首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
? Transgenic plants can offer agricultural benefits, but the escape of transgenes is an environmental concern. In this study we tested the hypothesis that glyphosate drift and herbivory selective pressures can change the rate of transgene flow between the crop Brassica napus (canola), and weedy species and contribute to the potential for increased transgene escape risk and persistence outside of cultivation. ? We constructed plant communities containing single transgenic B. napus genotypes expressing glyphosate herbicide resistance (CP4 EPSPS), lepidopteran insect resistance (Cry1Ac), or both traits ('stacked'), plus nontransgenic B. napus, Brassica rapa and Brassica nigra. Two different selective pressures, a sublethal glyphosate dose and lepidopteran herbivores (Plutella xylostella), were applied and rates of transgene flow and transgenic seed production were measured. ? Selective treatments differed in the degree in which they affected gene flow and production of transgenic hybrid seed. Most notably, glyphosate-drift increased the incidence of transgenic seeds on nontransgenic B. napus by altering flowering phenology and reproductive function. ? The findings of this study indicate that transgenic traits may be transmitted to wild populations and may increase in frequency in weedy populations through the direct and indirect effects of selection pressures on gene flow.  相似文献   

2.
3.
Concerns about genetically modified (GM) crops include transgene flow to compatible wild species and unintended ecological consequences of potential transgene introgression. However, there has been little empirical documentation of establishment and distribution of transgenic plants in wild populations. We present herein the first evidence for escape of transgenes into wild plant populations within the USA; glyphosate-resistant creeping bentgrass (Agrostis stolonifera L.) plants expressing CP4 EPSPS transgenes were found outside of cultivation area in central Oregon. Resident populations of three compatible Agrostis species were sampled in nonagronomic habitats outside the Oregon Department of Agriculture control area designated for test production of glyphosate-resistant creeping bentgrass. CP4 EPSPS protein and the corresponding transgene were found in nine A. stolonifera plants screened from 20,400 samples (0.04 +/- 0.01% SE). CP4 EPSPS-positive plants were located predominantly in mesic habitats downwind and up to 3.8 km beyond the control area perimeter; two plants were found within the USDA Crooked River National Grassland. Spatial distribution and parentage of transgenic plants (as confirmed by analyses of nuclear ITS and chloroplast matK gene trees) suggest that establishment resulted from both pollen-mediated intraspecific hybridizations and from crop seed dispersal. These results demonstrate that transgene flow from short-term production can result in establishment of transgenic plants at multi-kilometre distances from GM source fields or plants. Selective pressure from direct application or drift of glyphosate herbicide could enhance introgression of CP4 EPSPS transgenes and additional establishment. Obligatory outcrossing and vegetative spread could further contribute to persistence of CP4 EPSPS transgenes in wild Agrostis populations, both in the presence or absence of herbicide selection.  相似文献   

4.
5.
Small interfering RNAs (siRNAs) are silencing signals in plants. Virus‐resistant transgenic rootstocks developed through siRNA‐mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock‐to‐scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV‐hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV‐hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long‐distance (1.2 m) transfer of PNRSV‐hpRNA‐derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for ‘using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'.  相似文献   

6.
Different mutants of an infectious full-length clone (p35PPV-NAT) of Plum pox virus (PPV) were constructed: three mutants with mutations of the assembly motifs RQ and DF in the coat protein gene (CP) and two CP chimeras with exchanges in the CP core region of Zucchini yellow mosaic virus and Potato virus Y. The assembly mutants were restricted to single infected cells, whereas the PPV chimeras were able to produce systemic infections in Nicotiana benthamiana plants. After passages in different transgenic N. benthamiana plants expressing the PPV CP gene with a complete (plant line 4.30.45.) or partially deleted 3'-nontranslated region (3'-NTR) (plant line 17.27. 4.), characterization of the viral progeny of all mutants revealed restoration of wild-type virus by recombination with the transgenic CP RNA only in the presence of the complete 3'-NTR (4.30.45.). Reconstitution of wild-type virus was also observed following cobombardment of different assembly-defective p35PPV-NAT together with a movement-defective plant expression vector of Potato virus X expressing the intact PPV-NAT CP gene transiently in nontransgenic N. benthamiana plants. Finally, a chimeric recombinant virus was detected after cobombardment of defective p35PPV-NAT with a plant expression vector-derived CP gene from the sour cherry isolate of PPV (PPV-SoC). This chimeric virus has been established by a double recombination event between the CP-defective PPV mutant and the intact PPV-SoC CP gene. These results demonstrate that viral sequences can be tested for recombination events without the necessity for producing transgenic plants.  相似文献   

