首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The density-dependent phase polyphenism in locusts offers an excellent model to investigate the epigenetic regulatory mechanisms underlying phenotypic plasticity. In this study, we identified histone-modifying enzymes mediating histone post-translational modifications, which serve as a major regulatory mechanism of epigenetic processes, on the basis of the whole genome sequence of the migratory locust, Locusta migratoria. We confirmed the existence of various functional histone modifications in the locusts. Compared with other sequenced insect genomes, the locust genome contains a richer repertoire of histone-modifying enzymes. Several locust histone-modifying enzymes display vertebrate-like characteristics, such as the presence of a Sirt3-like gene and multiple alternative splicing of GCN5 gene. Most histone-modifying enzymes are highly expressed in the eggs or in the testis tissues of male adults. Several histone deacetylases and H3K4-specific methyltransferases exhibit differential expression patterns in brain tissues between solitarious and gregarious locusts. These results reveal the main characteristics of histone-modifying enzymes and provide important cues for understanding the epigenetic mechanisms underlying phase polyphenism in locusts.  相似文献   

3.
Cancer is characterized by aberrant patterns of expression of multiple genes. These major shifts in gene expression are believed to be due to not only genetic but also epigenetic changes. The epigenetic changes are communicated through chemical modifications, including histone modifications. However, it is unclear whether the binding of histone-modifying proteins to genomic regions and the placing of histone modifications efficiently discriminates corresponding genes from the rest of the genes in the human genome. We performed gene expression analysis of histone demethylases (HDMs) and histone methyltransferases (HMTs), their target genes and genes with relevant histone modifications in normal and tumor tissues. Surprisingly, this analysis revealed the existence of correlations in the expression levels of different HDMs and HMTs. The observed HDM/HMT gene expression signature was specific to particular normal and cancer cell types and highly correlated with target gene expression and the expression of genes with histone modifications. Notably, we observed that trimethylation at lysine 4 and lysine 27 separated preferentially expressed and underexpressed genes, which was strikingly different in cancer cells compared to normal cells. We conclude that changes in coordinated regulation of enzymes executing histone modifications may underlie global epigenetic changes occurring in cancer.  相似文献   

4.
5.
《Epigenetics》2013,8(7):849-852
Colon and rectal cancer (colorectal cancer, CRC) is the third most common cancer worldwide. Deaths from CRC account for around 8% of all cancer deaths, making it the fourth most common cause of death from cancer. The high mortality rate of colon cancer is mainly attributable to its metastasis. Efforts have been made to identify metastasis suppressor genes, which encode proteins responsible for inhibiting the metastasis but not suppressing the growth of primary tumors. Studies on metastasis suppressor genes demonstrated that epigenetic modifications, such as DNA promoter methylation and histone modification, play crucial roles in regulating the expression of many metastasis suppressor genes, which indicates the association between aberrant epigenetic alterations and cancer metastasis. This review will focus on the recent findings regarding metastasis suppressors regulated by epigenetic modifications, particularly DNA methylation and histone modification, in CRC metastasis. Also discussed will be recent progress on the suppression of CRC metastasis by genistein, a soy isoflavone, with a focus on epigenetic mechanisms.  相似文献   

6.
Epigenetic regulation by histone methylation and histone variants   总被引:10,自引:0,他引:10  
Epigenetics is the study of heritable changes in gene expression that are not mediated at the DNA sequence level. Molecular mechanisms that mediate epigenetic regulation include DNA methylation and chromatin/histone modifications. With the identification of key histone-modifying enzymes, the biological functions of many histone posttranslational modifications are now beginning to be elucidated. Histone methylation, in particular, plays critical roles in many epigenetic phenomena. In this review, we provide an overview of recent findings that shape the current paradigms regarding the roles of histone methylation and histone variants in heterochromatin assembly and the maintenance of the boundaries between heterochromatin and euchromatin. We also highlight some of the enzymes that mediate histone methylation and discuss the stability and inheritance of this modification.  相似文献   

