共查询到20条相似文献,搜索用时 15 毫秒
1.
TAMUKA NHIWATIWA LUC BRENDONCK ALINE WATERKEYN BRAM VANSCHOENWINKEL 《Freshwater Biology》2011,56(10):1992-2008
1. The notion that the spatial configuration of habitat patches has to be taken into account to understand the structure and dynamics of ecological communities is the starting point of metacommunity ecology. One way to assess metacommunity structure is to investigate the relative importance of environmental heterogeneity and spatial structure in explaining community patterns over different spatial and temporal scales. 2. We studied metacommunity structure of large branchiopod assemblages characteristic of subtropical temporary pans in SE Zimbabwe using two community data sets: a community snapshot and a long‐term data set covering 4 years. We assessed the relative importance of environmental heterogeneity and dispersal (inferred from patch occupancy patterns) as drivers of community structure. Furthermore, we contrasted metacommunity patterns in pans that occasionally connect to the river (floodplain pans) and pans that lack such connections altogether (endorheic pans) using redundancy models. 3. Echoes of species sorting and dispersal limitation emerge from our data set, suggesting that both local and regional processes contribute to explaining branchiopod assemblages in this system. Relative importance of local and regional factors depended on the type of data set considered. Overall, habitat characteristics that vary in time, such as conductivity, hydroperiod and vegetation cover, best explained the instantaneous species composition observed during a snapshot sampling while long‐term species composition appeared to be linked to more constant intrinsic habitat properties such as river connectivity and spatial location. 相似文献
2.
3.
Lingzhao Tan Chunyu Fan Chunyu Zhang Klaus von Gadow Xiuhua Fan 《Ecology and evolution》2017,7(23):10116-10123
This study aims to establish a relationship between the sampling scale and tree species beta diversity temperate forests and to identify the underlying causes of beta diversity at different sampling scales. The data were obtained from three large observational study areas in the Changbai mountain region in northeastern China. All trees with a dbh ≥1 cm were stem‐mapped and measured. The beta diversity was calculated for four different grain sizes, and the associated variances were partitioned into components explained by environmental and spatial variables to determine the contributions of environmental filtering and dispersal limitation to beta diversity. The results showed that both beta diversity and the causes of beta diversity were dependent on the sampling scale. Beta diversity decreased with increasing scales. The best‐explained beta diversity variation was up to about 60% which was discovered in the secondary conifer and broad‐leaved mixed forest (CBF) study area at the 40 × 40 m scale. The variation partitioning result indicated that environmental filtering showed greater effects at bigger grain sizes, while dispersal limitation was found to be more important at smaller grain sizes. What is more, the result showed an increasing explanatory ability of environmental effects with increasing sampling grains but no clearly trend of spatial effects. The study emphasized that the underlying causes of beta diversity variation may be quite different within the same region depending on varying sampling scales. Therefore, scale effects should be taken into account in future studies on beta diversity, which is critical in identifying different relative importance of spatial and environmental drivers on species composition variation. 相似文献
4.
Berenice Schneider Eduardo R. Cunha Luis A. Espínola Mercedes Marchese Sidinei M. Thomaz 《植被学杂志》2019,30(2):269-280
5.
Jani Heino Adriano S. Melo Tadeu Siqueira Janne Soininen Sebastian Valanko Luis Mauricio Bini 《Freshwater Biology》2015,60(5):845-869
- Metacommunity ecology addresses the situation where sets of local communities are connected by the dispersal of a number of potentially interacting species. Aquatic systems (e.g. lentic versus lotic versus marine) differ from each other in connectivity and environmental heterogeneity, suggesting that metacommunity organisation also differs between major aquatic systems. Here, we review findings from observational field studies on metacommunity organisation in aquatic systems.
- Species sorting (i.e. species are ‘filtered’ by environmental factors and occur only at environmentally suitable sites) prevails in aquatic systems, particularly in streams and lakes, but the degree to which dispersal limitation interacts with such environmental control varies among different systems and spatial scales. For example, mainstem rivers and marine coastal systems may be strongly affected by ‘mass effects’ (i.e. where high dispersal rates homogenise communities to some degree at neighbouring localities, irrespective of their abiotic and biotic environmental conditions), whereas isolated lakes and ponds may be structured by dispersal limitation (i.e. some species do not occur at otherwise‐suitable localities simply because sites with potential colonists are too far away). Flow directionality in running waters also differs from water movements in other systems, and this difference may also have effects on the role of dispersal in different aquatic systems.
