首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
SYNOPSIS Fatty acids were examined of photosynthetic and non-photosynthetic marine and freshwater cryptomonads cultured as photoauxotrophs, photoheterotrophs and heterotrophs at various incubation temperatures and constant light intensity. Photo-synthetic marine and freshwater forms contained octadecatrienoic, octadecatetraenoic, eicosapentaenoic and docosahexaenoic (all-cis, ω3 acids) as the major polyunsaturates, and a freshwater heterotroph contained mostly the octadecatrienoic acid. The polar lipids of a marine, photosynthetic form, Cryptomonas sp., included the usual thylakoid membrane lipids of the chloroplasts of eukaryotic, photosynthetic cells: galactosyl diglycerides, phosphatidyl glycerol and a sulfolipid. Also present were 2 choline-containing phospholipids: phosphatidyl choline and an unknown. Ninhydrin-positive and inositol-containing lipids were not detected. Octadecatetraenoic acid comprised 75% of the total fatty acids of the monogalactosyl diglyceride fraction. The phosphatidyl glycerol was acylated mostly by ω13 trans-hexadecaenoic acid and the eicosapentaenoic acid. Evolutionary relationships of cryptomonads as mirrored in lipid composition are discussed.  相似文献   

2.
Omega‐3 (also called n‐3) long‐chain polyunsaturated fatty acids (≥C20; LC‐PUFAs) are of considerable interest, based on clear evidence of dietary health benefits and the concurrent decline of global sources (fish oils). Generating alternative transgenic plant sources of omega‐3 LC‐PUFAs, i.e. eicosapentaenoic acid (20:5 n‐3, EPA) and docosahexaenoic acid (22:6 n‐3, DHA) has previously proved problematic. Here we describe a set of heterologous genes capable of efficiently directing synthesis of these fatty acids in the seed oil of the crop Camelina sativa, while simultaneously avoiding accumulation of undesirable intermediate fatty acids. We describe two iterations: RRes_EPA in which seeds contain EPA levels of up to 31% (mean 24%), and RRes_DHA, in which seeds accumulate up to 12% EPA and 14% DHA (mean 11% EPA and 8% DHA). These omega‐3 LC‐PUFA levels are equivalent to those in fish oils, and represent a sustainable, terrestrial source of these fatty acids. We also describe the distribution of these non‐native fatty acids within C. sativa seed lipids, and consider these data in the context of our current understanding of acyl exchange during seed oil synthesis.  相似文献   

3.
Development, ontogeny of the digestive system and the fatty‐acid (FA) profile, were analysed during development of Epinephelus marginatus. Larvae were analysed 7 and 17 days post fertilization (dpf) to evaluate fatty‐acid profile and morphological variables, respectively. Epinephelus marginatus larvae have relatively slow development of digestive structures, but were able to capture, ingest and digest prey by 5 dpf. Eggs were composed of high percentages of polyunsaturated fatty acids (PUFA) in phospholipids. The percentage of n3 PUFAs was higher than n6, especially docosahexaenoic acid (DHA), which exhibited higher levels compared with other marine species during the first 3 days of development, both in terms of phospholipids and triglycerides. The larvae present a high content of docosahexaenoic acid–eicosapentaenoic acid (DHA–EPA) and, during this phase, live food of small size was required (copepods or SS‐strain Brachionus rotundiformes), enriched with DHA–EPA. These results may guide future studies on the contribution of FAs required during this stage of the life cycle of E. marginatus, to advance knowledge of the use of these FAs throughout ontogeny and contribute to the culture of this species commercial production or restocking.  相似文献   

