首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is well-established that bacterial and viral infections have an exacerbating effect on allergic asthma, particularly aggravating respiratory symptoms, such as airway hyperresponsiveness (AHR). The mechanism by which these infections alter AHR is unclear, but some studies suggest that Toll-like receptors (TLRs) play a role. In this study, we investigated the impact of TLR3 and TLR4 ligands on AHR and airway inflammation in a model of pre-established allergic inflammation. Female BALB/c mice were sensitised and challenged intranasally (i.n.) with either PBS or ovalbumin (OVA) and subsequently i.n. challenged with poly (I:C) (TLR3) or LPS (TLR4) for four consecutive days. The response to methacholine was measured in vivo; cellular and inflammatory mediators were measured in blood, lung tissue and broncheoalveolar lavage fluid (BALF). OVA challenge resulted in an increase in AHR to methacholine, as well as increased airway eosinophilia and TH2 cytokine production. Subsequent challenge with TLR agonists resulted in a significant increase in AHR, but decreased TLR-specific cellular inflammation and production of immune mediators. Particularly evident was a decline in LPS-induced neutrophilia and neutrophil-associated cytokines following LPS and poly (I:C) treatment. The present data indicates that TLRs may play a pivotal role in AHR in response to microbial infection in allergic lung inflammation. These data also demonstrate that aggravated AHR occurs in the absence of an exacerbation in airway inflammation and that allergic inflammation impedes a subsequent inflammatory response to TLRs. These results may parallel clinical signs of microbial asthma exacerbation, including an extended duration of illness and increased respiratory symptoms.  相似文献   

2.
Histopathology of the lung and total IgE in serum were compared in toxocariasis and allergic asthma murine models using BALB/c and C57BL/6 mice. Infection with Toxocara canis resulted in both strains of mice in marked histological changes and increased levels of total serum IgE. The ovalbumin (OVA) sensitization/challenge treatment for the induction of allergic asthma resulted in similar histological changes in BALB/c and, to a less extent, in C57BL/6 mice. Serum IgE levels of OVA-treated C57BL/6 mice were low. Histological changes observed included perivascular infiltration with eosinophils and mononuclear cells, peribronchiolitis, alveolitis and mucus production. Although these changes in addition to increased IgE production did occur in T. canis-infected C57BL/6 mice they were more pronounced in BALB/c mice. Thus, BALB/c mice appear to be the most appropriate strain of mice to perform studies on the possible connection between infection with T. canis and allergic asthma.  相似文献   

3.
8-Oxoguanine-DNA glycosylase (OGG-1) is a base excision DNA repair enzyme; however, its function in modulating allergic diseases remains undefined. Using OGG-1 knockout (KO) mice, we show that this protein affects allergic airway inflammation after sensitization and challenge by ovalbumin(OVA). OGG-1 KO mice exhibited less inflammatory cell infiltration and reduced oxidative stress in the lungs after OVA challenge compared to WT mice. The KO phenotype included decreased IL-4, IL-6, IL-10, and IL-17 in lung tissues. In addition, OGG-1 KO mice showed decreased expression and phosphorylation of STAT6 as well as NF-κB. Down-regulation of OGG-1 by siRNA lowered ROS and IL-4 levels but increased IFN-γ production in cultured epithelial cells after exposure to house dust mite extracts. OGG-1 may affect the levels of oxidative stress and proinflammatory cytokines during asthmatic conditions. OGG-1 deficiency negatively regulates allergen-induced airway inflammatory response.  相似文献   

4.
The Helicobacter pylori neutrophil-activating protein (HP-NAP) is able in vitro to elicit IL-12 and IL-23 production via agonistic interaction with toll-like receptor 2, and to promote Th1 polarization of allergen-specific T-cell responses. This study was aimed to assess whether systemic/intraperitoneal and/or mucosal HP-NAP administration inhibited the Th2-mediated bronchial inflammation using a mouse model of allergic asthma induced by inhaled ovalbumin (OVA). Systemic HP-NAP delivery markedly reduced the lung eosinophilia in response to repeated challenge with aerosolized OVA. Likewise, the production of IL-4, IL-5 and GM-CSF was significantly lower in the bronchoalveolar lavage of animals treated with systemic HP-NAP plus OVA than that of animals treated with OVA alone. Systemic HP-NAP also significantly resulted in both reduction of total serum IgE and increase of IL-12 plasma levels. Mucosal administration of HP-NAP was equally successful as the systemic delivery in reducing eosinophilia, IgE and Th2 cytokine levels in bronchoalveolar lavage. However, no suppression of lung eosinophilia and bronchial Th2 cytokines was observed in toll-like receptor 2-knock-out mice following HP-NAP treatment. These results identify HP-NAP as a candidate for novel strategies of prevention and treatment of allergic diseases.  相似文献   

5.