7.
8.
Epigenetic modifications are heritable variations in gene expression not encoded by the DNA sequence. According to reports, a large number of studies have been performed to characterize epigenetic modification during normal development and also in cancer. Epigenetics can be regarded more widely to contain all of the changes in expression of genes that make by adjusted interactions between the regulatory portions of DNA or messenger RNAs that lead to indirect variation in the DNA sequence. In the last decade, epigenetic modification importance in colorectal cancer (CRC) pathogenesis was demonstrated powerfully. Although developments in CRC therapy have been made in the last years, much work is required as it remains the second leading cause of cancer death. Nowadays, epigenetic programs and genetic change have pivotal roles in the CRC incidence as well as progression. While our knowledge about epigenetic mechanism in CRC is not comprehensive, selective histone modifications and resultant chromatin conformation together with DNA methylation most likely regulate CRC pathogenesis that involved genes expression. Undoubtedly, the advanced understanding of epigenetic-based gene expression regulation in the CRC is essential to make epigenetic drugs for CRC therapy. The major aim of this review is to deliver a summary of valuable results that represent evidence of principle for epigenetic-based therapeutic approaches employment in CRC with a focus on the advantages of epigenetic-based therapy in the inhibition of the CRC metastasis and proliferation.  相似文献   

9.
10.
Epigenetics is the term used to describe heritable changes in gene expression that are not coded in the DNA sequence itself but by post-translational modifications in DNA and histone proteins. These modifications include histone acetylation, methylation, ubiquitination, sumoylation and phosphorylation. Epigenetic regulation is not only critical for generating diversity of cell types during mammalian development, but it is also important for maintaining the stability and integrity of the expression profiles of different cell types. Until recently, the study of human disease has focused on genetic mechanisms rather than on non-coding events. However, it is becoming increasingly clear that disruption of epigenetic processes can lead to several major pathologies, including cancer, syndromes involving chromosomal instabilities, and mental retardation. Furthermore, the expression and activity of enzymes that regulate these epigenetic modifications have been reported to be abnormal in the airways of patients with respiratory disease. The development of new diagnostic tools might reveal other diseases that are caused by epigenetic alterations. These changes, despite being heritable and stably maintained, are also potentially reversible and there is scope for the development of 'epigenetic therapies' for disease.  相似文献   

11.
12.
Epigenetic inheritance is a key element in the adaptation of organisms to a rapidly changing environment without stably changing their DNA sequence. The necessary changes in its gene expression profiles are frequently associated with variations in chromatin structure. The conformation of chromatin is profoundly influenced by the post-translational modification of the histone proteins, the incorporation of histone variants, the activity of nucleosome remodelling factors and the association of non-histone chromatin proteins. Although the hierarchy of these factors is still not fully understood, genetic experiments suggest that histone-modifying enzymes play a major causal role in setting up a particular chromatin structure. In this article, the recent progress that was made to understand the molecular mechanisms of the targeting and regulation of histone modifiers and its implication for epigenetic inheritance are reviewed.  相似文献   

13.
《Epigenetics》2013,8(5):287-290
Epigenetics is the study of hereditable chromatin modifications, such as DNA methylation, histone modifications, and nucleosome-remodelling, which occur without alterations to the DNA sequence. The establishment of different epigenetic states in eukaryotes depends on regulatory mechanisms that induce structural changes in chromatin in response to environmental and cellular cues. Two classes of enzymes modulate chromatin accessibility: chromatin-covalent modifiers and ATP-dependent chromatin remodelling complexes. The first class of enzymes catalyzes covalent modifications of DNA as well as the amino- and carboxy-terminal tails of histones, while the second uses the energy of ATP hydrolysis to reposition nucleosomes along the chromatin fibers or to incorporate histone variants. Thus, epigenetic modifications are reversible nuclear reactions. In the last decade, many studies have strongly indicated that alterations in epigenetic modifications may contribute to the onset and progression of a variety of human diseases such as cancer. Therefore, the enzymes responsible for these chromatin changes are becoming attractive therapeutic targets.  相似文献   

