that temperature selects for specific AOB lineages. Given that distinct AOB taxa are likely to have unique functional attributes, the biogeographical patterns exhibited by soil AOB may be directly relevant to understanding soil nitrogen dynamics under changing environmental conditions.  相似文献   

4.
Increasing temperatures can accelerate soil organic matter decomposition and release large amounts of CO2 to the atmosphere, potentially inducing positive warming feedbacks. Alterations to the temperature sensitivity and physiological functioning of soil microorganisms may play a key role in these carbon (C) losses. Geothermally active areas in Iceland provide stable and continuous soil temperature gradients to test this hypothesis, encompassing the full range of warming scenarios projected by the Intergovernmental Panel on Climate Change for the northern region. We took soils from these geothermal sites 7 years after the onset of warming and incubated them at varying temperatures and substrate availability conditions to detect persistent alterations of microbial physiology to long-term warming. Seven years of continuous warming ranging from 1.8 to 15.9 °C triggered a 8.6–58.0% decrease on the C concentrations in the topsoil (0–10 cm) of these sub-arctic silt-loam Andosols. The sensitivity of microbial respiration to temperature (Q10) was not altered. However, soil microbes showed a persistent increase in their microbial metabolic quotients (microbial respiration per unit of microbial biomass) and a subsequent diminished C retention in biomass. After an initial depletion of labile soil C upon soil warming, increasing energy costs of metabolic maintenance and resource acquisition led to a weaker capacity of C stabilization in the microbial biomass of warmer soils. This mechanism contributes to our understanding of the acclimated response of soil respiration to in situ soil warming at the ecosystem level, despite a lack of acclimation at the physiological level. Persistent increases in the respiratory costs of soil microbes in response to warming constitute a fundamental process that should be incorporated into climate change-C cycling models.  相似文献   

5.
Respiration by plants and microorganisms is primarily responsible for mediating carbon exchanges between the biosphere and atmosphere. Climate warming has the potential to influence the activity of these organisms, regulating exchanges between carbon pools. Physiological ‘down‐regulation’ of warm‐adapted species (acclimation) could ameliorate the predicted respiratory losses of soil carbon under climate change scenarios, but unlike plants and symbiotic microbes, the existence of this phenomenon in heterotrophic soil microbes remains controversial. Previous studies using complex soil microbial communities are unable to distinguish physiological acclimation from other community‐scale adjustments. We explored the temperature‐sensitivity of individual saprotrophic basidiomycete fungi growing in agar, showing definitively that these widespread heterotrophic fungi can acclimate to temperature. In almost all cases, the warm‐acclimated individuals had lower growth and respiration rates at intermediate temperatures than cold‐acclimated isolates. Inclusion of such microbial physiological responses to warming is essential to enhance the robustness of global climate‐ecosystem carbon models.  相似文献   

6.
7.
The soil microbial community plays an important role in terrestrial carbon and nitrogen cycling. However, microbial responses to climate warming or cooling remain poorly understood, limiting our ability to predict the consequences of future climate changes. To address this issue, it is critical to identify microbes sensitive to climate change and key driving factors shifting microbial communities. In this study, alpine soil transplant experiments were conducted downward or upward along an elevation gradient between 3,200 and 3,800 m in the Qinghai-Tibet plateau to simulate climate warming or cooling. After a 2-year soil transplant experiment, soil bacterial communities were analyzed by pyrosequencing of 16S rRNA gene amplicons. The results showed that the transplanted soil bacterial communities became more similar to those in their destination sites and more different from those in their “home” sites. Warming led to increases in the relative abundances in Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria and decreases in Acidobacteria, Betaproteobacteria, and Deltaproteobacteria, while cooling had opposite effects on bacterial communities (symmetric response). Soil temperature and plant biomass contributed significantly to shaping the bacterial community structure. Overall, climate warming or cooling shifted the soil bacterial community structure mainly through species sorting, and such a shift might correlate to important biogeochemical processes such as greenhouse gas emissions. This study provides new insights into our understanding of soil bacterial community responses to climate warming and cooling.  相似文献   