Background

Chronic asthma is often associated with neutrophilic infiltration in the airways. Neutrophils contain elastase, a potent secretagogue in the airways, nonetheless the role for neutrophil elastase as well as neutrophilic inflammation in allergen-induced airway responses is not well defined. In this study, we have investigated the impact of neutrophil elastase inhibition on the development of allergic airway inflammation and airway hyperresponsiveness (AHR) in previously sensitized and challenged mice.

Methods

BALB/c mice were sensitized and challenged (primary) with ovalbumin (OVA). Six weeks later, a single OVA aerosol (secondary challenge) was delivered and airway inflammation and airway responses were monitored 6 and 48 hrs later. An inhibitor of neutrophil elastase was administered prior to secondary challenge.

Results

Mice developed a two-phase airway inflammatory response after secondary allergen challenge, one neutrophilic at 6 hr and the other eosinophilic, at 48 hr. PAR-2 expression in the lung tissues was enhanced following secondary challenge, and that PAR-2 intracellular expression on peribronchial lymph node (PBLN) T cells was also increased following allergen challenge of sensitized mice. Inhibition of neutrophil elastase significantly attenuated AHR, goblet cell metaplasia, and inflammatory cell accumulation in the airways following secondary OVA challenge. Levels of IL-4, IL-5 and IL-13, and eotaxin in BAL fluid 6 hr after secondary allergen challenge were significantly suppressed by the treatment. At 48 hr, treatment with the neutrophil elastase inhibitor significantly reduced the levels of IL-13 and TGF-β1 in the BAL fluid. In parallel, in vitro IL-13 production was significantly inhibited in spleen cells from sensitized mice.

Conclusion

These data indicate that neutrophil elastase plays an important role in the development of allergic airway inflammation and hyperresponsiveness, and would suggest that the neutrophil elastase inhibitor reduced AHR to inhaled methacholine indicating the potential for its use as a modulator of the immune/inflammatory response in both the neutrophil- and eosinophil-dominant phases of the response to secondary allergen challenge.  相似文献   

6.
T cells and T cell derived cytokines are involved in the complex pathogenesis of asthma. The role of the cytokine IL-18 however, is not clearly defined so far. On the one hand side IL-18 induces Th1-type cytokines and thereby might counter-regulate Th2-mediated allergic asthma. On the other hand IL-18 also bears pro-inflammatory effects possibly enhancing experimental asthma. In order to elucidate the role of IL-18 in allergic pulmonary inflammation typical symptoms were compared after induction of experimental asthma in IL-18−/− and in wild type mice. Asthma was induced using ovalbumin (OVA) as allergen for sensitization and challenge. Sham sensitized and OVA challenged mice served as controls. Bronchoalveolar lavage-fluid cytology, leukocyte infiltration in lung tissues, serum levels of OVA-specific IgE and cytokines, and lung function were analyzed. Clear differences could be observed between control and asthmatic mice, both in wild type and IL-18−/− animals. Surprisingly, no differences were found between asthmatic wild type and IL-18−/− mice. Thus, in contrast to conflicting data in the literature IL-18 did not suppress or enhance the pulmonary allergic immune response in a murine experimental model of asthma.  相似文献   