- Dispersal limitation typically increases with increasing spatial distance between sites, mass effects potentially increase in importance with decreasing distance between sites, and the dispersal ability of organisms may determine the spatial extents at which species sorting and dispersal processes are most important.
- A better understanding of the relative roles of species sorting, mass effects and dispersal limitation in affecting aquatic metacommunities requires the following: (i) characterising dispersal rates more directly or adopting better proxies than have been used previously; (ii) considering the nature of aquatic networks; (iii) combining correlative and experimental approaches; (iv) exploring temporal aspects of metacommunity organisation and (v) applying past approaches and statistical methods innovatively for increasing our understanding of metacommunity organisation.
6.
Mariana P. Rocha Jani Heino Luiz F. Machado‐Velho Fernando M. Lansac‐Tôha Fábio A. Lansac‐Tôha 《Freshwater Biology》2017,62(3):559-569
- Metacommunity structure may be strongly influenced by spatial dynamics and environmental factors, as well as biogeographic effects. Here, we examined variation in lake cladoceran communities associated with floating macrophytes in the four major Brazilian floodplain systems (Amazônia, Araguaia, Pantanal and Paraná) in relation to local environmental factors, spatial components, climate variables and basin identity.
- Moran's eigenvector maps were used as a proxy to examine spatial structures within each drainage basin. The final sets of local environmental, climate and spatial variables were selected for constrained ordination models, using a forward selection method. We used variation partitioning to decompose variation in cladoceran community composition in relation to the four sets of predictor variables. Beta‐diversity indices were calculated to quantify the contributions of turnover and nestedness components to total beta diversity of cladocerans within each basin and across the basins.
- Variation partitioning showed that the pure fractions were relatively small, ranging from around zero for spatial and basin identity variables to 2% for climate variables and 4% for local environmental variables. The shared effect of local environmental, climate and basin identity was considerable, accounting for 17% of the total variance. Furthermore, the shared effect of climate and basin identity was also considerable (6%). In total, 32% of variation in cladoceran community structure could be explained by our predictor variables. Cladoceran metacommunities showed high levels of beta diversity attributed to the turnover component, within each floodplain and across all four floodplains.
- Our finding showed that species sorting was likely to be the main agent structuring cladoceran communities. Spatial processes were not important at very large spatial scales, contrary to what has been found in previous studies. This finding was most likely due to the inclusion of climatic variables in our analysis, combined with the high dispersal ability of cladocerans.
7.
Understanding how species are distributed according to environmental and spatial variation is still one of the main issues in community ecology. We analysed the responses of semiaquatic bugs (Gerromorpha: Hemiptera) to environmental and spatial processes considered drivers of metacommunity structure in Amazonian streams. We tested the hypotheses that environmental variables determine the metacommunity structure and that the spatial structures, both dendritic and overland, are not representative of the metacommunity structure. Environmental variables and semiaquatic bugs were collected from 39 stream sites. Spatial variables were calculated in two configurations – overland and hydrographic distances between streams. We used partial redundancy analysis to test the relative importance of environment and space on the metacommunity structure, considering the two spatial configurations separately. The environmental variables were the metacommunity drivers in tropical streams, mainly structured by the depth, canopy, embeddedness and slope variables. Our results also indicate little or no dispersion limitation, as no spatial patterns were found. Thus, environmental selection determines the semiaquatic bugs' metacommunity structure due to the achievement of optimal habitats through dispersal. We also believe that dispersion cannot be ruled out as a metacommunity driver, since the peculiarities of the group show seasonal changes in dispersion ability, and spatial patterns may occur under different temporal scales. 相似文献
8.
9.
Andreu Castillo‐Escrivà Josep A. Aguilar‐Alberola Francesc Mesquita‐Joanes 《Freshwater Biology》2017,62(6):1004-1011
- Empirical studies on structuring mechanisms of metacommunities usually focus on the major roles of environmental filtering and dispersal. Recent works suggest that the relative importance of these structuring mechanisms differs among organisms with different body size, taxonomic affiliation, and dispersal abilities, and also depends on spatial extent and environmental heterogeneity. However, the effects of physical connectivity among sites and dispersal mode are less commonly considered explicitly in field metacommunity studies.