4.
The total protein, carbohydrate, lipid and ash compositions, and fatty acid contents of two species of marine microalgae, the eustigmatophyte Nannochloropsis oculata (formerly ‘Chlorella sp., Japan’) and the chrysophyte Isochrysis sp. (Tahitian) used in tropical Australian mariculture, were studied. The microalgae were grown under a range of culture conditions (41 and 601 laboratory culture, 3001 bag culture, and 80001 outdoor culture) and four light regimes (100 to 107 μ E m−2 s−1, 240 to 390 μ E m−2 s−1, 340 to 620 μ E m−2 s−1, and 1100 to 1200 μE m−2 s−1 respectively) to determine the effect of light intensity on the chemical composition of large scale outdoor cultures. Laboratory and bag cultures were axenic and cultured in Walne medium while outdoor cultures were grown in a commercial medium designed for optimum nutrition in tropical outdoor aquaculture operations. Change in growth medium and photon flux density produced only small changes in the proximate biochemical composition of both algae. N. oculata and Isochrysis sp. both showed a trend towards slightly lower carbohydrate and higher chlorophyll a in shaded outdoor culture. Isochrysis sp. showed significant concentrations of the essential polyunsaturated fatty acid 22:6(n−3) (docosahexaenoic acid) from 5.3 to 10.3% of total fatty acid, and 20:5(n−3) (eicosapentaenoic acid) ranged from 0.6 to 4.1%. In contrast, N. oculata had high concentrations of 20:5(n−3) (17.8 to 39.9%) and only traces of 22:6(n−3). The fatty acid composition of Isochrysis sp. grown at high photon flux density (1100–1200 μE m−2 s−1) under outdoor culture showed a decrease in the percentage of several highly unsaturated fatty acids, including 20:5(n−3), and an increase in 22:6(n−3). N. oculata showed a similar decrease in the percentage of 20:5(n−3). High light intensity caused a decrease in the ratio of total C16 unsaturated fatty acids to saturated 16:0 in N. oculata, and a decrease in the ratio of total C18 unsaturated fatty acids to saturated 18:0 together with a decrease in the ratio of total unsaturated fatty acids to total saturated fatty acids in both microalgae.  相似文献   

5.
The influence of diet on the fatty acid composition of the hepatopancreas of Mytilus trossulus was studied. Three groups of mollusks were fed monocultures of the microalgae Phaeodactylum tricornutum, Chaetoceros muelleri (Bacillariophyceae), and Nannochloropsis sp. (Eustigmatophyceae) for 10 days. After 10 days, the proportion of polyunsaturated fatty acids, mainly eicosapentaenoic and docosahexaenoic, increased in the total lipids of the hepatopancreas in all mollusk groups. The content of saturated fatty acids in the mussel tissues decreased and was not dependent on the amount in the algal diet. Toward the end of the experiment, the fatty acid composition of the hepatopancreas of mussels was similar irrespective of the fatty acid composition of their food. The fatty acid analysis of M. trossulus feces suggests a selective assimilation by mussels of predominantly the n-3 polyunsaturated fatty acids. The role of fatty acid metabolism in M. trossulus is discussed.  相似文献   

6.
The influence of salinity on the growth, gross chemical composition and fatty acid composition of three species of marine microalgae,Isochrysis sp.,Nannochloropsis oculata andNitzschia (frustulum), was investigated. There was no significant change in growth rate ofIsochrysis sp. andN. (frustulum) over the experimental range of salinity (10–35 ppt), whileN. oculata had a significantly slower growth rate only at 35 ppt. The ash content of all three species increased with increasing salinity. Two species,Isochrysis sp. andN. oculata, showed significant linear increases in total lipid content with increasing salinity over the range 10 to 35 ppt.N. (frustulum) showed significant linear decrease in total lipids, with the highest percentage at low salinity within the range 10–15 ppt. Variation in salinity had only a slight effect on the total protein, the soluble carbohydrate and chlorophylla content of all species. All species responded to change in salinity by modifying their cellular fatty acid compositions. Significant positive correlations were observed between increase in salinity and increase in the percentage ofcis-9-hexadecenoic acid [16:1 (n-7)] over the entire experimental range inN. (frustulum) and between 25–35 ppt inN. oculata. There were curved relationships between salinity and percentage of hexadecanoic acid [16:0] inN. oculata andN. (frustulum), with maxima within the range 25–30 ppt for both species. A curved relationship was found between salinity and percentage of eicosapentaenoic acid [20–5(n-3)], forN. (frustulum), with lowest percentages of the fatty acid within the range 25–30 ppt. There was no consistent pattern in the percentages of other major fatty acids as functions of salinity. The Northern Territory isolateN. (frustulum) was unusual in having a substantial increase in total fatty acids with decreasing salinity (85 mg g–1 dry wt at 10 ppt compared with 33 mg g–1 at 35 ppt). The optimum salinities for the production of maximum amount of lipids and the essential fatty acids 20:5(n-3) and/or 22:6(n-3) were as follows:25 ppt forIsochrysis sp. [22:6(n-3)]; 20–30 ppt forN. oculata [20:5(n-3)]; 10–15 ppt forN. (frustulum) [20:5(n-3) and 22:6(n-3)].Author for correspondence  相似文献   