7.
Murine models of allergic lung disease have many similar traits to asthma in humans and can be used to investigate mechanisms of allergic sensitization and susceptibility factors associated with disease severity. The purpose of this study was to determine strain differences in allergic airway inflammation, immunoglobulin production, and changes in respiratory responses between systemic and mucosal sensitization routes in BALB/cJ, FVB/NJ, and C57BL/6J, and to provide correlations between immune and pathophysiological endpoints. After a single intranasal ovalbumin (OVA) challenge, all three strains of mice systemically sensitized with OVA and adjuvant exhibited higher airflow limitation than non-sensitized mice. No changes were seen in mice that were pre-sensitized via the nose with OVA. Systemic sensitization resulted in an elevated response to methacholine (MCH) in BALB/cJ and FVB/NJ mice and elevated total and OVA-specific IgE levels and pulmonary eosinophils in all three strains. The mucosal sensitization and challenge produced weaker responses in the same general pattern with the C57BL/6J strain producing less serum IgE, IL5, IL13, and eosinophils in lung fluid than the other two strains. The converse was found for IL6 where the C57BL/6J mice had more than twice the amount of this cytokine. The results show that the FVB/NJ and BALB/cJ mice are higher Th2-responders than the C57BL/6J mice and that the levels of pulmonary eosinophilia and cytokines did not fully track with MCH responsiveness. These differences illustrate the need to assess multiple endpoints to provide clearer associations between immune responses and type and severity of allergic lung disease.  相似文献   

8.
Allergic asthma is a lifelong airway condition that affects people of all ages. In recent decades, asthma prevalence continues to increase globally, with an estimated number of 250,000 annual deaths attributed to the disease. Although inhaled corticosteroids and β-adrenergic receptor agonists are the primary therapeutic avenues that effectively reduce asthma symptoms, profound side effects may occur in patients with long-term treatments. Therefore, development of new therapeutic strategies is needed as alternative or supplement to current asthma treatments. Sesamin is a natural polyphenolic compound with strong anti-oxidative effects. Several studies have reported that sesamin is effective in preventing hypertension, thrombotic tendency, and neuroinflammation. However, it is still unknown whether sesamin can reduce asthma-induced allergic inflammation and airway hyperresponsiveness (AHR). Our study has revealed that sesamin exhibited significant anti-inflammatory effects in ovalbumin (OVA)-induced murine asthma model. We found that treatments with sesamin after OVA sensitization and challenge significantly decreased expression levels of interleukin-4 (IL-4), IL-5, IL-13, and serum IgE. The numbers of total inflammatory cells and eosinophils in BALF were also reduced in the sesamin-treated animals. Histological results demonstrated that sesamin attenuated OVA-induced eosinophil infiltration, airway goblet cell hyperplasia, mucus occlusion, and MUC5AC expression in the lung tissue. Mice administered with sesamin showed limited increases in AHR compared with mice receiving vehicle after OVA challenge. OVA increased phosphorylation levels of IκB-α and nuclear expression levels of NF-κB, both of which were reversed by sesamin treatments. These data indicate that sesamin is effective in treating allergic asthma responses induced by OVA in mice.  相似文献   

9.
10.
Murine models of acute atopic asthma may be inadequate to study the effects of recurrent exposure to inhaled allergens, such as the epithelial changes seen in asthmatic patients. We developed a murine model in which chronic airway inflammation is maintained by repeated allergen [ovalbumin (OVA)] inhalation; using this model, we examined the response to mucosal administration of CpG DNA (oligonucleotides) and specific antigen immunotherapy. Mice repeatedly exposed to OVA developed significantly greater airway hyperresponsiveness and goblet cell hyperplasia, but not airway eosinophilia, compared with those exposed only twice. CpG-based immunotherapy significantly reversed both acute and chronic markers of inflammation as well as airway hyperresponsiveness. We further examined the effect of mucosal immunotherapy on the response to a second, unrelated antigen. Mice sensitized to both OVA and schistosome eggs, challenged with inhaled OVA, and then treated with OVA-directed immunotherapy demonstrated significant reduction of airway hyperresponsiveness and a moderate reduction in eosinophilia, after inhalation challenge with schistosome egg antigens. In this model, immunotherapy treatment reduced bronchoalveolar lavage (BAL) levels of Th2 cytokines (IL-4, IL-5, IL-13, and IL-10) without changing BAL IFN-gamma. Antigen recall responses of splenocytes from these mice demonstrated an antigen-specific (OVA) enhanced release of IL-10 from splenocytes of treated mice. These results suggest that CpG DNA may provide the basis for a novel form of immunotherapy of allergic asthma. Both antigen-specific and, to a lesser extent, antigen-nonspecific responses to mucosal administration of CpG DNA are seen.  相似文献   