- We analysed a rock‐pool animal metacommunity, comparing both environmental and spatial effects between a set of pools in a ravine setting, with ephemeral connecting waterways, and another in a hill setting, without such connections. We also analysed the relative role of structuring mechanisms influencing active versus passive dispersers in the metacommunity. We used permutational multivariate analysis of variance and analysis of the multivariate homogeneity of group dispersions to compare environmental and species variation between landscape settings. Variation partitioning was applied to determine the percentage of species variation explained by environmental and spatial variables.
- The relative influence of the structuring mechanisms depended on both the landscape connectivity context and species dispersal mode. Species sorting drove active‐disperser metacommunities in both isolated and waterway connected pools, suggesting that these animals had a dispersal rate among the environmentally suitable sites that was adequate to compensate for extinctions at the spatial scale we considered. In addition, beta diversity of active dispersers and species‐sorting effects were higher in the set of ravine rock pools that were more environmentally heterogeneous and connected by waterways. In contrast, species sorting structured passive‐disperser metacommunities only in the set of pools with connecting waterways, whereas spatial constraints more strongly affected passive dispersers in the relatively more isolated hillside pools.
- Overall, environmental variables had a greater effect than spatial variables on rock‐pool metacommunities at the scale we studied, with the exception that passive dispersers in rock pools unconnected by waterways did tend to have spatially constrained distributions.
10.
- Beta diversity modelling has received increased interest recently. There are multiple definitions of beta diversity, but here, we focus on variability in species composition among sampling units within a given area. This facet can be described using various approaches. Some approaches ignore the spatial scale of the area considered (i.e. region limits), while some consider different region limits as a starting point for the analysis of beta diversity.
- We focused specifically on the beta diversity–environmental heterogeneity relationship in running waters. First, we present two conceptual models, which assume either (1) strong environmental control among localities (riffle sites in our case) within each region unit (a region unit encompasses a species pool and can be a stream or a basin or an ecoregion) or (2) that the spatial level of a region unit affects the relative importance of mechanisms affecting variability in species composition among localities (i.e. among riffle sites) within each region unit. Second, we compared three recent studies that used similar methods to examine the beta diversity–environmental heterogeneity relationship, but which were based on different region units, comprising sets of streams or sets of basins or sets of ecoregions.
- Our conceptual framework assumes that environmental control is not likely to be the sole mechanism affecting variability in community composition among localities within each region unit, but it is likely to be most important when dispersal rates are intermediate (i.e. among localities within a basin). In contrast, if dispersal rates are very high (i.e. among localities within a stream) or very low (i.e. among localities within an ecoregion), environmental control is in part masked by high dispersal rates or is prevented from occurring because not all species can reach all localities, respectively. Such scale dependency in the relative strength of environmental control might therefore transcend spatial scales from individual region units to the strength of the beta diversity–environmental heterogeneity relationship. We emphasise that the beta diversity–environmental heterogeneity relationship can only be tested across multiple region units. The results of three case studies are consistent with these predictions. Specifically, the beta diversity–environmental heterogeneity regression was highly significant across multiple basins, but not across multiple streams or across multiple ecoregions.
- We suggest that researchers take spatial scale and region unit level explicitly into account when inferring the mechanisms structuring ecological communities and mapping variation in beta diversity. We also propose a unified terminology for studies examining the beta diversity–environmental heterogeneity relationship in running waters because inconsistent terminology is likely to hamper the progress of our science.
11.
Mechanistic insights from invasion biology indicate that propagule pressure of exotic species and native community structure can independently influence establishment success. The role of native community connectivity via species dispersal and its potential interaction with propagule pressure on invasion success in metacommunities, however, remains unknown. Native community connectivity may increase biotic resistance to invasion by enhancing species richness and evenness, but the effects could depend upon the level of propagule pressure. In this study, a mesocosm experiment was used to evaluate the independent and combined effects of exotic propagule pressure and native community connectivity on invasion success. The effects of three levels of exotic Daphnia lumholtzi propagule pressure on establishment success, community structure and ecosystem attributes were evaluated in native zooplankton communities connected by species dispersal versus unconnected communities, and relative to a control without native species. Establishment of the exotic species exhibited a propagule dose‐dependent relationship with high levels of propagule pressure resulting in the greatest establishment success. Native community connectivity, however, effectively reduced establishment at the low level of propagule pressure and further augmented native species richness across propagule pressure treatments. Propagule pressure largely determined the negative impacts of the exotic species on native species richness, native biomass and edible producer biomass. The results highlight that native community connectivity can reduce invasion success at a low propagule dose and decrease extinction risk of native competitors, but high propagule pressure can overcome connectivity‐mediated biotic resistance to influence establishment and impact of the exotic species. Together, the results emphasize the importance of the interaction of propagule pressure and community connectivity as a regulator of invasion success, and argue for the maintenance of metacommunity connectivity to confer invasion resistance. 相似文献
12.