7.
Fatty acids from total lipids and polar lipids in cultured rainbow trout (Oncorhynchus mykiss) raised in seawater (SW) and freshwater (FW) were identified and quantified from the muscle samples in January, April, and July. The highest total lipid and polar lipid amounts were found in April. July contents of total lipids were low, but percent of the polyunsaturated fatty acids (PUFAs) was high in SW and FW environment (particularly n‐3 PUFAs). Variety of 17 fatty acids was identified by GC‐FID after transmethylation. The predominant fatty acids in rainbow trout from SW and FW were: docosahexaenoic acid among n‐3 PUFAs, palmitic acid among saturated fatty acids (SFAs), and oleic acid among monounsaturated fatty acids (MUFAs). Appreciably higher n‐3/n‐6 ratio was found in total lipids in April (6.40, FW fish) and in polar lipids in July (18.76; SW fish). High n‐3/n‐6 ratio in total lipids and polar lipids of rainbow trout from SW and FW, besides beneficial n‐3/n‐6 ratio in the commercial fish food, could be characteristic for the local environmental conditions (Croatia).  相似文献   

8.
A new strain of yellow‐green algae (Xanthophyceae, Heterokonta), tentatively named Heterococcus sp. DN1 (UTEX accession number UTEX ZZ885), was discovered among snow fields in the Rocky Mountains. Axenic cultures of H. sp. DN1 were isolated and their cellular morphology, growth, and composition of lipids were characterized. H. sp. DN1 was found to grow at temperatures approaching freezing to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures. Of particular interest was the accumulation of eicosapentaenoic acid, known to be important for human nutrition, and palmitoleic acid, known to improve biodiesel feedstock properties. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:853–861, 2013  相似文献   

9.
Objective: The long‐term effects of fetal hyperinsulinemia, time course of changes in liver and very‐low‐density lipoprotein (VLDL) lipid levels and fatty acid compositions were investigated in obese offspring of streptozotocin‐induced mildly diabetic rats. Research Methods and Procedures: Mild hyperglycemia in pregnant rats was induced by intraperitoneal injection of streptozotocin on day 5 of gestation. Control pregnant rats were injected with citrate buffer. Liver and VLDL lipids and fatty acids were analyzed in offspring at different ages. Results: At birth, obese pups had higher VLDL triglyceride levels, saturated fatty acids, and C20:4n‐6. They also had lower C18:2n‐6 proportions in VLDL triglycerides, phospholipids, and cholesteryl esters than controls pups. In 1‐month‐old male and female obese rats, VLDL and liver lipid amounts were similar to those in their respective controls; however, high levels of C18:2n‐6 and C20:4n‐6 were noted in liver and VLDL lipids. At the age of 2 months, liver and VLDL triglyceride levels were higher in obese females than in control females. Fatty acid abnormalities seen in obese rats included low C18:3n‐3 and high C22:6n‐3 proportions in liver triglycerides and phospholipids. At the age of 3 months, obese rats, both males and females, compared with control animals, had higher VLDL and hepatic lipids with reduced C20:4n‐6 levels and polyunsaturated/saturated fatty acids ratios in hepatic and VLDL triglycerides and phospholipids. Discussion: Fetal obesity, associated with alterations in VLDL lipid fatty acid composition, represents an important risk factor for adult obesity and diabetes.  相似文献   

10.
Aims: In this study, we have investigated the biochemical behaviour of Aspergillus sp. (five strains) and Penicillium expansum (one strain) fungi cultivated on waste cooking olive oil. The production of lipid‐rich biomass was the main target of the work. In parallel, the biosynthesis of other extracellular metabolites (organic acids) and enzyme (lipase) and the substrate fatty acid specificity of the strains were studied. Methods and Results: Carbon‐limited cultures were performed on waste oil, added in the growth medium at 15 g l?1, and high biomass quantities were produced (up to c. 18 g l?1, conversion yield of c. 1·0 g of dry biomass formed per g of fat consumed or higher). Cellular lipids were accumulated in notable quantities in almost all cultures. Aspergillus sp. ATHUM 3482 accumulated lipid up to 64·0% (w/w) in dry fungal mass. In parallel, extracellular lipase activity was quantified, and it was revealed to be strain and fermentation time dependent, with a maximum quantity of 645 U ml?1 being obtained by Aspergillus niger NRRL 363. Storage lipid content significantly decreased at the stationary growth phase. Some differences in the fatty acid composition of both cellular and residual lipids when compared with the initial substrate fat used were observed; in various cases, cellular lipids more saturated and enriched with arachidic acid were produced. Aspergillus strains produced oxalic acid up to 5·0 g l?1. Conclusions: Aspergillus and Penicillium strains are able to convert waste cooking olive oil into high‐added‐value products. Significance and Impact of the Study: Increasing fatty wastes amounts are annually produced. The current study provided an alternative way of biovalourization of these materials, by using them as substrates, to produce added‐value compounds.  相似文献   