14.
Histones are post-translationally modified by multiple histone-modifying enzymes, which in turn influences gene expression. Much of the work in the field to date has focused on genetic, biochemical and structural characterization of these enzymes. The most recent genome-wide methods provide insights into specific recruitment of histone-modifying enzymes in vivo and, therefore, onto mechanisms of establishing a differential expression pattern. Here we focus on the recruitment mechanisms of the enzymes involved in the placement of two contrasting histone marks, histone H3 lysine 4 (H3K4) methylation and histone H3 lysine 27 (H3K27) methylation. We describe distribution of their binding sites and show that recruitment of different histone-modifying proteins can be coordinated, opposed, or alternating. Specifically, genomic sites of the H3K4 histone demethylase KDM5A become accessible to its homolog KDM5B in cells with a lowered KDM5A level. The currently available data on recruitment of H3K4/H3K27 modifying enzymes suggests that the formed protein complexes are targeted in a sequential and temporal manner, but that additional, still unknown, interactions contribute to targeting specificity.  相似文献   

15.
Histones are post-translationally modified by multiple histonemodifying enzymes, which in turn influences gene expression. Much of the work in the field to date has focused on genetic, biochemical and structural characterization of these enzymes. The most recent genome-wide methods provide insights into specific recruitment of histone-modifying enzymes in vivo and, therefore, onto mechanisms of establishing a differential expression pattern. Here we focus on the recruitment mechanisms of the enzymes involved in the placement of two contrasting histone marks, histone H3 lysine 4 (H3K4) methylation and histone H3 lysine 27 (H3K27) methylation. We describe distribution of their binding sites and show that recruitment of different histone-modifying proteins can be coordinated, opposed or alternating. Specifically, genomic sites of the H3K4 histone demethylase KDM5A become accessible to its homolog KDM5B in cells with a lowered KDM5A level. The currently available data on recruitment of H3K4/H3K27 modifying enzymes suggests that the formed protein complexes are targeted in a sequential and temporal manner, but that additional, still unknown, interactions contribute to targeting specificity.Key words: histone-modifying enzymes, histone methylation, ChIPseq  相似文献   

16.
Do protein motifs read the histone code?   总被引:1,自引:0,他引:1  
The existence of different patterns of chemical modifications (acetylation, methylation, phosphorylation, ubiquitination and ADP-ribosylation) of the histone tails led, some years ago, to the histone code hypothesis. According to this hypothesis, these modifications would provide binding sites for proteins that can change the chromatin state to either active or repressed. Interestingly, some protein domains present in histone-modifying enzymes are known to interact with these covalent marks in the histone tails. This was first shown for the bromodomain, which was found to interact selectively with acetylated lysines at the histone tails. More recently, it has been described that the chromodomain can be targeted to methylation marks in histone N-terminal domains. Finally, the interaction between the SANT domain and histones is also well documented. Overall, experimental evidence suggests that these domains could be involved in the recruitment of histone-modifying enzymes to discrete chromosomal locations, and/or in the regulation their enzymatic activity. Within this context, we review the distribution of bromodomains, chromodomains and SANT domains among chromatin-modifying enzymes and discuss how they can contribute to the translation of the histone code.  相似文献   

17.
18.
Global alterations in epigenetic landscape are now recognized as a hallmark of cancer. Epigenetic mechanismssuch as DNA methylation,histone modifications,nucleosome positioning and non-coding RNAs are proven to have strong association with cancer. In particular,covalent post-translational modifications of histone proteins are known to play an important role in chromatin remodeling and thereby in regulation of gene expression. Further,histone modifications have also been associated with different aspects of carcinogenesis and have been studied for their role in the better management of cancer patients. In this review,we will explore and discuss how histone modifications are involved in cancer diagnosis,prognosis and treatment.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号