首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
This study establishes that the physical state of the extracellular matrix can regulate integrin-mediated cytoskeletal assembly and tyrosine phosphorylation to generate two distinct types of cell-matrix adhesions. In primary fibroblasts, alpha(5)beta(1) integrin associates mainly with fibronectin fibrils and forms adhesions structurally distinct from focal contacts, independent of actomyosin-mediated cell contractility. These "fibrillar adhesions" are enriched in tensin, but contain low levels of the typical focal contact components paxillin, vinculin, and tyrosine-phosphorylated proteins. However, when the fibronectin is covalently linked to the substrate, alpha(5)beta(1) integrin forms highly tyrosine-phosphorylated, "classical" focal contacts containing high levels of paxillin and vinculin. These experiments indicate that the physical state of the matrix, not just its molecular composition, is a critical factor in defining cytoskeletal organization and phosphorylation at adhesion sites. We propose that molecular organization of adhesion sites is controlled by at least two mechanisms: 1) specific integrins associate with their ligands in transmembrane complexes with appropriate cytoplasmic anchor proteins (e.g., fibronectin-alpha(5)beta(1) integrin-tensin complexes), and 2) physical properties (e.g., rigidity) of the extracellular matrix regulate local tension at adhesion sites and activate local tyrosine phosphorylation, recruiting a variety of plaque molecules to these sites. These mechanisms generate structurally and functionally distinct types of matrix adhesions in fibroblasts.  相似文献   

3.
Temporal and spatial regulation of actin-based cytoskeletal organization and focal adhesion formation play an essential role in cell migration. Here, we show that tyrosine phosphorylation of a focal adhesion protein, paxillin, crucially participates in these regulations. We found that tyrosine phosphorylation of paxillin was a prominent event upon integrin activation during epithelial-mesenchymal trans-differentiation and cell migration. Four major tyrosine phosphorylation sites were identified, and two of them were highly inducible upon integrin activation. Paxillin exhibits three distinct subcellular localizations as follows: localization along the cell periphery colocalized with circumferential actin meshworks, macroaggregation at focal adhesions connected to actin stress fibers, and diffuse cytoplasmic distribution. Tyrosine phosphorylation of paxillin localized at the cell periphery and focal adhesions was shown using phosphorylation site-specific antibodies. Mutations in the phosphorylation sites affected the peripheral localization of paxillin and paxillin-containing focal adhesion formation during cell migration and cell-cell collision, accompanied by altered actin organizations. Our analysis indicates that phosphorylation of multiple tyrosines in paxillin alpha is necessary for the proper function of paxillin and is involved in the temporospatial regulation of focal adhesion formation and actin cytoskeletal organization in motile cells.  相似文献   

4.
Focal adhesions are intricate protein complexes that facilitate cell attachment, migration, and cellular communication. Lasp-2 (LIM-nebulette), a member of the nebulin family of actin-binding proteins, is a newly identified component of these complexes. To gain further insights into the functional role of lasp-2, we identified two additional binding partners of lasp-2: the integral focal adhesion proteins vinculin and paxillin. Of interest, the interaction of lasp-2 with its binding partners vinculin and paxillin is significantly reduced in the presence of lasp-1, another nebulin family member. The presence of lasp-2 appears to enhance the interaction of vinculin and paxillin with each other; however, as with the interaction of lasp-2 with vinculin or paxillin, this effect is greatly diminished in the presence of excess lasp-1. This suggests that the interplay between lasp-2 and lasp-1 could be an adhesion regulatory mechanism. Lasp-2’s potential role in metastasis is revealed, as overexpression of lasp-2 in either SW620 or PC-3B1 cells—metastatic cancer cell lines—increases cell migration but impedes cell invasion, suggesting that the enhanced interaction of vinculin and paxillin may functionally destabilize focal adhesion composition. Taken together, these data suggest that lasp-2 has an important role in coordinating and regulating the composition and dynamics of focal adhesions.  相似文献   