11.
Allergic asthma is characterized by infiltration of eosinophils, elevated Th2 cytokine levels, airway hyperresponsiveness, and IgE. In addition to eosinophils, mast cells, and basophils, a variety of cytokines are also involved in the development of allergic asthma. The pivotal role of eosinophils in the progression of the disease has been a subject of controversy. To determine the role of eosinophils in the progression of airway inflammation, we sensitized and challenged BALB/c wild-type (WT) mice and eosinophil-deficient ΔdblGATA mice with ovalbumin (OVA) and analyzed different aspects of inflammation. We observed increased eosinophil levels and a Th2-dominant response in OVA-challenged WT mice. In contrast, eosinophil-deficient ΔdblGATA mice displayed an increased proportion of mast cells and a Th17-biased response following OVA inhalation. Notably, the levels of IL-33, an important cytokine responsible for Th2 immune deviation, were not different between WT and eosinophil-deficient mice. We also demonstrated that mast cells induced Th17-differentiation via IL-33/ST2 stimulation in vitro. These results indicate that eosinophils are not essential for the development of allergic asthma and that mast cells can skew the immune reaction predominantly toward Th17 responses via IL-33 stimulation.  相似文献   

12.
Allergen sensitization and allergic airway disease are likely to come about through the inhalation of Ag with immunostimulatory molecules. However, environmental pollutants, including nitrogen dioxide (NO2), may promote adaptive immune responses to innocuous Ags that are not by themselves immunostimulatory. We tested in C57BL/6 mice whether exposure to NO2, followed by inhalation of the innocuous protein Ag, OVA, would result in allergen sensitization and the subsequent development of allergic airway disease. Following challenge with aerosolized OVA alone, mice previously exposed via inhalation to NO2 and OVA developed eosinophilic inflammation and mucus cell metaplasia in the lungs, as well as OVA-specific IgE and IgG1, and Th2-type cytokine responses. One hour of exposure to 10 parts per million NO2 increased bronchoalveolar lavage fluid levels of total protein, lactate dehydrogenase activity, and heat shock protein 70; promoted the activation of NF-kappaB by airway epithelial cells; and stimulated the subsequent allergic response to Ag challenge. Furthermore, features of allergic airway disease were not induced in allergen-challenged TLR2-/- and MyD88-/- mice exposed to NO2 and aerosolized OVA during sensitization. These findings offer a mechanism whereby allergen sensitization and asthma may result under conditions of high ambient or endogenous NO2 levels.  相似文献   

13.
Monocyte chemoattractant proteins-1 and -5 have been implicated as important mediators of allergic pulmonary inflammation in murine models of asthma. The only identified receptor for these two chemokines to date is the CCR2. To study the role of CCR2 in a murine model of Ag-induced asthma, we compared the pathologic and physiological responses of CCR2(-/-) mice with those of wild-type (WT) littermates following immunization and challenge with OVA. OVA-immunized/OVA-challenged (OVA/OVA) WT and CCR2(-/-) mice developed significant increases in total cells recovered by bronchoalveolar lavage (BAL) compared with their respective OVA-immunized/PBS-challenged (OVA/PBS) control groups. There were no significant differences in BAL cell counts and differentials (i.e., macrophages, PMNs, lymphocytes, and eosinophils) between OVA/OVA WT and CCR2(-/-) mice. Serologic evaluation revealed no significant difference in total IgE and OVA-specific IgE between OVA/OVA WT mice and CCR2(-/-) mice. Lung mRNA expression and BAL cytokine protein levels of IL-4, IL-5, and IFN-gamma were also similar in WT and CCR2(-/-) mice. Finally, OVA/OVA CCR2(-/-) mice developed increased airway hyper-responsiveness to a degree similar to that in WT mice. We conclude that following repeated airway challenges with Ag in sensitized mice, the development of Th2 responses (elevated IgE, pulmonary eosinophilia, and lung cytokine levels of IL-4 and IL5) and the development of airway hyper-responsiveness are not diminished by a deficiency in CCR2.  相似文献   

14.
Allergen-specific CD4+ Th2 cells play an important role in the immunological processes of allergic asthma. Previously we have shown that, by using the immunodominant epitope OVA323-339, peptide immunotherapy in a murine model of OVA induced allergic asthma, stimulated OVA-specific Th2 cells, and deteriorated airway hyperresponsiveness and eosinophilia. In the present study, we defined four modulatory peptide analogues of OVA323-339 with comparable MHC class II binding affinity. These peptide analogues were used for immunotherapy by s.c. injection in OVA-sensitized mice before OVA challenge. Compared with vehicle-treated mice, treatment with the Th2-skewing wild-type peptide and a Th2-skewing partial agonistic peptide (335N-A) dramatically increased airway eosinophilia upon OVA challenge. In contrast, treatment with a Th1-skewing peptide analogue (336E-A) resulted in a significant decrease in airway eosinophilia and OVA-specific IL-4 and IL-5 production. Our data show for the first time that a Th1-skewing peptide analogue of a dominant allergen epitope can modulate allergen-specific Th2 effector cells in an allergic response in vivo. Furthermore, these data suggest that the use of Th1-skewing peptides instead of wild-type peptide may improve peptide immunotherapy and may contribute to the development of a successful and safe immunotherapy for allergic patients.  相似文献   

