首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have purified a steroid-inducible 20 alpha-hydroxysteroid dehydrogenase from Clostridium scindens to apparent homogeneity. The final enzyme preparation was purified 252-fold, with a recovery of 14%. Denaturing and nondenaturing polyacrylamide gradient gel electrophoresis showed that the native enzyme (Mr, 162,000) was a tetramer composed of subunits with a molecular weight of 40,000. The isoelectric point was approximately pH 6.1. The purified enzyme was highly specific for adrenocorticosteroid substrates possessing 17 alpha, 21-dihydroxy groups. The purified enzyme had high specific activity for the reduction of cortisone (Vmax, 280 nmol/min per mg of protein; Km, 22 microM) but was less reactive with cortisol (Vmax, 120 nmol/min per mg of protein; Km, 32 microM) at pH 6.3. The apparent Km for NADH was 8.1 microM with cortisone (50 microM) as the cosubstrate. Substrate inhibition was observed with concentrations of NADH greater than 0.1 mM. The purified enzyme also catalyzed the oxidation of 20 alpha-dihydrocortisol (Vmax, 200 nmol/min per mg of protein; Km, 41 microM) at pH 7.9. The apparent Km for NAD+ was 526 microM. The initial reaction velocities with NADPH were less than 50% of those with NADH. The amino-terminal sequence was determined to be Ala-Val-Lys-Val-Ala-Ile-Asn-Gly-Phe-Gly-Arg. These results indicate that this enzyme is a novel form of 20 alpha-hydroxysteroid dehydrogenase.  相似文献   

2.
The catabolism of prostaglandins by rat skin.   总被引:1,自引:1,他引:0       下载免费PDF全文
The activities of NAD+-dependent 15-hydroxy prostaglandin dehydrogenase in soluble fractions of rat skin and lung were compared by using a radiochemical assay method. Tritiated prostaglandin F2 alpha was incubated with NAD+ and 120,000 g supernatant of tissue homogenate. Extracted prostaglandin substrate and reaction products were separated by t.l.c. and quantitatively determined by liquid-scintillation counting. With skin 120,000 g supernatant, 10 mM-NAD+ and an incubation time of 15 min, the mean Vmax. was 5.5 nmol of prostaglandin F2 alpha converted/s per litre of reaction mixture. With lung 120,000 g supernatant, 60 mM-NAD+ and an incubation time of 5 min, the mean Vmax. was 26.9 nmol/s per litre, demonstrating 5-fold greater dehydrogenase activity in lung per unit wet weight of tissue. However, the total wet weight of skin was about 23 times that of lung, on dissection of individual rats, indicating that the entire skin may contain 4.5 times the total 15-hydroxy prostaglandin dehydrogenase activity of the lungs. Skin may thus be an important organ of prostaglandin catabolism.  相似文献   

3.
Isomerization of 5-pregnene-3,20-dione to progesterone by human placental microsomes was stimulated by NAD and NADH. Concomitant oxidation or reduction of nucleotide was not detected based on absorbance at 340 nm. Concentrations giving half-maximum activity were 0.76 microM for NADH and 24.0 microM for NAD. Vmax values with 9.28 microM 5-pregnene-3,20-dione were 22.0 nmol/min/mg protein with NADH and 65.8 nmol/min/mg protein with NAD. When isomerase was assayed as a function of 5-pregnene-3,20-dione concentration, NAD increased Vmax but had no effect on the Km value for steroid. NADP, NADPH, acetylpyridine NAD and deamino NAD did not activate nor did they compete with NAD. Exposure of microsomes to trypsin, phospholipase A2 or phospholipase C resulted in the loss of isomerase activity. Approximately 30% of the initial activity was recovered after detergent solubilization of microsomes. Hydrogen peroxide did not affect activation by NAD. The data are consistent with nucleotide enhancement of a step in the isomerization reaction other than substrate binding.  相似文献   