5.
During metastasis, cells can use proteolytic activity to form tube-like “microtracks” within the extracellular matrix (ECM). Using these microtracks, cells can migrate unimpeded through the stroma. To investigate the molecular mechanisms of microtrack migration, we developed an in vitro three-dimensional (3D) micromolded collagen platform. When in microtracks, cells tend to migrate unidirectionally. Because focal adhesions are the primary mechanism by which cells interact with the ECM, we examined the roles of several focal adhesion molecules in driving unidirectional motion. Vinculin knockdown results in the repeated reversal of migration direction compared with control cells. Tracking the position of the Golgi centroid relative to the position of the nucleus centroid reveals that vinculin knockdown disrupts cell polarity in microtracks. Vinculin also directs migration on two-dimensional (2D) substrates and in 3D uniform collagen matrices, as indicated by reduced speed, shorter net displacement, and decreased directionality in vinculin-deficient cells. In addition, vinculin is necessary for focal adhesion kinase (FAK) activation in three dimensions, as vinculin knockdown results in reduced FAK activation in both 3D uniform collagen matrices and microtracks but not on 2D substrates, and, accordingly, FAK inhibition halts cell migration in 3D microtracks. Together these data indicate that vinculin plays a key role in polarization during migration.  相似文献   

6.
The relationship between force and focal complex development   总被引:23,自引:0,他引:23  
To adhere and migrate, cells must be capable of applying cytoskeletal force to the extracellular matrix (ECM) through integrin receptors. However, it is unclear if connections between integrins and the ECM are immediately capable of transducing cytoskeletal contraction into migration force, or whether engagement of force transmission requires maturation of the adhesion. Here, we show that initial integrin-ECM adhesions become capable of exerting migration force with the recruitment of vinculin, a marker for focal complexes, which are precursors of focal adhesions. We are able to induce the development of focal complexes by the application of mechanical force to fibronectin receptors from inside or outside the cell, and we are able to extend focal complex formation to vitronectin receptors by the removal of c-Src. These results indicate that cells use mechanical force as a signal to strengthen initial integrin-ECM adhesions into focal complexes and regulate the amount of migration force applied to individual adhesions at localized regions of the advancing lamella.  相似文献   

7.
We report that cranin (dystroglycan) can become recruited to focal adhesions of cultured rat REF 52 fibroblasts and human aortic smooth muscle cells. Within mature focal adhesions, cranin was present within the plaque region defined by β1 integrin, vinculin and phosphotyrosine staining, but occupied a larger domain corresponding to, the terminal segments of stress fibers that was more precisely co-extensive with the cytoskeletal proteins alpha-actinin, utrophin and aciculin. When REF 52 fibroblasts were plated on different substrata in the absence of protein synthesis and secretion in serum-free medium, focal clusters of cranin readily formed within 2 hours on matrix proteins that bind cranin directly (laminin or agrin) which were maintained as the focal adhesions became mature. In contrast, cranin failed to become targeted to cell-substratum attachment sites, either at early or later times. when cells were plated on a variety of other substrata that elicit formation of focal adhesions but do not bind cranin directly (fibronectin, vitronectin, collagen type IV, or anti-β integrin antibody TS2/16). These data strongly suggest that targeting of cranin to focal adhesions was dependent upon the presence of an extracellular ligand capable of binding cranin directly. How-ever, some cultured nonmuscle cell lines (e.g., human umbilical vein endothelial cells, NIH 3T3 and CHO cells) failed to localize cranin to focal adhesions, even when plated on laminin. Cranin was also enriched at cell-cell adherens-type junctions of human normal breast MCF-10 epithelial cells, and at growth cones of E17 rat hippocampal axons. That cranin can become targeted to sites of cell-cell and cell-substratum contact in diverse cell types supports the hypothesis that cranin may be involved in mediating or regulating cell adhesion. The absence of muscle-specific and synapse-specific proteins within fibroblasts and epithelial cells provides a different context for thinking about cranin (dystroglycan) that may aid in discerning general principles of its structure and function.  相似文献   

