首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Summary A high-liter antiserum has been obtained from two rabbits immunized with a glutaraldehyde conjugate of synthetic pigment-dispersing hormone (PDH) from Uca pugilator and bovine thyroglobulin. The antiserum blocked melanophore-dispersing activity of the peptide in vivo. In sinus glands (SG) of Carcinus maenas, Cancer pagurus, Uca pugilator and Orconectes limosus, electron-microscopic immunocytochemistry revealed sparsely distributed axon endings containing a distinct PDH-immunoreactive type of neurosecretory granules (diameter 90–130 nm). Exocytotic figures indicating release of the content of these granules into hemolymph lacunae were occasionally observed. Preservation of fine structure and antigenicity of the PDH granules were markedly dependent on the fixation procedure used. A preliminary experiment with C. maenas showed that preterminal axon dilatations near the basal lamina seemed to accumulate PDH-granules when animals were kept in complete darkness for three days. Immunodot blotting of fractions after high pressure liquid chromatography (HPLC) of extracts from SGs of C. maenas and O. limosus revealed a strongly immunoreactive substance at a retention time very similar to those of synthetic PDHs of Uca pugilator and Pandalus borealis. It is also coincident with a zone of biological activity. Thus, the antigen demonstrated by immunocytochemistry is identical or very similar to one of the known PDHs.  相似文献   

2.
Two neuropeptides with adipokinetic activity in Locusta migratoria and hypertrehalosaemic activity in Periplaneta americana were purified by high-performance liquid chromatography from the corpus cardiacum of the lubber grasshopper, Romalea microptera. The sequences of both peptides, designated Ro I and Ro II, were determined by gas-phase sequencing employing Edman degradation after the N-terminal pyroglutamate residue was enzymatically deblocked, as well as by fast atom bombardment mass spectrometry. Ro I was found to be a decapeptide with the primary structure: pGlu-Val-Asn-Phe-Thr-Pro-Asn-Trp-Gly-Thr-NH2, whereas Ro II is an octapeptide with the structure: pGlu-Val-Asn-Phe-Ser-Thr-Gly-Trp-NH2. Ro II is identical with AKH-G isolated from the cricket Gryllus bimaculatus. Synthetic materials having the assigned structures were found to be chromatographically, mass spectrometrically, and biologically indistinguishable from the natural peptides, confirming the sequences and establishing the Romalea peptides as members of the AKH/RPCH-family of peptides.  相似文献   

3.
In crustaceans, the pigment-dispersing hormone (PDH) is released from the X-organ/sinus gland complex located in the eyestalks, and controls pigment dispersion in the chromatophores. Knowledge concerning the structure and activity of PDH in penaeid shrimps is remains limited, since natural PDH has been purified from only the Kuruma prawn, Marsupenaeus japonicus. In this study, two PDHs (Liv-PDH-A and -B) were purified from the sinus gland extracts of another penaeid species, the whiteleg shrimp, Litopenaeus vannamei, by two steps of reversed-phase HPLC, and their amino acid sequences were determined. They both consist of 18 amino acid residues, with a free N-terminus and an amidated C-terminus, the sequences of Liv-PDH-A and -B being NSELINSLLGIPKVMNDAamide and NSELINSLLGLPKVMNDAamide, respectively. These sequences are identical to those of mature PDHs deduced from cDNAs encoding L. vannamei PDH precursors cloned previously by other workers. Liv-PDH-A and -B showed significant pigment-dispersing activity in melanophores by in vivo bioassay.  相似文献   

4.
A pigment-dispersing hormone (PDH) from eyestalks of the crayfish Procambarus clarkii was purified by gel filtration, cation-exchange chromatography, partition chromatography, and reversed-phase HPLC. Based on automated sequencing and by the identical chromatographic behavior of the native PDH and the synthetic amidated form of the deduced sequence, the primary structure of Procambarus PDH has been established as: Asn-Ser-Glu-Leu-Ile-Asn-Ser-Ile-Leu-Gly-Leu-Pro-Lys-Val-Met-Asn-Glu-Ala- NH2. This peptide differs from beta-PDH of the fiddler crab Uca pugilator at a single position, Glu17 in place of Asp17. Because of this substitution, Procambarus PDH was 4 to 7-fold less potent than beta-PDH in causing pigment dispersion in the erythrophores, leucophores, and melanophores of Uca. In contrast, Procambarus PDH was 4-fold more potent than beta-PDH in eliciting pigment dispersion in the erythrophores of Procambarus. These peptides displayed less marked differences in potency in triggering leucophore pigment dispersion and light-adaptational distal eye pigment movement in Procambarus. These findings indicate that the structural requirements for PDH-receptor interactions vary with the species and with the target cell type within a given species.  相似文献   