11.
Turbulence has been shown to alter different aspects of the physiology of some dinoflagellates. The response appears to be species‐specific and dependent on the experimental design and setup used to generate small‐scale turbulence. We examined the variability of the response of three dinoflagellate species to the turbulence, following the same experimental design used by Berdalet (1992) on Akashiwo sanguinea (Hirasaka) Ge. Hansen et Moestrup (=Gymnodinium nelsonii G. W. Martin). In all experiments, turbulence was generated by an orbital shaker at 100 rpm, which corresponded on bulk average, to dissipation rates (ε, quantified using an acoustic Doppler velocimeter) of ≈2 cm2 · s?3. Turbulence did not appreciably affect Gymnodinium sp., a small dinoflagellate. However, Alexandrium minutum Halim and Prorocentrum triestinum J. Schiller exhibited a reduced net growth rate (33% and 28%, respectively) when shaken during the exponential growth phase. Compared to the still cultures, the shaken treatments of A. minutum and P. triestinum increased the mean cell volume (up to 1.4‐ and 2.5‐fold, respectively) and the mean DNA content (up to 1.8‐ and 5.3‐fold, respectively). Cultures affected by turbulence recovered their normal cell properties when returned to still conditions. The swimming speed of the cells exposed to agitation was half that of the unshaken ones. Overall, the response of A. minutum and P. triestinum was similar, but with lower intensity, to that observed previously on A. sanguinea. We found no clear trends related to taxonomy or morphology.  相似文献   

12.
The metabolism of the linolenic acid family (n-3) of fatty acids, e.g., linolenic, eicosapentaenoic, and docosahexaenoic acids, in cultured smooth muscle cells from rabbit aorta was compared to the metabolism of linoleic and arachidonic acids. There was a time-dependent uptake of these fatty acids into cells for 16 hr (arachidonic greater than docosahexaenoic, linoleic, eicosapentaenoic greater than linolenic), and the acids were incorporated mainly into phospholipids and triglycerides. Eicosapentaenoic and arachidonic acids were incorporated more into phosphatidylethanolamine and phosphatidylinositol plus phosphatidylserine and less into phosphatidylcholine than linolenic and linoleic acids. Docosahexaenoic acid was incorporated into phosphatidylethanolamine more than linolenic and linoleic acids and into phosphatidylinositol plus phosphatidylserine less than eicosapentaenoic and arachidonic acids. Added linolenic acid accumulated mainly in phosphatidylcholine and did not decrease the arachidonic acid content of any phospholipid subfraction. Elongation-desaturation metabolites of linoleic acid did not accumulate. Cells treated with eicosapentaenoic acid accumulated both eicosapentaenoic and docosapentaenoic acids mainly in phosphatidylethanolamine and the arachidonic acid content was decreased. Added docosahexaenoic acid accumulated mainly in phosphatidylethanolamine and decreased the content of both arachidonic and oleic acids. The following conclusions are drawn from these results. The three n-3 fatty acids are utilized differently in phospholipids. The arachidonic acid content of phospholipids is reduced by eicosapentaenoic and docosahexaenoic acids, but not by linolenic acid. Smooth muscle cells have little or no desaturase activity, but have significant elongation activity for polyunsaturated fatty acids.  相似文献   

13.
The fat content and fatty‐acid profiles of herring, Clupea harengus membras, from the southern Baltic Sea varied depending on when (fishing season) and where (fishing grounds) the fish were caught as well as on their size and sex. The fat, protein and dry matter content and the fatty‐acid profiles were assayed in C. h. membras muscle tissue. The changes observed in fatty‐acid profiles were determined by factors such as specimen mass and fat content, which, in turn, depended on fishing season. This is explained by dietary differences between juvenile and older fish. Gonad maturation and spawning in the latter are also factors. The study results provide confirmation of the hypothesis that polyunsaturated fatty acids (PUFA), in particular docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), play vital roles in the sexual maturation of C. h. membras.  相似文献   