8.
Integrins are cell adhesion receptors that sense the extracellular matrix (ECM) environment. One of their functions is to regulate cell fate decisions, although the question of how integrins initiate intracellular signaling is not fully resolved. In this paper, we examine the role of talin, an adapter protein at cell-matrix attachment sites, in outside-in signaling. We used lentiviral small hairpin ribonucleic acid to deplete talin in mammary epithelial cells. These cells still attached to the ECM in an integrin-dependent manner and spread. They had a normal actin cytoskeleton, but vinculin, paxillin, focal adhesion kinase (FAK), and integrin-linked kinase were not recruited to adhesion sites. Talin-deficient cells showed proliferation defects, and reexpressing a tail portion of the talin rod, but not its head domain, restored integrin-mediated FAK phosphorylation, suppressed p21 expression, and rescued cell cycle. Thus, talin recruits and activates focal adhesion proteins required for proliferation via the C terminus of its rod domain. Our study reveals a new function for talin, which is to link integrin adhesions with cell cycle progression.  相似文献   

9.
Integrins are the major family of cell adhesion receptors that mediate cell adhesion to the extracellular matrix (ECM). Integrin-mediated adhesion and signaling play essential roles in neural development. In this study, we have used echistatin, an RGD-containing short monomeric disintegrin, to investigate the role of integrin-mediated adhesion and signaling during retinal development in Xenopus. Application of echistatin to Xenopus retinal-derived XR1 glial cells inhibited the three stages of integrin-mediated adhesion: cell attachment, cell spreading, and formation of focal adhesions and stress fibers. XR1 cell attachment and spreading increased tyrosine phosphorylation of paxillin, a focal adhesion associated protein, while echistatin significantly decreased phosphorylation levels of paxillin. Application of echistatin or beta(1) integrin function blocking antibody to the embryonic Xenopus retina disrupted retinal lamination and produced rosette structures with ectopic photoreceptors in the outer retina. These results indicate that integrin-mediated cell-ECM interactions play a critical role in cell adhesion, migration, and morphogenesis during vertebrate retinal development.  相似文献   

10.
We report that cranin (dystroglycan) can become recruited to focal adhesions of cultured rat REF 52 fibroblasts and human aortic smooth muscle cells. Within mature focal adhesions, cranin was present within the plaque region defined by β1 integrin, vinculin and phosphotyrosine staining, but occupied a larger domain corresponding to, the terminal segments of stress fibers that was more precisely co-extensive with the cytoskeletal proteins alpha-actinin, utrophin and aciculin. When REF 52 fibroblasts were plated on different substrata in the absence of protein synthesis and secretion in serum-free medium, focal clusters of cranin readily formed within 2 hours on matrix proteins that bind cranin directly (laminin or agrin) which were maintained as the focal adhesions became mature. In contrast, cranin failed to become targeted to cell-substratum attachment sites, either at early or later times. when cells were plated on a variety of other substrata that elicit formation of focal adhesions but do not bind cranin directly (fibronectin, vitronectin, collagen type IV, or anti-β integrin antibody TS2/16). These data strongly suggest that targeting of cranin to focal adhesions was dependent upon the presence of an extracellular ligand capable of binding cranin directly. How-ever, some cultured nonmuscle cell lines (e.g., human umbilical vein endothelial cells, NIH 3T3 and CHO cells) failed to localize cranin to focal adhesions, even when plated on laminin. Cranin was also enriched at cell-cell adherens-type junctions of human normal breast MCF-10 epithelial cells, and at growth cones of E17 rat hippocampal axons. That cranin can become targeted to sites of cell-cell and cell-substratum contact in diverse cell types supports the hypothesis that cranin may be involved in mediating or regulating cell adhesion. The absence of muscle-specific and synapse-specific proteins within fibroblasts and epithelial cells provides a different context for thinking about cranin (dystroglycan) that may aid in discerning general principles of its structure and function.  相似文献   