5.
The elucidation of the whole genome of the nematode Caenorhabditis elegans allowed for the identification of ortholog genes belonging to the pigment dispersing hormone/factor (PDH/PDF) peptide family. Members of this peptide family are known from crustaceans, insects and nematodes and seem to exist exclusively in ecdysozoans where they play a role in different processes, ranging from the dispersion of integumental and eye (retinal) pigments in decapod crustaceans to circadian rhythms in insects and locomotion in C. elegans. Two pdf genes (pdf-1 and pdf-2) encoding three different peptides: PDF-1a, PDF-1b and PDF-2 have been identified in C. elegans. These three C. elegans PDH-like peptides are similar but not identical in primary structure to PDHs from decapod crustaceans. We investigate whether this divergence has an influence on the pigment dispersing function of the peptides in a decapod crustacean, namely the shrimp Palaemon pacificus. We show that C. elegans PDF-1a and b peptides display cross-functional activity by dispersing pigments in the epithelium of P. pacificus at physiological doses. Moreover, by means of a comparative amino acid sequence analysis of nematode and crustacean PDH-like peptides, we can pinpoint several potentially important residues for eliciting pigment dispersing activity in decapod crustaceans. Although there is no sequence information on a receptor for PDH in decapod crustaceans, we postulate that there is general conservation of the PDH/PDF signaling system based on structural similarities of precursor proteins and receptors (including those from a branchiopod crustacean and from C. elegans).  相似文献   

6.
7.
Homodimerization of the retinoid X receptor (RXR) occurs upon binding of ligands to the receptor, but little is known about structural mechanisms involved in RXR ligand binding. In the present study, binding of known ligands (5-Hydroxytryptamine, dopamine and naloxone) to the Celuca pugilator RXR was modeled computationally using the human RXR-α as a homology template. Docking scores calculated for these ligands showed reasonably good binding interactions to C. pugilator RXR. Furthermore, RXR is the receptor that mediates the different activities of neurotransmitters and opioid against naloxone in crustaceans and possibly other species. These results indicate that 5-hydroxytryptamine and naloxone might have similar functions. These also results suggest a 3-D model of C. pugilator RXR that describes the binding of ligands at a single RXR receptor binding site and offers further insight into the binding of structurally diverse ligands to this receptor. Further, computational studies showed that crustacean RXRs might be closer to vertebrate RXR than to insect RXR. The predicted binding models for C. pugilator RXR may allow for better design of experimental studies, such as site-directed mutagenesis and affinity labeling studies that may yield valuable information concerning structure-activity relationship studies of RXR and its ligands.  相似文献   

8.
Intertidal species have both circadian and circatidal clocks. Although the behavioral evidence for these oscillators is more than 5 decades old, virtually nothing is known about their molecular clockwork. Pigment-dispersing hormones (PDHs) were originally described in crustaceans. Their insect homologs, pigment-dispersing factors (PDFs), have a prominent role as clock output and synchronizing signals released from clock neurons. We show that gene duplication in crabs has led to two PDH genes (β-pdh-I and β-pdh-II). Phylogenetically, β-pdh-I is more closely related to insect pdf than to β-pdh-II, and we hypothesized that β-PDH-I may represent a canonical clock output signal. Accordingly, β-PDH-I expression in the brain of the intertidal crab Cancer productus is similar to that of PDF in Drosophila melanogaster, and neurons that express PDH-I also show CYCLE-like immunoreactivity. Using D. melanogaster pdf-null mutants (pdf(01)) as a heterologous system, we show that β-pdh-I is indistinguishable from pdf in its ability to rescue the mutant arrhythmic phenotype, but β-pdh-II fails to restore the wild-type phenotype. Application of the three peptides to explanted brains shows that PDF and β-PDH-I are equally effective in inducing the signal transduction cascade of the PDF receptor, but β-PDH-II fails to induce a normal cascade. Our results represent the first functional characterization of a putative molecular clock output in an intertidal species and may provide a critical step towards the characterization of molecular components of biological clocks in intertidal organisms.  相似文献   