14.
The synthesis and accumulation of omega‐3 long‐chain polyunsaturated fatty acids in transgenic Camelina sativa is demonstrated using the so‐called alternative pathway. This aerobic pathway is found in a small number of taxonomically unrelated unicellular organisms and utilizes a C18 Δ9‐elongase to generate C20 PUFAs. Here, we evaluated four different combinations of seed‐specific transgene‐derived activities to systematically determine the potential of this pathway to direct the synthesis of eicosapentaenoic acid (EPA) in transgenic plants. The accumulation of EPA and the related omega‐3 LC‐PUFA eicosatetraenoic acid (ETA) was observed up to 26.4% of total seed fatty acids, of which ETA was 9.5%. Seed oils such as these not only represent an additional source of EPA, but also an entirely new source of the bona fide fish oil ETA. Detailed lipidomic analysis of the alternative pathway in Camelina revealed that the acyl‐substrate preferences of the different activities in the pathway can still generate a substrate‐dichotomy bottleneck, largely due to inefficient acyl‐exchange from phospholipids into the acyl‐CoA pool. However, significant levels of EPA and ETA were detected in the triacylglycerols of transgenic seeds, confirming the channelling of these fatty acids into this storage lipid.  相似文献   

15.
Twelve species of microalgae, isolated from north Australian marine, freshwater and hypersaline environments, were grown under controlled conditions of temperature, pH, photon flux density and salinity, and analysed for ash, total protein, water soluble carbohydrates, chlorophylla, total lipids, total fatty acids and fatty acid composition. Highest levels of the polyunsaturated fatty acid eicosapentaenoic acid [20:5(n-3)] were found in the marine diatoms.Nitzschia (frustulum) andN. closterium (23.1% and 15.2% of total fatty acids, respectively). None of the species studied had levels of docosahexaenoic acid [22:6(n-3)] greater than 1.1 % of total fatty acids. None of the chlorophyte species contained significant levels of either 20:5(n-3) or 22:6(n-3). The highest total fatty acid concentration of all species in the study was found in the freshwater chlorophyte speciesScenedesmus dimorphus (105 mg g–1 dry wt). The hypersaline speciesDunaliella salina had the highest total lipid content (28.1% dry wt), followed byN. closterium, N. (frustulum) andNavicula sp. (24.2–27.8% dry wt).Chlamydomonas sp. had the highest protein content (66.9% dry wt).N. (frustulum) was highlighted as a possible useful source of lipids and polyunsaturated fatty acids in mixed microalgal diets for mariculture organisms used in tropical aquaculture.Author for correspondence  相似文献   

16.
The lipid and fatty acid compositions in two edible subtropical algae (the brown alga Cladosiphon okamuranus Tokida and the green alga Caulerpa lentillifera J. Agardh) were determined to clarify their lipid characteristics and nutritional values. Glycolipids and phospholipids were the major lipid classes, with significant levels of triacylglycerols. Polyunsaturated fatty acids (PUFA) were the major fatty acids of both algae. The lipid class composition and major fatty acids were similar in both the algal species, irrespective of wild and cultured specimens. Typical n‐6 PUFA, such as 18:2n‐6 (linoleic acid) and 20:4n‐6 (arachidonic acid), occurred in characteristically high levels in both of the algae. High levels of n‐3 PUFA were measured in all lipid classes of both species without 22:6n‐3 (docosahexaenoic acid), 18:3n‐3, 18:4n‐3, and 20:5n‐3 (eicosapentaenoic acid) for Cl. okamuranus; and 16:3n‐3, 18:3n‐3, and 20:5n‐3 for Ca. lentillifera. The finding suggests that the green algal species, which mainly biosynthesizes short‐chain (C16 and C18) PUFA, differs from that of the brown alga, which is capable of biosynthesizing high 20:5n‐3 levels. The PUFA levels in glycolipids of the two algal species comprised up to 60%, even though they are subtropical marine species. High n‐6 PUFA levels in the algal lipids probably influence the significant levels of n‐6 PUFA in herbivorous fishes, because the n‐6 PUFA levels in marine fish lipids are generally undetectable or negligible.  相似文献   