11.
The integrin family of cell adhesion receptors are important for a diverse set of biological responses during development. Although many integrins have been shown to engage a similar set of cytoplasmic effector proteins in vitro, the importance of these proteins in the biological events mediated by different integrin receptors and ligands is uncertain. We have examined the role of one of the best-characterized integrin effectors, the focal adhesion protein paxillin, by disruption of the paxillin gene in mice. Paxillin was found to be critically involved in regulating the development of mesodermally derived structures such as heart and somites. The phenotype of the paxillin(-/-) mice closely resembles that of fibronectin(-/-) mice, suggesting that paxillin is a critical transducer of signals from fibronectin receptors during early development. Paxillin was also found to play a critical role in fibronectin receptor biology ex vivo since cultured paxillin-null fibroblasts display abnormal focal adhesions, reduced cell migration, inefficient localization of focal adhesion kinase (FAK), and reduced fibronectin-induced phosphorylation of FAK, Cas, and mitogen-activated protein kinase. In addition, we found that paxillin-null fibroblasts show some defects in the cortical cytoskeleton and cell spreading on fibronectin, raising the possibility that paxillin could play a role in structures distinct from focal adhesions. Thus, paxillin and fibronectin regulate some common embryonic developmental events, possibly due to paxillin modulation of fibronectin-regulated focal adhesion dynamics and organization of the membrane cytoskeletal structures that regulate cell migration and spreading.  相似文献   

12.
Cell migration requires the coordination of adhesion site assembly and turnover. Canonical models for nascent adhesion formation postulate that integrin binding to extracellular matrix (ECM) proteins results in the rapid recruitment of cytoskeletal proteins such as talin and paxillin to integrin cytoplasmic domains. It is thought that integrin-talin clusters recruit and activate tyrosine kinases such as focal adhesion kinase (FAK). However, the molecular connections of this linkage remain unresolved. Our recent findings support an alternative model whereby FAK recruits talin to new sites of β1 integrin-mediated adhesion in mouse embryonic fibroblasts and human ovarian carcinoma cells. This is dependent on a direct binding interaction between FAK and talin and occurs independently of direct talin binding to β1 integrin. Herein, we discuss differences between nascent and mature adhesions, interactions between FAK, talin and paxillin, possible mechanisms of FAK activation and how this FAK-talin complex may function to promote cell motility through increased adhesion turnover.  相似文献   

13.
Cell migration requires the coordination of adhesion site assembly and turnover. Canonical models for nascent adhesion formation postulate that integrin binding to extracellular matrix (ECM) proteins results in the rapid recruitment of cytoskeletal proteins such as talin and paxillin to integrin cytoplasmic domains. It is thought that integrin-talin clusters recruit and activate tyrosine kinases such as focal adhesion kinase (FAK). However, the molecular connections of this linkage remain unresolved. Our recent findings support an alternative model whereby FAK recruits talin to new sites of β1 integrin-mediated adhesion in mouse embryonic fibroblasts and human ovarian carcinoma cells. This is dependent on a direct binding interaction between FAK and talin and occurs independently of direct talin binding to β1 integrin. Herein, we discuss differences between nascent and mature adhesions, interactions between FAK, talin and paxillin, possible mechanisms of FAK activation and how this FAK-talin complex may function to promote cell motility through increased adhesion turnover.  相似文献   

14.
The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics. The focal adhesion protein NEDD9 is a key signalling intermediary in mesenchymal cell migration, however whether NEDD9 plays a role in regulating focal adhesion dynamics has not previously been reported. As NEDD9 effects on 2D migration speed appear to depend on the cell type examined, in the present study we have used mouse embryo fibroblasts (MEFs) from mice in which the NEDD9 gene has been depleted (NEDD9 -/- MEFs). This allows comparison with effects of other focal adhesion proteins that have previously been demonstrated using MEFs. We show that focal adhesion disassembly rates are increased in the absence of NEDD9 expression and this is correlated with increased paxillin phosphorylation at focal adhesions. NEDD9-/- MEFs have increased rates of migration on 2D surfaces, but conversely, migration of these cells is significantly reduced in 3D collagen gels. Importantly we show that myosin light chain kinase is activated in 3D in the absence of NEDD9 and is conversely inhibited in 2D cultures. Measurement of adhesion strength reveals that NEDD9-/- MEFs have decreased adhesion to fibronectin, despite upregulated α5β1 fibronectin receptor expression. We find that β1 integrin activation is significantly suppressed in the NEDD9-/-, suggesting that in the absence of NEDD9 there is decreased integrin receptor activation. Collectively our data suggest that NEDD9 may promote 3D cell migration by slowing focal adhesion disassembly, promoting integrin receptor activation and increasing adhesion force to the ECM.  相似文献   