15.
Antibody-antigen interactions in the airway initiate inflammation in acute asthma exacerbations. This inflammatory response is characterized by the recruitment of granulocytes into the airways. In murine models of asthma, granulocyte recruitment into the lung contributes to the development of airway hyperresponsiveness (AHR), mucus production, and airway remodeling. Leukotriene B4 is a mediator released following antigen challenge that has chemotactic activity for granulocytes, mediated through its receptor, BLT1. We investigated the role of BLT1 in granulocyte recruitment following antigen challenge. Wild-type mice and BLT1-/- mice were sensitized and challenged with ovalbumin (OVA) to induce acute allergic airway inflammation. In addition, to explore the relevance to antibody-antigen interactions, we injected OVA bound to anti-OVA IgG1 or anti-OVA IgE intratracheally into na?ve wild-type and BLT1-/- mice. Cell composition of the lungs, cytokine levels, histology, and AHR were determined. After sensitization and challenge with ovalbumin, there was significantly reduced neutrophil and eosinophil recruitment into the airways of BLT1-/- mice compared with wild-type animals after one or two daily antigen challenges, but this difference was not seen after three or four daily antigen challenges. Mucus production and AHR were not affected. Intratracheal injection of OVA bound to IgG1 or IgE induced neutrophil recruitment into the airways in wild-type mice but not in the BLT1-/- mice. We conclude that BLT1 mediates early recruitment of granulocytes into the airway in response to antigen-antibody interactions in a murine model of acute asthma.  相似文献   

16.
Uteroglobin-related protein 1 (UGRP1) is a secretory protein, highly expressed in epithelial cells of airways. Although an involvement of UGRP1 in the pathogenesis of asthma has been suggested, its function in airways remains unclear. In the present study, a relationship between airway inflammation, UGRP1 expression, and interleukin-9 (IL-9), an asthma candidate gene, was evaluated by using a murine model of allergic bronchial asthma. A severe airway inflammation accompanied by airway eosinophilia and elevation of IL-9 in bronchoalveolar lavage (BAL) fluids was observed after ovalbumin (OVA) challenge to OVA-sensitized mice. In this animal model of airway inflammation, lung Ugrp1 mRNA expression was greatly decreased compared with control mice. A significant inverse correlation between lung Ugrp1 mRNA levels and IL-9 levels in BAL fluid was demonstrated by regression analysis (r = 0.616, P = 0.023). Immunohistochemical analysis revealed a distinct localization of UGRP1 in airway epithelial cells of control mice, whereas UGRP1 staining was patchy and faint in inflamed airways. Intranasal administration of IL-9 to naive mice decreased the level of Ugrp1 expression in lungs. These findings suggest that UGRP1 is downregulated in inflamed airways, such as allergic asthmatics, and IL-9 might be an important mediator for modulating UGRP1 expression.  相似文献   

17.

Background

CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.

Methods

Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.

Results

Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.

Conclusions

We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.  相似文献   

18.

Background

Connexin (Cx)-based gap junction channels play important roles in the inflammatory response. Cx43 is involved in the pathogenesis of some lung diseases such as acute lung injury. However, the Cx43 expression in asthma is unclear. In the present study, we used a murine model of ovalbumin (OVA)-induced allergic airway disease to examine the levels of Cx43 and analyze the relationship between Cx43 and airway inflammation in allergic airway disease.

Methods

Asthma was induced in mice via sensitization and challenge with OVA. Cx43 mRNA and protein expression levels were investigated via QT-PCR, western blot, and immunohistochemistry 0 h, 8 h, 1 d, 2 d and 4 d after the first challenge. The relationship between Cx43 protein levels and inflammatory cell infiltration, cytokine levels was analyzed.