Rodrigo Leite Arrieira Leilane Talita Fatoreto Schwind Claudia Costa Bonecker Fábio Amodêo Lansac‐Tôha 《Austral ecology》2017,42(2):210-217
Metacommunities have been evaluated as models for the relative importance of environmental and spatial processes in assembling ecological communities. Here, we tested the hypothesis that different hydrological periods (drought and flooding) influence the environmental associations of planktonic testate amoeba metacommunities. We predicted that environmental factors would exert the strongest effects on species dispersal under drought, but that they would be less significant during flooding. Testate amoebae were sampled during drought and flooding, from 72 lakes in four Brazilian floodplains (Amazonian, Araguaia, Pantanal and Paraná). Partial redundancy analysis indicated that only environmental factors were significant; they were significant in all floodplain lakes during the drought. Only the Paraná floodplain had significant results for environmental factors during both hydrological periods. Spatial factors did not contribute significantly to any of the metacommunities. The depth, pH and variables related to environmental productivity were identified as major predictors in the assembly of testate amoeba communities. Our results highlight that different hydrological periods vary in their relative importance in environmental and spatial processes. The species‐sorting model was predominant during drought, while stochastic processes prevailed during flooding in all but the Paraná floodplain. In the Paraná floodplain, the construction of dams could potentially alter the effects of environmental and spatial factors on the dispersal of planktonic testate amoebae. The pH and the environmental productivity factors were largely responsible for species selection and the structuring of the planktonic testate amoebae metacommunities in Brazilian floodplains. 相似文献
13.
Jani Heino 《Biological reviews of the Cambridge Philosophical Society》2013,88(1):166-178
Most bioassessment programs rest on the assumption that species have different niches, and that abiotic environmental conditions and changes therein determine community structure. This assumption is thus equivalent to the species sorting perspective (i.e. that species differ in their responses to environmental variation) in metacommunity ecology. The degree to which basing bioassessment on the species sorting perspective is reasonable is likely to be related to the spatial extent of a study and the characteristics of the organism groups (e.g. dispersal ability) with which the effects of anthropogenic changes are assessed. Recent findings in metacommunity research have stressed that community structure is determined not only by local abiotic environmental conditions but also by biotic interactions and dispersal‐related effects. For example, dispersal limitation may prevent community structure recovery from the effects of a putative stressor, as organisms may not be able to disperse to all sites in a region. Mass effects (i.e. the presence of species in environmentally suboptimal sites due to high dispersal rates from environmentally suitable sites) may, in turn, obscure the effects of a stressor, as dispersal from source sites (e.g. an unaltered site) allows persistence at sink sites (e.g. an anthropogenically altered site). Better bioassessment should thus take both niche‐ and dispersal‐related processes simultaneously into consideration, which can be accomplished by explicitly modelling spatial location as a proxy for dispersal effects. Such an integrated approach should be included in bioassessment programs using general multivariate approaches, predictive modelling, and multimetric indices. 相似文献
14.