9.
Summary

The two characterized crustacean pigment-dispersing hormones (α-PDH; β-PDH) are octadecapeptides which differ in primary structure at six positions. Assays for melanophore pigment-dispersing activity showed β-PDH to be 21-fold more potent than α-PDH. In an effort to explain the difference in potencies between the two PDHs, we synthesized and purified six analogs of α-PDH (Leu4?, Leu11?, Lys13?, Asn16?, Asp17?, and Glu3, Leu4? α-PDH) in which the amino acid residues of α-PDH were substituted with those of β-PDH. Four analogs (Leu11?, Lys13?, Asn16?, and Asp17? α-PDH) possessed melanophore-dispersing activity equivalent to α-PDH. Leu4? α-PDH and Glu3, Leu4? α-PDH were 2.4? and 4-fold more potent than α-PDH, respectively. Glu3-α-PDH was 3.3-fold more potent than α-PDH (Jorenby et al., 1987). These results suggest that the 21-fold increase in activity of β-PDH over α-PDH is due to an interactive effect of two or more substitutions rather than from the product of the effects brought about by individual substitutions.  相似文献   

10.
When run on a CsCl gradient the DNA from individuals containing B-chromosomes reveals a satellite peak in addition to the main DNA peak found in individuals without B-chromosomes. This was shown in several populations of grasshoppers. This B-chromosome DNA contains 28% repeated and 72% unique sequences as determined by hydroxyapatite chromatography. This was shown to be the case in two of the populations. The really surprising observation was that the repeated nucleotide sequences of the B-chromosome DNA have no apparent homology in this single species of grasshopper. This was demonstrated by the lack of hybridisation between labelled C-RNA transcribed from one B-chromosome DNA and the DNA from the B-chromosome peak from another population. This lack of homology was also suggested by density differences between B-chromosome satellites in CsCl gradients. Furthermore, there was no sequence homology between the satellite (B-chromosome) DNA and the main peak (nuclear) DNA.  相似文献   

11.
Pigment-dispersing factor (PDF), an 18-amino acid neuropeptide, is a principal circadian neurotransmitter for the circadian rhythms of the locomotor activity in flies. Recently, two completely different types of PDF precursor were clarified; that of the cricket Gryllus bimaculatus and that of the last-summer cicada Meimuna opalifera. The G. bimaculatus PDF precursor is extraordinarily short and comprises a nuclear localization signal (NLS), while the M. opalifera PDF precursor is of ordinary length, comparable to that seen for the precursors of crustacean beta-PDH homologues. Although their PDF peptide regions were exactly the same, the regions containing a signal peptide combined with a PDF-associated peptide (PAP) were remarkably different from each other. Such a grouping suggested a fundamental role for the PAP peptide in the circadian clock, perhaps associated with PDF function. In the present study, the cDNA cloning of PDF from the adult brains of the housefly Musca domestica was carried out and it was found that an isolated clone (527 bp) encodes a PDF precursor protein of ordinary length. The PDF peptide shows a high sequence identity (78%-94%) and similarity (89%-100%) to insect PDFs and also to the crustacean beta-PDH peptides. In particular, there is only a single amino acid difference between the PDFs of Musca and Drosophila; at position 14 Ser for Musca PDF and Asn for Drosophila PDF. A characteristic Ser10 in Drosophila was retained in Musca, indicating the presence of a structural profile unique to these PDFs. The results of sequence analyses suggest that Musca and Drosophila PDFs are to be considered members of a single group that has evolved structurally. When the primary structure of the PAP regions was compared, the Musca PDF precursor also belonged to the same group as that to which the Drosophila PDF precursor belongs.  相似文献   

12.
Circadian locomotor rhythms of Drosophila melanogaster are controlled by a neuronal circuit composed of approximately 150 clock neurons that are roughly classified into seven groups. In the circuit, a group of neurons expressing pigment-dispersing factor (PDF) play an important role in organizing the pacemaking system. Recent studies imply that unknown chemical neurotransmitter(s) (UNT) other than PDF is also expressed in the PDF-positive neurons. To explore its role in the circadian pacemaker, we examined the circadian locomotor rhythms of pdf-Gal4/UAS-TNT transgenic flies in which chemical synaptic transmission in PDF-positive neurons was blocked by expressed tetanus toxin light chain (TNT). In constant darkness (DD), the flies showed a free-running rhythm, which was similar to that of wild-type flies but significantly different from pdf null mutants. Under constant light conditions (LL), however, they often showed complex rhythms with a short period and a long period component. The UNT is thus likely involved in the synaptic transmission in the clock network and its release caused by LL leads to arrhythmicity. Immunocytochemistry revealed that LL induced phase separation in TIMELESS (TIM) cycling among some of the PDF-positive and PDF-negative clock neurons in the transgenic flies. These results suggest that both PDF and UNT play important roles in the Drosophila circadian clock, and activation of PDF pathway alone by LL leads to the complex locomotor rhythm through desynchronized oscillation among some of the clock neurons.  相似文献   