Results

The OVA-induced mice exhibited typical pathological features of asthma, including airway hyper-responsiveness; strong inflammatory cell infiltration surrounding the bronchia and vessels; many inflammatory cells in the bronchoalveolar lavage fluid (BALF); higher IL-4, IL-5 and IL-13 levels; and high OVA specific IgE levels. Low Cx43 expression was detected in the lungs of control (PBS) mice. A dramatic increase in the Cx43 mRNA and protein levels was found in the asthmatic mice. Cx43 mRNA and protein expression levels increased in a time-dependent manner in asthma mice, and Cx43 was mostly localized in the alveolar and bronchial epithelial layers. Moreover, lung Cx43 protein levels showed a significant positive correlation with inflammatory cell infiltration in the airway and IL-4 and IL-5 levels in the BALF at different time points after challenge. Interestingly, the increase in Cx43 mRNA and protein levels occurred prior to the appearance of the inflammatory cell infiltration.

Conclusion

Our data suggest that there is a strong upregulation of Cx43 mRNA and protein levels in the lungs in asthma. Cx43 levels also exhibited a positive correlation with allergic airway inflammation. Cx43 may represent a target to treat allergic airway diseases in the future.  相似文献   

19.
Neurotrophins such as nerve growth factor and brain-derived neurotrophic factor have been described to be involved in the pathogenesis of asthma. Neurturin (NTN), another neurotrophin from the glial cell line-derived neurotrophic factor family, was shown to be produced by human immune cells: monocytes, B cells, and T cells. Furthermore, it was previously described that the secretion of inflammatory cytokines was dramatically stimulated in NTN knockout (NTN(-/-)) mice. NTN is structurally similar to TGF-β, a protective cytokine in airway inflammation. This study investigates the implication of NTN in a model of allergic airway inflammation using NTN(-/-) mice. The bronchial inflammatory response of OVA-sensitized NTN(-/-) mice was compared with wild-type mice. Airway inflammation, Th2 cytokines, and airway hyperresponsiveness (AHR) were examined. NTN(-/-) mice showed an increase of OVA-specific serum IgE and a pronounced worsening of inflammatory features. Eosinophil number and IL-4 and IL-5 concentration in the bronchoalveolar lavage fluid and lung tissue were increased. In parallel, Th2 cytokine secretion of lung draining lymph node cells was also augmented when stimulated by OVA in vitro. Furthermore, AHR was markedly enhanced in NTN(-/-) mice after sensitization and challenge when compared with wild-type mice. Administration of NTN before challenge with OVA partially rescues the phenotype of NTN(-/-) mice. These findings provide evidence for a dampening role of NTN on allergic inflammation and AHR in a murine model of asthma.  相似文献   

20.
Airway epithelium is rich in labile zinc (Zn), which may have an important protective role in the airway epithelium. The aim of this study is to investigate the effects of Zn on the airway inflammation and the generation of eotaxin, monocyte chemoattractant protein-1 (MCP-1), interleukin-8 (IL-8), interleukin-4 (IL-4), and interferon-?? (IFN-??) in rat models of ovalbumin (OVA)-induced allergic airway inflammation. For this purpose, animal model of asthma was established by OVA challenge and zinc-deficient and zinc-supplemented diets were given. Thirty-two Sprague?CDawley rats were divided into four groups: zinc-deficient diet with OVA treatment group, zinc-supplemented diet with OVA treatment group, zinc-normal diet with OVA treatment group, and zinc-normal diet with saline treatment group. Twenty-four hours after asthma was induced, lung histomorphological changes, cells in bronchoalveolar lavage fluid (BALF), contents of eotaxin, MCP-1, and IL-8 in BALF, and the expression of IFN-?? and IL-4 mRNAs were observed. Compared with the group of zinc-normal diet with OVA challenge rats, the group of zinc-deficient rats had higher numbers of eosinophils, neutrophils, and monocytes in BALF, as well as higher contents of eotaxin and MCP-1 in BALF and lower expression of lung IFN-?? mRNA. Conversely, Zn supplementation would decrease the numbers of eosinophils, neutrophils, and monocytes in BALF; suppress eotaxin and MCP-1 protein secretion; and increase lung IFN-?? mRNA expression. No significant difference was observed in IL-8 and IL-4 among OVA-challenged rats with different zinc diets. These studies suggested that Zn may be an important anti-inflammatory mediator of airway inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号