A major challenge in community ecology is to understand the underlying factors driving metacommunity (i.e., a set of local communities connected through species dispersal) dynamics. However, little is known about the effects of varying spatial scale on the relative importance of environmental and spatial (i.e., dispersal related) factors in shaping metacommunities and on the relevance of different dispersal pathways. Using a hierarchy of insect metacommunities at three spatial scales (a small, within‐stream scale, intermediate, among‐stream scale, and large, among‐sub‐basin scale), we assessed whether the relative importance of environmental and spatial factors shaping metacommunity structure varies predictably across spatial scales, and tested how the importance of different dispersal routes vary across spatial scales. We also studied if different dispersal ability groups differ in the balance between environmental and spatial control. Variation partitioning showed that environmental factors relative to spatial factors were more important for community composition at the within‐stream scale. In contrast, spatial factors (i.e., eigenvectors from Moran's eigenvector maps) relative to environmental factors were more important at the among‐sub‐basin scale. These results indicate that environmental filtering is likely to be more important at the smallest scale with highest connectivity, while dispersal limitation seems to be more important at the largest scale with lowest connectivity. Community variation at the among‐stream and among‐sub‐basin scales were strongly explained by geographical and topographical distances, indicating that overland pathways might be the main dispersal route at the larger scales among more isolated sites. The relative effect of environmental and spatial factors on insect communities varied between low and high dispersal ability groups; this variation was inconsistent among three hierarchical scales. In sum, our study indicates that spatial scale, connectivity, and dispersal ability jointly shape stream metacommunities. 相似文献
15.
1. Quantifying the relative importance of environmental filtering versus regional spatial structuring has become an intensively studied area in the context of metacommunity ecology. However, most studies have evaluated the role of environmental and spatial processes using taxonomic data sets of single snapshot surveys. 2. Here, we examined temporal changes in patterns and possible processes behind the functional metacommunity organization of stream fishes in a human‐modified landscape. Specifically, we (i) studied general changes in the functional composition of fish assemblages among 40 wadeable stream sites during a 3‐year study period in the catchment area of Lake Balaton, Hungary, (ii) quantified the relative importance of spatial and environmental factors as determinants of metacommunity structure and (iii) examined temporal variability in the relative role of spatial and environmental processes for this metacommunity. 3. Partial triadic analysis showed that assemblages could be effectively ordered along a functional gradient from invertebrate consuming species dominated by the opportunistic life‐history strategy, to assemblages with a diverse array of functional attributes. The analysis also revealed that functional fish assemblage structure was moderately stable among the sites between the sampling periods. 4. Despite moderate stability, variance partitioning using redundancy analyses (RDA) showed considerable temporal variability in the contribution of environmental and spatial factors to this pattern. The analyses also showed that environmental variables were, in general, more important than spatial ones in determining metacommunity structure. Of these, natural environmental variables (e.g. altitude, velocity) proved to be more influential than human‐related effects (e.g. pond area, % inhabited area above the site, nutrient enrichment), even in this landscape with relatively low variation in altitude and stream size. 5. Pond area was, however, the most important human stressor variable that was positively associated with the abundance of non‐native species with diverse functional attributes. The temporal variability in the relative importance of environmental and spatial factors was probably shaped by the release of non‐native fish from fish ponds to the stream system during flood events. 6. To conclude, both spatial processes and environmental control shape the functional metacommunity organization of stream fish assemblages in human‐modified landscapes, but their importance can vary in time. We argue, therefore, that metacommunity studies should better consider temporal variability in the ecological mechanisms (e.g. dispersal limitation, species sorting) that determine the dynamics of landscape‐level community organization. 相似文献
16.
Mira Grönroos Jani Heino Tadeu Siqueira Victor L. Landeiro Juho Kotanen Luis M. Bini 《Ecology and evolution》2013,3(13):4473-4487
Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins. 相似文献
17.
18.
Isaac Planas-Sitjà;Thibaud Monnin;Nicolas Loeuille;Adam L. Cronin; 《Oikos》2023,2023(9):e09972
Reproductive strategies are defined by a combination of behavioural, morphological, and life-history traits. Reproductive investment and offspring propagule size are two key traits defining reproductive strategies. While a substantial amount of work has been devoted to understanding the independent fitness effects of each of these traits, it remains unclear how coevolution between them ultimately affects the evolution of reproductive strategies, and how this might influence the relationship between dispersal and environmental factors. In this study we explore how the evolution of reproductive strategies defined by these two coevolving traits is influenced by resource availability and spatial structuring of the environment using a simulation model. We find three possible equilibrium strategies across all scenarios: a competitor strategy with high reproductive investment (producing large propagules which disperse short distances), and two coloniser strategies differing in reproductive investment (both producing small propagules which disperse long distances). The possible equilibrium strategies for each scenario depended on starting conditions, spatial structure and resource availability. Evolutionary transitions between these equilibrium strategies were more likely in heterogeneous than homogeneous landscapes and at higher resource levels. Transition from coloniser strategy to competitor strategy was usually a two-step process, with changes in propagule size following initial evolution in investment. This highlights how the interaction between the two trait axes affects the evolution of reproductive strategies, particularly where fitness valleys preclude the simultaneous evolution of traits. Our results highlight the need to incorporate trait coevolution into evolutionary models to help develop a more integrative understanding of the structure of natural populations and how the interaction between traits constrains or hinders evolutionary processes. 相似文献
19.