13.
Many lines of evidence have suggested that neuropeptides other than pigment-dispersing factor (PDF) are involved in regulating insect circadian rhythms, and FMRFamide-related peptides are additional candidates acting as such neuromodulators. Double-immunolabelling in insect brains with anti-crustacean beta-PDH and anti-FMRFamide antibodies had previously suggested that insect PDF and FMRFamide-like peptides may coexist in the same cells. However, it is critical for this kind of comparative investigations to use antibodies of proven specificity, to eliminate the possibility of both reciprocal cross-reactivity and the detection of unknown peptides. In the present study, we achieved the cDNA cloning of an fmrf mRNA from the housefly Musca domestica, for which co-localization of FMRFamide and PDF peptides was previously suggested. In order to examine the possible co-expression of this gene with the pdf gene, we carried out double-labelled in situ hybridization for simultaneous detection of both pdf and fmrf mRNAs in housefly, Musca brains. The results clearly indicated that they occur in distinctly different cells. This was also proven for the fruit fly Drosophila melanogaster by similar double-labelled in situ hybridization. The results thus revealed no reason to evoke the physiological release of FMRFamide and PDF peptides from the same neurons.  相似文献   

14.
In this article, a novel and sensitive analytical strategy for direct characterization of neuropeptides from the X-Organ-sinus gland neurosecretory system of the crayfish Orconectes limosus is presented. A desalted extract corresponding to 0.5 sinus gland equivalents was analyzed in a nanoflow liquid chromatography system coupled to quadrupole time-of-flight tandem mass spectrometry (nanoLC-QTOF MS/MS). The existence and structural identity of four crustacean hyperglycemic hormone precursor-related peptide variants and two new genetic variants of the pigment-dispersing hormone, not detected by conventional chromatographic systems, molecular cloning, or immunochemical methods before, was revealed. The here-presented approach of the combined LC-QTOF MS/MS technique is a powerful tool to discover new peptide hormones in biological systems, due to its sensitivity, accuracy, and speed.  相似文献   

15.
Hughes PM 《Tissue & cell》1987,19(5):705-712
The scanning electron microscope (SEM) is demonstrated as a useful tool in the study of insect cuticular growth layers. The helicoids present in the endocuticle are shown to be comprised of discrete chitin fibrils, orientated in a staggered manner. Surface relief is used to explain the appearance of daily growth layer images under the SEM, the bulk of this work being performed on the short-horned grasshopper, Romalea microptera.  相似文献   

16.
Uptake of the yolk protein, lipovitellin, by developing crustacean oocytes   总被引:3,自引:0,他引:3  
A variety of cytochemical techniques were used to demonstrate how crustacean lipovitellin accumulates within the egg. It was found that a protein serologically identical to the lipovitellin of yolk spheres was present in the hemolymph of vitellogenic crustaceans, but was absent from the hemolymph of males and immature females.In the three crustacean species studied (Uca pugilator, Cambarus clarkii, and Libinia emarginata), pinocytosis of fluorescein-conjugated lipovitellin and trypan blue occurred only during those periods when oocytes were accumulating yolk.It may be concluded from the present studies that yolk spheres develop in crustacean eggs primarily through micropinocytotic uptake of lipovitellin from the hemolymph, although other oocyte proteins appear to be made in the oocyte.  相似文献   