8.
Changes in labile carbon (LC) pools and microbial communities are the primary factors controlling soil heterotrophic respiration (Rh) in warming experiments. Warming is expected to initially increase Rh but studies show this increase may not be continuous or sustained. Specifically, LC and soil microbiome have been shown to contribute to the effect of extended warming on Rh. However, their relative contribution is unclear and this gap in knowledge causes considerable uncertainty in the prediction of carbon cycle feedbacks to climate change. In this study, we used a two‐step incubation approach to reveal the relative contribution of LC limitation and soil microbial community responses in attenuating the effect that extended warming has on Rh. Soil samples from three Tibetan ecosystems—an alpine meadow (AM), alpine steppe (AS), and desert steppe (DS)—were exposed to a temperature gradient of 5–25°C. After an initial incubation period, soils were processed in one of two methods: (a) soils were sterilized then inoculated with parent soil microbes to assess the LC limitation effects, while controlling for microbial community responses; or (b) soil microbes from the incubations were used to inoculate sterilized parent soils to assess the microbial community effects, while controlling for LC limitation. We found both LC limitation and microbial community responses led to significant declines in Rh by 37% and 30%, respectively, but their relative contributions were ecosystem specific. LC limitation alone caused a greater Rh decrease for DS soils than AMs or ASs. Our study demonstrates that soil carbon loss due to Rh in Tibetan alpine soils—especially in copiotrophic soils—will be weakened by microbial community responses under short‐term warming.  相似文献   

9.
Tropical soils contain huge carbon stocks, which climate warming is projected to reduce by stimulating organic matter decomposition, creating a positive feedback that will promote further warming. Models predict that the loss of carbon from warming soils will be mediated by microbial physiology, but no empirical data are available on the response of soil carbon and microbial physiology to warming in tropical forests, which dominate the terrestrial carbon cycle. Here we show that warming caused a considerable loss of soil carbon that was enhanced by associated changes in microbial physiology. By translocating soils across a 3000 m elevation gradient in tropical forest, equivalent to a temperature change of ± 15 °C, we found that soil carbon declined over 5 years by 4% in response to each 1 °C increase in temperature. The total loss of carbon was related to its original quantity and lability, and was enhanced by changes in microbial physiology including increased microbial carbon‐use‐efficiency, shifts in community composition towards microbial taxa associated with warmer temperatures, and increased activity of hydrolytic enzymes. These findings suggest that microbial feedbacks will cause considerable loss of carbon from tropical forest soils in response to predicted climatic warming this century.  相似文献   

10.
Understanding the response of permafrost microbial communities to climate warming is crucial for evaluating ecosystem feedbacks to global change. This study investigated soil bacterial and archaeal communities by Illumina MiSeq sequencing of 16S rRNA gene amplicons across a permafrost thaw gradient at different depths in Alaska with thaw progression for over three decades. Over 4.6 million passing 16S rRNA gene sequences were obtained from a total of 97 samples, corresponding to 61 known classes and 470 genera. Soil depth and the associated soil physical–chemical properties had predominant impacts on the diversity and composition of the microbial communities. Both richness and evenness of the microbial communities decreased with soil depth. Acidobacteria, Verrucomicrobia, Alpha‐ and Gamma‐Proteobacteria dominated the microbial communities in the upper horizon, whereas abundances of Bacteroidetes, Delta‐Proteobacteria and Firmicutes increased towards deeper soils. Effects of thaw progression were absent in microbial communities in the near‐surface organic soil, probably due to greater temperature variation. Thaw progression decreased the abundances of the majority of the associated taxa in the lower organic soil, but increased the abundances of those in the mineral soil, including groups potentially involved in recalcitrant C degradation (Actinomycetales, Chitinophaga, etc.). The changes in microbial communities may be related to altered soil C sources by thaw progression. Collectively, this study revealed different impacts of thaw in the organic and mineral horizons and suggests the importance of studying both the upper and deeper soils while evaluating microbial responses to permafrost thaw.  相似文献   

11.
The degree to which climate warming will stimulate soil organic carbon (SOC) losses via heterotrophic respiration remains uncertain, in part because different or even opposite microbial physiology and temperature relationships have been proposed in SOC models. We incorporated competing microbial carbon use efficiency (CUE)–mean annual temperature (MAT) and enzyme kinetic–MAT relationships into SOC models, and compared the simulated mass‐specific soil heterotrophic respiration rates with multiple published datasets of measured respiration. The measured data included 110 dryland soils globally distributed and two continental to global‐scale cross‐biome datasets. Model–data comparisons suggested that a positive CUE–MAT relationship best predicts the measured mass‐specific soil heterotrophic respiration rates in soils distributed globally. These results are robust when considering models of increasing complexity and competing mechanisms driving soil heterotrophic respiration–MAT relationships (e.g., carbon substrate availability). Our findings suggest that a warmer climate selects for microbial communities with higher CUE, as opposed to the often hypothesized reductions in CUE by warming based on soil laboratory assays. Our results help to build the impetus for, and confidence in, including microbial mechanisms in soil biogeochemical models used to forecast changes in global soil carbon stocks in response to warming.  相似文献   