15.
Anchorage to matrix is mediated for many cells not only by integrin-based focal adhesions but also by a parallel assembly of integral and peripheral membrane proteins known as the Dystroglycan Complex. Deficiencies in either dystrophin (mdx mice) or γ-sarcoglycan (γSG?/? mice) components of the Dystroglycan Complex lead to upregulation of numerous focal adhesion proteins, and the phosphoprotein paxillin proves to be among the most prominent. In mdx muscle, paxillin-Y31 and Y118 are both hyper-phosphorylated as are key sites in focal adhesion kinase (FAK) and the stretch-stimulatable pro-survival MAPK pathway, whereas γSG?/? muscle exhibits more erratic hyper-phosphorylation. In cultured myotubes, cell tension generated by myosin-II appears required for localization of paxillin to adhesions while vinculin appears more stably integrated. Overexpression of wild-type (WT) paxillin has no obvious effect on focal adhesion density or the physical strength of adhesion, but WT and a Y118F mutant promote contractile sarcomere formation whereas a Y31F mutant shows no effect, implicating Y31 in striation. Self-peeling of cells as well as Atomic Force Microscopy (AFM) probing of cells with or without myosin-II inhibition indicate an increase in cell tension within paxillin-overexpressing cells. However, prednisolone, a first-line glucocorticoid for muscular dystrophies, decreases cell tension without affecting paxillin at adhesions, suggesting a non-linear relationship between paxillin and cell tension. Hypertension that results from upregulation of integrin adhesions is thus a natural and treatable outcome of Dystroglycan Complex down-regulation.  相似文献   

16.
Membrane-bound integrin receptors are linked to intracellular signaling pathways through focal adhesion kinase (FAK). FAK tends to colocalize with integrin receptors at focal adhesions through its C-terminal focal adhesion targeting (FAT) domain. Through recruitment and binding of intracellular proteins, FAs transduce signals between the intracellular and extracellular regions that regulate a variety of cellular processes including cell migration, proliferation, apoptosis and detachment from the ECM. The mechanism of signaling through the cell is of interest, especially the transmission of mechanical forces and subsequent transduction into biological signals. One hypothesis relates mechanotransduction to conformational changes in intracellular proteins in the force transmission pathway, connecting the extracellular matrix with the cytoskeleton through FAs. To assess this hypothesis, we performed steered molecular dynamics simulations to mechanically unfold FAT and monitor how force-induced changes in the molecular conformation of FAT affect its binding to paxillin.  相似文献   

17.
Mammalian cDNA expression cloning was used to identify novel regulators of integrin-mediated cell-substratum adhesions. Using a focal adhesion morphology screen, we identified a cDNA with homology to a receptor for activated protein kinase C (RACK1) that induced a loss of central focal adhesions and stress fibers in CHO-K1 cells. The identified cDNA was a C-terminal truncated form of RACK1 that had one of the putative protein kinase C binding sites but lacked the region proposed to bind the beta integrin cytoplasmic domain and the tyrosine kinase Src. To investigate the role of RACK1 during cell spreading and migration, we tagged RACK1, a C-terminal truncated RACK1 and a point mutant that does not bind Src (RACK Y246F) with green fluorescent protein and expressed them in CHO-K1 cells. We found that RACK1 regulates the organization of focal adhesions and that it localizes to a subset of nascent focal complexes in areas of protrusion that contain paxillin but not vinculin. We also found that RACK1 regulates cell protrusion and chemotactic migration through its Src binding site. Together, these findings suggest that RACK1 regulates adhesion, protrusion, and chemotactic migration through its interaction with Src.  相似文献   