4.
Activity of delta 5-3 beta-hydroxysteroid dehydrogenase coupled with steroid-delta 5-4-isomerase was demonstrated for the first time in the pancreas. The enzyme complex was assayed by measuring the conversion of pregnenolone to progesterone as well as of dehydroepiandrosterone to androstenedione and found to be localized primarily in the mitochondrial fraction of dog pancreas homogenates. The delta 5-3 beta-hydroxysteroid dehydrogenase used either NAD+ or NADP+ as co-substrates, although maximal activity was observed with NAD+. In phosphate buffer, pH 7.0 and 37 degrees C, the apparent Km values of the dehydrogenase were 6.54 +/- 0.7 microM for pregnenolone and 9.61 +/- 0.8 microM for NAD+. The apparent Vmax was determined as 0.82 +/- 0.02 nmol min-1 mg-1. Under the same conditions the Km values for dehydroepiandrosterone and NAD+ were 3.3 +/- 0.2 microM and 9.63 +/- 1.6 microM, respectively, and the apparent Vmax was 0.62 +/- 0.01 nmol min-1 mg-1.  相似文献   

5.
A NAD-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was purified to a specific activity of over 25,000 nmol NADH formed/min/mg protein with 50 microM prostaglandin E1 as substrate from the lungs of 28-day-old pregnant rabbits. This represented a 2600-fold purification of the enzyme with a recovery of 6% of the starting enzyme activity. The lungs of pregnant rabbits were used because a 42- to 55-fold induction of the PGDH activity was observed after 20 days of gestation. The enzyme was purified by CM-cellulose, DEAE-cellulose, Sephadex G-75, octylamino-agarose, and hydroxylapatite chromatography. The enzyme could not be purified by affinity chromatography using NAD- or blue dextran-bound resins. The purified enzyme was specific for NAD and had a subunit molecular weight of 29,000. The optimal pH range for the oxidation of prostaglandin E1 was between 10.0 and 10.4 using 3-(cyclohexylamino)propanesulfonic acid as the buffer. The Km and Vmax values for prostaglandin E1 were 33 microM and 40,260 nmol/min/mg protein, respectively, while the Km and Vmax values for prostaglandin E2 were 59 microM and 43,319 nmol/min/mg protein, respectively. The Km for prostaglandin F2 alpha was four times the value for prostaglandin E1. The PGDH activity was inhibited by p-chloromercuriphenylsulfonic acid but the enzymatic activity was restored by the addition of dithiothreitol. n-Ethylmaleimide also produced a rapid decline in enzymatic activity but when NAD was included in the incubation system, no inhibition was observed.  相似文献   

6.
In cell extracts of Methanosarcina barkeri, the methylcoenzyme M methylreductase system with H2 as the electron donor was inhibited by NAD+ and NADP+, but NADH and NADPH had no effect on enzyme activity. NAD+ (4 and 8 mM) shifted the saturation curve for methylcoenzyme M from hyperbolic (Hill coefficient [nH] = 1.0; concentration of substrate giving half maximal velocity [Km] = 0.21 mM) to sigmoidal (nH = 1.5 and 2.0), increased Km (Km = 0.25 and 0.34 mM), and slightly decreased Vmax. Similarly NADP+ at 4m and 8 mM increased nH to 1.6 and 1.85 respectively, but the Km values (0.3 and 0.56 mM) indicated that NADP+ was a more efficient inhibitor than NAD+.  相似文献   