12.
Previous studies have shown that fertilization with nitrogen depresses overall microbial biomass and activity in soil. In the present study we broaden our understanding of this phenomenon by studying the seasonality of responses of specific microbial functional groups to chronic nitrogen additions in alpine tundra soils. We measured soil enzyme activities, mineralization kinetics for 8 substrates, biomass of 8 microbial functional groups, and changes in N and carbon pools in the soil. Our approach allowed us to compare the ability of the soil microbial biomass to utilize various substrates in addition to allowing us to estimate changes in biomass of microbial functional groups that are involved in carbon and nitrogen cycling. Overall microbial activity and biomass was reduced in fertilized plots, whereas pools of N in the soil and microbial biomass N were higher in fertilized plots. The negative effects of N were most prominent in the summer. Biomass of the dominant microbial functional groups recovered in fertilized soils during the winter and nitrogen storage in microbial biomass was higher in fertilized soils in the autumn and winter than in the summer. Microbial immobilization of N may therefore be a significant sink for added N during autumn and winter months when plants are not active. One large microbial group that did not recover in the winter in fertilized soils was phenol mineralizers, possibly indicating selection against microbes with enzyme systems for the breakdown of phenolic compounds and complex soil organic matter. Overall, this work is a step towards understanding how chronic N additions affect the structure and biogeochemical functioning of soil microbial communities.  相似文献   

13.
Climate change globally affects soil microbial community assembly across ecosystems. However, little is known about the impact of warming on the structure of soil microbial communities or underlying mechanisms that shape microbial community composition in subtropical forest ecosystems. To address this gap, we utilized natural variation in temperature via an altitudinal gradient to simulate ecosystem warming. After 6 years, microbial co-occurrence network complexity increased with warming, and changes in their taxonomic composition were asynchronous, likely due to contrasting community assembly processes. We found that while stochastic processes were drivers of bacterial community composition, warming led to a shift from stochastic to deterministic drivers in dry season. Structural equation modelling highlighted that soil temperature and water content positively influenced soil microbial communities during dry season and negatively during wet season. These results facilitate our understanding of the response of soil microbial communities to climate warming and may improve predictions of ecosystem function of soil microbes in subtropical forests.  相似文献   

14.
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.  相似文献   

15.
In recent years, there has been an increase in research to understand how global changes’ impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta‐analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity.  相似文献   

16.
Approaches to quantifying and predicting soil biogeochemical cycles mostly consider microbial biomass and community composition as products of the abiotic environment. Current numerical approaches then primarily emphasise the importance of microbe–environment interactions and physiology as controls on biogeochemical cycles. Decidedly less attention has been paid to understanding control exerted by community dynamics and biotic interactions. Yet a rich literature of theoretical and empirical contributions highlights the importance of considering how variation in microbial population ecology, especially biotic interactions, is related to variation in key biogeochemical processes like soil carbon formation. We demonstrate how a population and community ecology perspective can be used to (1) understand the impact of microbial communities on biogeochemical cycles and (2) reframe current theory and models to include more detailed microbial ecology. Through a series of simulations we illustrate how density dependence and key biotic interactions, such as competition and predation, can determine the degree to which microbes regulate soil biogeochemical cycles. The ecological perspective and model simulations we present lay the foundation for developing empirical research and complementary models that explore the diversity of ecological mechanisms that operate in microbial communities to regulate biogeochemical processes.  相似文献   

17.
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) via anthropogenic activities with the added N having potentially important impacts on microbially mediated belowground carbon dynamics. However, a comprehensive understanding of how elevated N availability affects soil microbial processes and community dynamics remains incomplete. The mechanisms responsible for the observed responses are poorly resolved and we do not know if soil microbial communities respond in a similar manner across ecosystems. We collected 28 soils from a broad range of ecosystems in North America, amended soils with inorganic N, and incubated the soils under controlled conditions for 1 year. Consistent across nearly all soils, N addition decreased microbial respiration rates, with an average decrease of 11% over the year‐long incubation, and decreased microbial biomass by 35%. High‐throughput pyrosequencing showed that N addition consistently altered bacterial community composition, increasing the relative abundance of Actinobacteria and Firmicutes, and decreasing the relative abundance of Acidobacteria and Verrucomicrobia. Further, N‐amended soils consistently had lower activities in a broad suite of extracellular enzymes and had decreased temperature sensitivity, suggesting a shift to the preferential decomposition of more labile C pools. The observed trends held across strong gradients in climate and soil characteristics, indicating that the soil microbial responses to N addition are likely controlled by similar wide‐spread mechanisms. Our results support the hypothesis that N addition depresses soil microbial activity by shifting the metabolic capabilities of soil bacterial communities, yielding communities that are less capable of decomposing more recalcitrant soil carbon pools and leading to a potential increase in soil carbon sequestration rates.  相似文献   