17.
The epidermal collagenase activity and its induction by 20-hydroxyecdysone in Uca pugilator were investigated.Zymographic electrophoresis showed four bands of collagenae activity,16,19,22 and 29 kDa in molecular weight,with the former two accounting for 60% and 36%,respectively,of the total coUagenase activity. The collagenase activity varies during the molting cycle. Among the molt stages tested,Premoh Stage Do exhibited the highest epidermal coUagenase activity for both the 16 and 19 kDa isoenzymes and,as the molt stage proceeded,the enzymatic activity of these two isoenzymes decreased,with the lowest activity for both found in Premoh Stage D3-4. Injection of 20-hydroxyecdysone significantly induced the activity of the 16 kDa collagenase in the epidermis of Uca pugilator,suggesting that the activity of this isoenzyme is under molting hormone control.Although 20-hydroxyecdysone injection did not result in a statistically significant increase in the activity of the 19 kDa isocnzyme,a tendency of the induction was nonetheless demonstrated. This is the first report on epidermal collagenase activity and its induction by the molting hormone in a crustacean.  相似文献   

18.
In Drosophila, the neuropeptide pigment-dispersing factor (PDF) is a likely circadian molecule, secreted by central pacemaker neurons (LNvs). PDF is expressed in both small and large LNvs (sLNvs and lLNvs), and there are striking circadian oscillations of PDF staining intensity in the small cell termini, which require a functional molecular clock. This cycling may be relevant to the proposed role of PDF as a synchronizer of the clock system or as an output signal connecting pacemaker cells to locomotor activity centers. In this study, the authors use a generic neuropeptide fusion protein (atrial natriuretic factor-green fluorescent protein [ANF-GFP]) and show that it can be expressed in the same neurons as PDF itself. Yet, ANF-GFP as well as PDF itself does not manifest any cyclical accumulation in sLNv termini in adult transgenic flies. Surprisingly, the absence of detectable PDF cycling is not accompanied by any detectable behavioral pheno-type, since these transgenic flies have normal morning and evening anticipation in a light-dark cycle (LD) and are fully rhythmic in constant darkness (DD). The molecular clock is also not compromised. The results suggest that robust PDF cycling in sLNv termini plays no more than a minor role in the Drosophila circadian system and is apparently not even necessary for clock output function.  相似文献   

19.
In an effort to explain the difference in potencies between the two characterized crustacean pigment-dispersing hormones (alpha-PDH; beta-PDH) and to define a role for residue 3 in these octadecapeptide hormones, we have synthesized and purified seven position 3 alpha-PDH analogues ([Ala3], [Ile3], [Asn3], [Gln3], [Asp3], [Glu3], and [Lys3]alpha-PDH). When tested for melanophore pigment-dispersing activity in destalked Uca, [Glu3]alpha-PDH was found to be 325% more potent than alpha-PDH. Reduced potencies were observed for the [Asp3] (58%), [Asn3] (26%), [Gln3] (11%), and [Ala3] (8%) derivatives. Much lower potencies were displayed by the [Lys3] and [Ile3] analogues (0.73% and 0.66%, respectively). These results suggest that the position 3 side chain carboxylate anion of [Glu3]alpha-PDH stabilizes the active receptor-bound conformer through a charge-charge interaction.  相似文献   

20.
We have examined the development of pigment-dispersing hormone (PDH)-immunoreactive neurons in embryos of the American lobster Homarus americanus Milne Edwards, 1837 (Decapoda, Reptantia, Homarida) by using an antiserum against β-PDH. This peptide is detectable in the terminal medulla of the eyestalks and the protocerebrum where PDH immunoreactivity is present as early as 20% of embryonic development. During ontogenesis, an elaborate system of PDH-immunoreactive neurons and fibres develops in the eyestalks and the protocerebrum, whereas less labelling is present in the deuto- and tritocerebrum and the ventral nerve cord. The sinus gland is innervated by PDH neurites at hatching. This pattern of PDH immunoreactivity has been compared with that found in various insect species. Neurons immunoreactive to pigment-dispersing factor in the medulla have been shown to be a central component of the system that generates the circadian rhythm in insects. Our results indicate that, in view of the position of the neuronal somata and projection patterns of their neurites, the immunolabelled medulla neurons in insects have homologous counterparts in the crustacean eyestalk. Since locomotory and other activities in crustaceans follow distinct circadian rhythms comparable with those observed in insects, we suggest that PDH-immunoreactive medulla neurons in crustaceans are involved in the generation of these rhythms. This study was supported by Deutsche Forschungsgemeinschaft (DFG) grant Ha 2540 and National Science Foundation grant IBN 0344448. S.H. was a Heisenberg Fellow of the DFG during the experimental part of this study. Bill Hansson and the Max Planck Society provided support during the final period of work reported in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号