7.
The NADPH:5 alpha-dihydroprogesterone 3 alpha-hydroxysteroid oxidoreductase (3 alpha-HSOR) [EC 1.1.1.50] which catalyzes the reversible conversion of 5 alpha-pregnane-3,20-dione (5 alpha-dihydroprogesterone; 5 alpha-DHP) to 3 alpha-hydroxy-5 alpha-pregnan- 20-one (3 alpha-,5 alpha-tetrahydroprogesterone; 3 alpha,5 alpha-THP) was purified to apparent homogeneity from female rat anterior pituitary cytosol by a three step micro-purification procedure. Specific activity of purified 3 alpha-HSOR was enriched 438-fold from that in pituitary cytosol using successive ion exchange, chromatofocusing and affinity column chromatography purification steps. 3 alpha-HSOR appears to be a monomer with an approximate molecular weight of 36 kDa and an isoelectric point of about 5.75. The purified enzyme appears as a single protein staining band (36 kDa) when examined by polyacrylamide gel electrophoresis and with both silver or Coomassie blue staining. Under non-dissociating electrophoretic conditions, all of the 3 alpha-HSOR activity co-migrated with the 36 kDa protein staining band. The purified enzyme in the presence of the preferred cofactor, NADPH, has an apparent Km for 5 alpha-DHP of 82 nM and a Vmax of 1.2 mumol of 3 alpha,5 alpha-THP formed per mg protein/30 min. The Km for NADPH was 0.71 microM. In the oxidative direction, the enzyme in the presence of NADP+ has a Km for 3 alpha,5 alpha-THP of 1.4 microM and a Vmax of 9.7 mumol of 5 alpha-DHP formed per mg protein/30 min. The Km for NADP+ was 1.6 microM.  相似文献   

8.
The specific activity of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (PGDH) was found to increase in the ovaries of pregnant and pseudopregnant rabbits. The mean specific activity of cytosolic ovarian PGDH in 14- to 28-day pregnant rabbits was 24.3 +/- 8.1 nmol NADH formed/min/mg protein (n = 16) using PGE1 as substrate whereas in nonpregnant rabbits the specific activity was 1.5 +/- 0.8 nmol NADH formed/min/mg protein (n = 8). The reaction was dependent on NAD+; NADP+ did not support the reaction. In grouping the PGDH activities from pregnant rabbits into second (14-18 days) and third (2-28 days) trimester periods, no significant difference between values was found (26.1 +/- 8.9 vs 23.4 +/- 8.1 nmol NADH formed/min/mg protein, respectively). Western blot analysis of the ovarian cytosol using an antibody which was made to the purified lung PGDH of pregnant rabbits recognized an ovarian protein of identical molecular mass (30 kDa). Ovarian PGDH activities were also examined in rabbits treated with pregnant mare's serum gonadotrophin (PMSG) and human chorionic gonadotrophin (hCG) to induce a state of superovulatory/pseudopregnancy and only on day 11 following hCG treatment was an increase in PGDH specific activity observed. On day 11, the specific activity was 14.8 +/- 4.3 nmol NADH formed/min/mg protein whereas values on days 10 and 12 were only 1.1 +/- 1.1 and 1.0 +/- 0.8, respectively. PGDH activities on days 3, 7 and 16 were also low.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
W Schlegel  S Krüger  K Korte 《FEBS letters》1984,171(1):141-144
Prostaglandin E2-9- oxoreductase (PGE2-9-OR), the enzyme which converts prostaglandin E2 (PGE2) to prostaglandin F2 alpha (PGF2 alpha), has been detected in human decidua vera. A 105-fold purification was achieved when the centrifuged homogenate was fractionated sequentially by DEAE-Trisacryl, hydroxyapatite-agarose gel, ultrogel AcA 44 and Matrex gel blue A gel chromatographies. The following kinetic constants for PGE2-9-OR have been obtained. The equilibrium constant with respect to PGE2 is 83 microM, the Michaelis constant, Km, for PGE2 is 80 microM, for NADPH 1.6 microM. The maximal velocity for the forward reaction is V1 = .203 pmol/min. The enzyme was inhibited by progesterone, oestradiol-17 beta, cortisol and pharmaceutical drugs. An activating effect could be demonstrated with Ca2+ and oxytocin. The occurrence of PGE2-9-OR in the decidua vera suggests that this enzyme may be responsible for the transformation of PGE2 to PGF2 alpha in these tissues. This may be an important mechanism for the initiation and maintenance of uterine contractions.  相似文献   