18.
Climate warming is expected to have particularly strong effects on tundra and boreal ecosystems, yet relatively few studies have examined soil responses to temperature change in these systems. We used closed‐top greenhouses to examine the response of soil respiration, nutrient availability, microbial abundance, and active fungal communities to soil warming in an Alaskan boreal forest dominated by mature black spruce. This treatment raised soil temperature by 0.5 °C and also resulted in a 22% decline in soil water content. We hypothesized that microbial abundance and activity would increase with the greenhouse treatment. Instead, we found that bacterial and fungal abundance declined by over 50%, and there was a trend toward lower activity of the chitin‐degrading enzyme N‐acetyl‐glucosaminidase. Soil respiration also declined by up to 50%, but only late in the growing season. These changes were accompanied by significant shifts in the community structure of active fungi, with decreased relative abundance of a dominant Thelephoroid fungus and increased relative abundance of Ascomycetes and Zygomycetes in response to warming. In line with our hypothesis, we found that warming marginally increased soil ammonium and nitrate availability as well as the overall diversity of active fungi. Our results indicate that rising temperatures in northern‐latitude ecosystems may not always cause a positive feedback to the soil carbon cycle, particularly in boreal forests with drier soils. Models of carbon cycle‐climate feedbacks could increase their predictive power by incorporating heterogeneity in soil properties and microbial communities across the boreal zone.  相似文献   

19.
Global warming is causing increases in surface temperatures and has the potential to influence the structure of soil microbial and faunal communities. However, little is known about how warming interacts with other ecosystem drivers, such as plant functional groups or changes associated with succession, to affect the soil community and thereby alter ecosystem functioning. We investigated how experimental warming and the removal of plant functional groups along a post-fire boreal forest successional gradient impacted soil microbial and nematode communities. Our results showed that warming altered soil microbial communities and favored bacterial-based microbial communities, but these effects were mediated by mosses and shrubs, and often varied with successional stage. Meanwhile, the nematode community was generally unaffected by warming and was positively affected by the presence of mosses and shrubs, with these effects mostly independent of successional stage. These results highlight that different groups of soil organisms may respond dissimilarly to interactions between warming and changes to plant functional groups, with likely consequences for ecosystem functioning that may vary with successional stage. Due to the ubiquitous presence of shrubs and mosses in boreal forests, the effects observed in this study are likely to be significant over a large proportion of the terrestrial land surface. Our results demonstrate that it is crucial to consider interactive effects between warming, plant functional groups, and successional stage when predicting soil community responses to global climate change in forested ecosystems.  相似文献   

20.
Host‐associated microbes are ubiquitous. Every multicellular eukaryote, and even many unicellular eukaryotes (protists), hosts a diverse community of microbes. High‐throughput sequencing (HTS) tools have illuminated the vast diversity of host‐associated microbes and shown that they have widespread influence on host biology, ecology and evolution (McFall‐Ngai et al. 2013 ). Bacteria receive most of the attention, but protists are also important components of microbial communities associated with humans (Parfrey et al. 2011 ) and other hosts. As HTS tools are increasingly used to study eukaryotes, the presence of numerous and diverse host‐associated eukaryotes is emerging as a common theme across ecosystems. Indeed, HTS studies demonstrate that host‐associated lineages account for between 2 and 12% of overall eukaryotic sequences detected in soil, marine and freshwater data sets, with much higher relative abundances observed in some samples (Ramirez et al. 2014 ; Simon et al. 2015 ; de Vargas et al. 2015 ). Previous studies in soil detected large numbers of predominantly parasitic lineages such as Apicomplexa, but did not delve into their origin [e.g. (Ramirez et al. 2014 )]. In this issue of Molecular Ecology, Geisen et al. ( 2015 ) use mock communities to show that many of the eukaryotic organisms detected by environmental sequencing in soils are potentially associated with animal hosts rather than free‐living. By isolating the host‐associated fraction of soil microbial communities, Geisen and colleagues help explain the surprisingly high diversity of parasitic eukaryotic lineages often detected in soil/terrestrial studies using high‐throughput sequencing (HTS) and reinforce the ubiquity of these host‐associated microbes. It is clear that we can no longer assume that organisms detected in bulk environmental sequencing are free‐living, but instead need to design studies that specifically enumerate the diversity and function of host‐associated eukaryotes. Doing so will allow the field to determine the role host‐associated eukaryotes play in soils and other environments and to evaluate hypotheses on assembly of host‐associated communities, disease ecology and more.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号