17.
Lipid composition in extracted samples of Chaetoceros muelleri Lemmermann was studied with 13C‐NMR and distortionless enhancement by polarization transfer (DEPT) 13C‐NMR, resulting in well‐resolved 13C‐NMR spectra with characteristic resonance signals from carboxylic, olefinic, glyceryl, methylene, and methyl groups. The application of a DEPT pulse sequence aided in the assignment of methylene and methine groups. Resonance signals were compared with literature references, and signal assignment included important unsaturated fatty acids such as eicosapentaenoic and docosahexaenoic and also phospholipids and glycerols. Results from the extracted samples were used to assign resonance signals in a high‐resolution magic angle spinning (HR MAS) DEPT 13C spectrum from whole cells of C. muelleri. The NMR analysis on whole cells yielded equally good information on fatty acids and also revealed signals from carbohydrates and amino acids. Broad resonance signals and peak overlapping can be a problem in whole cell analysis, but we found that application of HR MAS gave a well‐resolved spectrum. The chemical shift of metabolites in an NMR spectrum depends on the actual environment of nuclei during analysis, and some differences could therefore be expected between extracted and whole cell samples. The shift differences were small, and assignment from analysis of lipophilic extract could be used to identify peaks in the whole cell spectrum. HR MAS 13C‐NMR therefore offers a possibility for broad‐range metabolic profiling directly on whole cells, simultaneously detecting metabolites that are otherwise not detected in the same analytical set up and avoiding tedious extraction procedures.  相似文献   

18.
The transgenic aerobic synthesis of long‐chain polyunsaturated fatty acids (LC‐PUFA) will in most land plants commence with either a Δ6‐desaturation or a Δ9‐elongation. Numerous Δ6‐desaturases have been characterized, but only one Δ9‐elongase has been reported in peer‐reviewed literature. In the present study, we describe the isolation of three additional Δ9‐elongases from the class Haptophyceae and demonstrate that the Δ9‐elongase group contains highly conserved regions, which differentiate them from other ELO‐type elongases. One such important difference is the presence of an LQxFHH motif instead of the usual LHxYHH motif, a feature that should simplify further gene discovery efforts in this group of enzymes. Moreover, the identification of the Pavlova salina (N. Carter) J. C. Green Δ9‐elongase completes the isolation of the entire P. salina docosahexaenoic acid (DHA) pathway, and we describe the assembly of this pathway in Nicotiana benthamiana. Finally, we comment on possible explanations for the widespread presence of the Δ6‐desaturated fatty acid stearidonic acid (SDA, 18:4Δ6,9,12,15) in the plastidial lipids of organisms using the Δ9‐elongase pathway.  相似文献   

19.
20.
Hydroxy unsaturated fatty acids can be used as antimicrobial surfactants. 8,11‐Linoleate diol synthase (8,11‐LDS) catalyzes the conversion of unsaturated fatty acid to 8‐hydroperoxy unsaturated fatty acid, and it is subsequently isomerized to 8,11‐dihydroxy unsaturated fatty acid by the enzyme. The optimal reaction conditions of recombinant Escherichia coli expressing Penicillium chrysogenum 8,11‐LDS for the production of 8,11‐dihydroxy‐9,12(Z,Z)‐octadecadienoic acid (8,11‐DiHODE), 8,11‐dihydroxy‐9,12,15(Z,Z,Z)‐octadecatrienoic acid (8,11‐DiHOTrE), 8‐hydroxy‐9(Z)‐hexadecenoic acid (8‐HHME), and 8‐hydroxy‐9(Z)‐octadecenoic acid (8‐HOME) were pH 7.0, 25°C, 10 g/L linoleic acid, and 20 g/L cells; pH 6.0, 25°C, 6 g/L α‐linolenic acid, and 60 g/L cells; pH 7.0, 25°C, 8 g/L palmitoleic acid, and 25 g/L cells; and pH 8.5, 30°C, 6 g/L oleic acid, and 25 g/L cells, respectively. Under these optimized conditions, the recombinant cells produced 6.0 g/L 8,11‐DiHODE for 60 min, with a conversion of 60% (w/w) and a productivity of 6.0 g/L/h; 4.3 g/L 8,11‐DiHOTrE for 60 min, with a conversion of 72% (w/w) and a productivity of 4.3 g/L/h; 4.3 g/L 8‐HHME acid for 60 min, with a conversion of 54% (w/w) and a productivity of 4.3 g/L/h; and 0.9 g/L 8‐HOME for 30 min, with a conversion of 15% (w/w) and a productivity of 1.8 g/L/h. To best of our knowledge, this is the first report on the biotechnological production of 8,11‐DiHODE, 8,11‐DiHOTrE, 8‐HHME, and 8‐HOME. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:390–396, 2017  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号