18.
We have investigated the mechanisms by which fibroblasts release their adhesions to the extracellular matrix substrata using a permeabilized cell system in which the adhesions remain relatively stable. A large number of different molecules were assayed for their effect on focal adhesion stability using immunofluorescence with antibodies against different focal adhesion constituents. ATP uniquely stimulates a rapid breakdown of focal adhesions, and at high ATP concentrations (> 5 mM), many cells are released from the dish. The remaining cells appear contracted with talin, alpha-actinin, and vinculin localized diffusely throughout the cell. Integrin containing tracks of variable intensity outline the regions where cells had resided before they detached from the substratum. At lower ATP concentrations (0.5-5 mM) the cells remain spread; however the focal adhesion components, including integrin, show an array of phenotypes ranging from diffusely localized throughout the cell to a localization in small, thin focal adhesions. Okadaic acid, a serine, threonine phosphatase inhibitor, enhances the contracted phenotype, even at low concentrations (0.5 mM) of ATP. The localization of focal adhesion components is different in okadaic acid-treated cells. In highly contracted cells, integrin is present in tracks where the cells resided before the contraction; however focal adhesions are no longer apparent. Talin, vinculin, and alpha-actinin localize in trabecular networks toward the periphery of the cell. Interestingly, phosphotyrosine staining as well as nascent, intracellular integrin precedes the recruitment of focal adhesion constituents into the trabecular network. The ATP-stimulated focal adhesion breakdown appears to operate through two mechanisms. First, ATP stimulates the tyrosine phosphorylation of several cytoskeletally associated proteins. These tyrosine phosphorylations correlated well with focal adhesion breakdown. Furthermore, addition of a recombinant, constitutively active tyrosine phosphatase inhibits both the tyrosine phosphorylations and the breakdown of the focal adhesions. None of the major tyrosine phosphoproteins are FAK, integrin, tensin, paxillin, or other phosphoproteins implicated in focal adhesion assembly. The second mechanism is cell contraction. High ATP concentrations, or lower ATP concentrations in the presence of okadaic acid induce cell contraction. Inhibiting the contraction by addition of a heptapeptide IRICRKG, which blocks the actin-myosin interaction, also inhibits focal adhesion breakdown. Neither the peptide nor the phosphatase inhibits focal adhesion breakdown under all conditions suggesting that both tension and tyrosine phosphorylations mediate the release of adhesions.  相似文献   

19.
We have used gene disruption to isolate two talin (−/−) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of β1 integrin, although levels of α5 and αV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (−/−) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (−/−) ES cells were able to assemble talin-containing focal adhesions. Both talin (−/−) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (−/−) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the β1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for β1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.  相似文献   

20.
Myocilin, a novel matricellular protein found in the human eye, can modify signaling events mediated by the Heparin II domain of fibronectin. Using myocilin produced in sf9 insect cells, myocilin inhibited spreading of cycloheximide-treated human skin fibroblasts plated on substrates co-coated with myocilin and either fibronectin or its Heparin II domain. Cell spreading could be rescued by adding back either substrate adsorbed or soluble Heparin II domains. Myocilin did not inhibit cell attachment to fibronectin even in the presence of a 2400 M excess of myocilin. Myocilin impaired focal adhesion formation and specifically blocked the incorporation of paxillin, but not vinculin, into focal adhesions. The Heparin II domain mediated the incorporation of paxillin into focal adhesions, since paxillin was not assembled into focal adhesions unless the Heparin II domain was present. The effect of myocilin on focal adhesions could be overcome by treating cells with either phorbol 12-myristate (PMA) or oleoyl-L-alpha-lysophosphatidic acid (LPA). Myocilin bound to the fibroblast cell surface, but its binding could not be competed with excess fibronectin, suggesting that myocilin does not compete for cell surface binding sites of fibronectin. Myocilin therefore appears to specifically block functions mediated by the Heparin II domain possibly through direct interactions with it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号