10.
NAD kinase was purified 93-fold from Escherichia coli. The enzyme was found to have a pH optimum of 7.2 and an apparent Km for NAD+, ATP, and Mg2+ of 1.9, 2.1, and 4.1 mM, respectively. Several compounds including quinolinic acid, nicotinic acid, nicotinamide, nicotinamide mononucleotide, AMP, ADP, and NADP+ did not affect NAD kinase activity. The enzyme was not affected by changes in the adenylate energy charge. In contrast, both NADH and NADPH were potent negative modulators of the enzyme, since their presence at micromolar concentrations resulted in a pronounced sigmoidal NAD+ saturation curve. In addition, the presence of a range of concentrations of the reduced nucleotides resulted in an increase of the Hill slope (nH) to 1.7 to 2.0 with NADH and to 1.8 to 2.1 with NADPH, suggesting that NAD kinase is an allosteric enzyme. These results indicate that NAD kinase activity is regulated by the availability of ATP, NAD+, and Mg2+ and, more significantly, by changes in the NADP+/NADPH and NAD+/NADH ratios. Thus, NAD kinase probably plays a role in the regulation of NADP turnover and pool size in E. coli.  相似文献   

11.
Glutamate dehydrogenase (L-glutamate:NAD+ oxidoreductase (deaminating); EC 1.4.1.2) has been purified from Peptostreptococcus asaccharolyticus in a single step using dye-ligand chromatography. The enzyme (GDH) was present in high yields and was stabilized in crude extracts. A subunit molecular weight of 49000 +/- 500 was determined by SDS polyacrylamide gel electrophoresis and six bands were obtained after cross-linking the subunits with dimethyl suberimidate. This bacterial GDH was predominantly NAD+-linked, but was able to utilize both NADP+ and NADPH at 4% of the rates with NAD+ and NADH, respectively. An investigation of the amino acid specificity revealed some similarities with GDH from mammalian sources and some clear differences. The values of apparent Km for the substrates ammonia, 2-oxoglutarate, NADH, NAD+ and glutamate were 18.4, 0.82, 0.066, 0.031 and 6 mM, respectively. The P. asaccharolyticus GDH was not regulated by purine nucleotides, but was subject to strong inhibition with increasing ionic strength.  相似文献   

12.
The oxidation of the 15-hydroxy group of prostaglandins of the A, E, and F series by the NAD+-dependent prostaglandin dehydrogenase (PGDH) has been well documented. In addition to prostaglandins, we have observed that the purified lung PGDH also will oxidize 15-HETE to a novel metabolite that was isolated by reverse-phase HPLC and identified by gas chromatography-mass spectrometry as the 15-keto-5,8,11-cis-13-trans-eicosatetraenoic acid (15-KETE). The Km for 15-HETE was 16 microM, which was 2.5 times lower than the value obtained for PGE1. In addition to 15-HETE, 5,15-diHETE and 8,15-diHETE also were substrates for the lung PGDH with Km values of 138 and 178 microM, respectively. Other hydroxy derivatives of eicosatetraenoic acid that did not have a hydroxy group at carbon atom 15 did not support the PGDH-mediated reduction of NAD+. In addition to the 15-hydroxy derivatives of eicosatetraenoic acid, 12-HHT also was a substrate for the lung enzyme with a Km of 12 microM. These data indicate that omega 6-hydroxy fatty acids, in addition to prostaglandins, are also substrates of the lung NAD+-dependent PGDH and that the enzyme does not require the cyclopentane ring of prostaglandins.  相似文献   

13.
Prostaglandin-E2 9-ketoreductase from human uterine decidua vera   总被引:1,自引:0,他引:1  
Prostaglandin-E2 9-ketoreductase, the enzyme which catalyzes the reaction from prostaglandin E2 (PGE2) to prostaglandin F2 alpha (PGF2 alpha), has been purified 232-fold from human uterine decidua vera. The molecular mass of the enzyme, as estimated by fast protein liquid chromatography, was 29 kDa. Sodium dodecyl sulfate disc gel electrophoresis of the denatured enzyme revealed a molecular mass of 31 kDa. These data suggest that the enzyme consists of a single polypeptide chain. The rate equation of the enzyme reaction for two substrates was used for the determination of five kinetic constants. The equilibrium constant with respect to PGE2 was 83 microM, the Michaelis constant, Km, for PGE2 was 93 microM. For NADPH, the equilibrium constant was 1.0 microM and Km was 1.6 microM. The maximal velocity for the forward reaction was V1 = 217 pmol/min. The inhibition constants for the analgesic agents indomethacin and fentiazac were Ki = 850 microM and Ki = 450 microM and for the steroid progesterone Ki = 1.5 mM, respectively. Prostaglandin-E2 9-ketoreductase might be responsible for the control of the PGE2/PGF2 alpha ratio in human decidua vera. The enzyme, therefore, might be an important factor in the cascade of events leading to uterine contractions and parturition.  相似文献   