One of the most important questions in ecology is the relative importance of local conditions (niche processes) and dispersal ability (neutral processes) in driving metacommunity structure. Although many studies have been conducted in recent years, there is still much debate. We evaluated the processes (niche and neutral) responsible for variation in anuran composition in 28 lentic water bodies in southeastern Brazil. Because anurans depend heavily on environmental conditions, we hypothesized that environmental variables (niche processes) are the most important drivers of community composition. Additionally, as anurans have limited dispersal abilities, and the study region presents harsh conditions (high forest fragmentation, low rainfall and long dry season), we expected a lower, but significant, spatial signature in metacommunity structure, due to neutral dynamics. We used a partial redundancy analysis with variation partitioning to evaluate the relative influence of environmental and spatial variables as drivers of metacommunity structure. Additionally, we used a recently developed spatial autocorrelation analysis to test if neutral dynamics can be attributed to the pure spatial component. This analysis is based on predictions that species abundances are independent but similarly spatially structured, with correlograms similar in shape. Therefore, under neutral dynamics there is no expectation of a correlation between the pairwise distance of spatial correlograms and the pairwise correlation of species abundances predicted by the pure spatial component. We found that the environmental component explained 21.5%, the spatial component 10.2%, and the shared component 6.4% of the metacommunity structure. We found no correlation between correlograms and correlation of abundances predicted by the pure spatial component (Mantel test = ?0.109, P = 0.961). In our study, niche‐based processes are the dominant process that explained community composition. However, neutral processes are important because spatial variation can be attributed to pure neutral dynamics rather than to missing spatially structured environmental factors. 相似文献
20.
Aims Within a habitat of multiple plant species, increased resource availabilities and altered species abundances following disturbances create opportunities for exotic species to successfully establish and subsequently naturalize into its non-native environment. Such post-disturbance changes in abiotic and biotic environments may also promote a naturalized exotic species (or invading species) to become invasive through rapid colonization of the habitat sites by reducing the extent and size of resident plant species. By combining species life history traits with that of the disturbance-induced changes in habitat characteristics, we aimed to determine those interacting factors and associated mechanism allowing an exotic invasion to start off.Methods We used a modified version of the classic competition–colonization (CC) model which was formulated first by Hastings (1980) and studied later by Tilman (1994) to explain spatial coexistence of multiple species. Within this model framework, recruitment-limited spatial competition has explicitly been linked with interspecific resource competition without altering the basic assumptions and structure of the original CC model.Important findings The model results showed that at a constant rate of resource supply, invading species can stably coexist with native species via trade-offs between species competitive ability and colonizing ability. On the other hand, the model predicted that with a fluctuating resource condition, invading species can successfully invade a habitat following continuous reductions in the size and extent of native species. Whether or not invading species holds competitive superiority over the native species for limiting resource, we showed that there exists a range of variation in available resource that allows an exotic invasion to start off in post-disturbance habitat. The associated disturbance-induced mechanism promoting invading species to become invasive has been identified. It states that occurrences of disturbances such as fire or clear-cutting influence variation in resource availability, and in addition open up many vacant microsites; given these disturbance-induced changes, invading species with a higher rate of propagule production and with a higher survival rate of adults particularly in low-resource condition recruits microsites at faster rate relative to native competitor species, and with a given range of variation in resource availabilities, it maintains continued expansions following reductions in size and extent of native species. Moreover, we identified those interacting factors and their specific roles that drive this mechanism. These factors include propagule supply, variable resource level and vacant microsite availability. Increased availability of vacant microsites following disturbances creates an opportunity for rapid colonization. Given this opportunity, higher number of propagules supplied by the invading species enhances the rate of colonization success, whereas the resource variation within a range of given thresholds maintains enhanced colonization rate of the invading species while it depresses native competitor species. Owing to the each factor's invasion regulatory ability, controlling one or all of them may have strong negative impact on the occurrence of exotic invasion. 相似文献