14.
Mitochondria isolated from the heart of cod (Gadus morrhua callarias) oxidized malate as the only exogenous substrate very rapidly. Pyruvate only slightly increased malate oxidation by these mitochondria. This is in contrast with the mitochondria isolated from rat and rabbit heart which oxidized malate very slowly unless pyruvate was added. Arsenite and hydroxymalonate (an inhibitor of malic enzyme) inhibited the respiration rate of mitochondria isolated from cod heart, when malate was the only exogenous substrate. Inhibition caused by hydroxymalonate was reversed by the addition of pyruvate. In the presence of arsenite, malate was converted to pyruvate by cod heart mitochondria. Cod heart mitochondria incubated in the medium containing Triton X-100 catalyzed the reduction of NADP+ in the presence of L-malate and Mn2+ at relatively high rate (about 160 nmoles NADPH formed/min/mg mitochondrial protein). The oxidative decarboxylation of malate was also taking place when NADP+ was replaced by NAD+ (about 25 nmol NADH formed per min per mg mitochondrial protein). These results suggest that the mitochondria contain both NAD+- and NADP+-linked malic enzymes. These two activities were eluted from DEAE-Sephacel as two independent peaks. It is concluded that malic enzyme activity (presumably both NAD+- and NADP+-linked) is responsible for the rapid oxidation of malate (as the only external substrate) by cod heart mitochondria.  相似文献   

15.
L A Sheean  R A Meigs 《Steroids》1983,42(1):77-91
The ability of NADH to function as an alternative cofactor for the support of estrogen biosynthesis was validated. NADH supported rates of aromatization of up to 80% of those obtained with NADPH, with an apparent Km of 0.70 mM, and stimulated the NADPH-supported reaction only when supplies of the normal cofactor were limiting, both additive and synergistic effects being observed. NADH-supported aromatization was inhibited competitively by NADP+ and 2'-AMP with Ki values of 5 microM and 22 microM, respectively. Support by both cofactors was lost in parallel with the selective removal of NADPH-cytochrome c reductase from microsomes by graded subtilisin treatment. NADH-supported aromatization was differentiated from NADPH-supported aromatization by its sensitivity to inhibition by NAD+ and its response to changes in ionic strength. NADH appears to function, at high concentrations, as a surrogate for NADPH at the reduced nucleotide-binding site of NADPH-cytochrome c reductase but additional roles for NADH are also suggested both when acting alone and as a supplement to NADPH. A common oxidase (cytochrome P-450) appears to catalyze both NADH- and NADPH-supported aromatization.  相似文献   

16.
Peptostreptococcus asaccharolyticus glutamate dehydrogenase (L-glutamate: NAD+ oxidoreductase (deaminating); EC 1.4.1.2) overexpressed in Escherichia coli has been purified by two new methods. Enzyme made by the first method showed remarkable thermophilicity, with a temperature optimum of 60 degrees C, and also thermostability, which suggested the second, simpler method, incorporating a heat step. This produced 94 mg of homogeneous protein per litre culture medium. The basic kinetic parameters for P. asaccharolyticus glutamate dehydrogenase with all substrates are revealed at pH 7.0. The enzyme is highly specific for NAD+, with values for kcat/Km 405 times greater than for NADP+. In the reverse direction of reaction, the kcat/Km value for NADH is almost 1000-fold greater than for NADPH.  相似文献   

17.
The activity of NAD+-dependent PGDH was measured in the cytosolic fractions (100,000 x g) of uterine tissues obtained from transsexual, pregnant and non-pregnant women. The specific activity (mean +/- SD) of the enzyme at maximum velocity of the enzyme reaction in these three groups of women was 5.5 +/- 2.30, 0.53 +/- 0.27 and 0.54 +/- 0.25 mU/mg protein respectively using PGE2 as substrate, and with PGF2 alpha as substrate the respective values were 5.48 +/- 2.80, 0.49 +/- 0.41 and 0.51 +/- 0.30 mU/mg protein. These data suggest that, with either substrate, the uterine enzyme activity in the transsexuals was about 10-fold greater than in pregnant and non-pregnant women (p less than 0.001). However, the Km values of the enzyme for both PGE2 and PGF2 alpha were similar in all three groups, indicating the presence of same enzyme in the uterus of transsexual, pregnant and non-pregnant women. We speculate that PGDH activity was raised in the uterus of transsexual women because of the prolonged androgen therapy they received for the management of female-to-male transsexualism.  相似文献   

18.
The enzyme 3-hydroxybutyryl-coenzyme A (CoA) dehydrogenase has been purified 45-fold to apparent homogeneity from the solvent-producing anaerobe Clostridium beijerinckii NRRL B593. The identities of 34 of the N-terminal 35 amino acid residues have been determined. The enzyme exhibited a native M(r) of 213,000 and a subunit M(r) of 30,800. It is specific for the (S)-enantiomer of 3-hydroxybutyryl-CoA. Michaelis constants for NADH and acetoacetyl-CoA were 8.6 and 14 microM, respectively. The maximum velocity of the enzyme was 540 mumol min-1 mg-1 for the reduction of acetoacetyl-CoA with NADH. The enzyme could use either NAD(H) or NADP(H) as a cosubstrate; however, kcat/Km for the NADH-linked reaction was much higher than the apparent value for the NADPH-linked reaction. Also, NAD(H)-linked activity was less sensitive to changes in pH than NADP(H)-linked activity was. In the presence of 9.5 microM NADH, the enzyme was inhibited by acetoacetyl-CoA at concentrations as low as 20 microM, but the inhibition was relieved as the concentration of NADH was increased, suggesting a possible mechanism for modulating the energy efficiency during growth.  相似文献   

19.
An NAD+-linked 17 beta-hydroxysteroid dehydrogenase was purified to homogeneity from a fungus, Cylindrocarpon radicicola ATCC 11011 by ion exchange, gel filtration, and hydrophobic chromatographies. The purified preparation of the dehydrogenase showed an apparent molecular weight of 58,600 by gel filtration and polyacrylamide gel electrophoresis. SDS-gel electrophoresis gave Mr = 26,000 for the identical subunits of the protein. The amino-terminal residue of the enzyme protein was determined to be glycine. The enzyme catalyzed the oxidation of 17 beta-hydroxysteroids to the ketosteroids with the reduction of NAD+, which was a specific hydrogen acceptor, and also catalyzed the reduction of 17-ketosteroids with the consumption of NADH. The optimum pH of the dehydrogenase reaction was 10 and that of the reductase reaction was 7.0. The enzyme had a high specific activity for the oxidation of testosterone (Vmax = 85 mumol/min/mg; Km for the steroid = 9.5 microM; Km for NAD+ = 198 microM at pH 10.0) and for the reduction of androstenedione (Vmax = 1.8 mumol/min/mg; Km for the steroid = 24 microM; Km for NADH = 6.8 microM at pH 7.0). In the purified enzyme preparation, no activity of 3 alpha-hydroxysteroid dehydrogenase, 3 beta-hydroxysteroid dehydrogenase, delta 5-3-ketosteroid-4,5-isomerase, or steroid ring A-delta-dehydrogenase was detected. Among several steroids tested, only 17 beta-hydroxysteroids such as testosterone, estradiol-17 beta, and 11 beta-hydroxytestosterone, were oxidized, indicating that the enzyme has a high specificity for the substrate steroid. The stereospecificity of hydrogen transfer by the enzyme in dehydrogenation was examined with [17 alpha-3H]testosterone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号