7.
We investigated graft transmission of high‐temperature tolerance in tomato scions to nontransgenic scions from transgenic rootstocks, where the fatty acid desaturase gene (LeFAD7) was RNA‐silenced. Tomato was transformed with a plasmid carrying an inverted repeat of LeFAD7 by Agrobacterium. Several transgenic lines showed the lower amounts of LeFAD7 RNA and unsaturated fatty acids, while nontransgenic control did not, and siRNA was detected in the transgenic lines, but not in control. These lines grew under conditions of high temperature, while nontransgenic control did not. Further, the nontransgenic plants were grafted onto the silenced transgenic plants. The scions showed less of the target gene RNA, and siRNA was detected. Under high‐temperature conditions, these grafted plants grew, while control grafted plants did not. Thus, it was shown that high‐temperature tolerance was conferred in the nontransgenic scions after grafting onto the silenced rootstocks.  相似文献   

8.
Spread of the aphid nontransmissible Zucchini yellow mosaicvirus virus (ZYMV) strain MV was monitored over two consecutive years in field plots of nontransgenic and transgenic squash expressing the coat protein (CP) gene of the aphid transmissible strain FL of Watermelon mosaic virus (WMV). The experimental approach was to mechanically inoculate plants with ZYMV strain MV and to assess subsequent transmissions, assumed to be vectored by aphids, of this strain to nonmechanically inoculated plants. Strain MV was distinguished from other ZYMV isolates by a threonine at position 10 of the CP or by a distinct electrophoretic pattern of a Nla IV-digested genomic cDNA fragment generated by RT-PCR. ZYMV strain MV was not detected in fields of nontransgenic plants, but was apparently aphid transmitted to 77 of 3,700 plants (2%) in transgenic fields. Despite the availability of numerous test plants and conditions of high disease pressure but low selection pressure, an epidemic of ZYMV strain MV did not develop in fields of transgenic plants. In contrast, the aphid transmissible ZYMV strain NY was aphid-transmitted to 99% (446/450) of transgenic plants under similar conditions. The relevance of these results in assessing environmental risks of transgenic plants expressing CP transgenes is discussed.  相似文献   

9.
10.
Movement-deficient potato virus X (PVX) mutants tagged with the green fluorescent protein were used to investigate the role of the coat protein (CP) and triple gene block (TGB) proteins in virus movement. Mutants lacking either a functional CP or TGB were restricted to single epidermal cells. Microinjection of dextran probes into cells infected with the mutants showed that an increase in the plasmodesmal size exclusion limit was dependent on one or more of the TGB proteins and was independent of CP. Fluorescently labeled CP that was injected into epidermal cells was confined to the injected cells, showing that the CP lacks an intrinsic transport function. In additional experiments, transgenic plants expressing the PVX CP were used as rootstocks and grafted with nontransformed scions. Inoculation of the PVX CP mutants to the transgenic rootstocks resulted in cell-to-cell and systemic movement within the transgenic tissue. Translocation of the CP mutants into sink leaves of the nontransgenic scions was also observed, but infection was restricted to cells close to major veins. These results indicate that the PVX CP is transported through the phloem, unloads into the vascular tissue, and subsequently is transported between cells during the course of infection. Evidence is presented that PVX uses a novel strategy for cell-to-cell movement involving the transport of filamentous virions through plasmodesmata.  相似文献   

11.
12.
Transgenic melon and squash containing the coat protein (CP) gene of the aphid transmissible strain WL of cucumber mosaic cucumovirus (CMV) were grown under field conditions to determine if they would assist the spread of the aphid non-transmissible strain C of CMV, possibly through heterologous encapsidation and recombination. Transgenic melon were susceptible to CMV strain C whereas transgenic squash were resistant although the latter occasionally developed chlorotic blotches on lower leaves. Transgenic squash line ZW-20, one of the parents of commercialized cultivar Freedom II, which expresses the CP genes of the aphid transmissible strains FL of zucchini yellow mosaic (ZYMV) and watermelon mosaic virus 2 (WMV 2) potyviruses was also tested. Line ZW-20 is resistant to ZYMV and WMV 2 but is susceptible to CMV. Field experiments conducted over two consecutive years showed that aphid-vectored spread of CMV strain C did not occur from any of the CMV strain C-challenge inoculated transgenic plants to any of the uninoculated CMV-susceptible non- transgenic plants. Although CMV was detected in 3% (22/764) of the uninoculated plants, several assays including ELISA, RT- PCR-RFLP, identification of CP amino acid at position 168, and aphid transmission tests demonstrated that these CMV isolates were distinct from strain C. Instead, they were non-targeted CMV isolates that came from outside the field plots. This is the first report on field experiments designed to determine the potential of transgenic plants expressing CP genes for triggering changes in virus-vector specificity. Our results indicate that transgenic plants expressing CP genes of aphid transmissible strains of CMV, ZYMV, and WMV 2 are unlikely to mediate the spread of aphid non-transmissible strains of CMV. This finding is of practical relevance because transgenic crops expressing the three CP genes are targeted for commercial release, and because CMV is economically important, has a wide host range, and is widespread worldwide.  相似文献   

13.
Transgenic pepper plants coexpressing coat proteins (CPs) of cucumber mosaic virus (CMV-Kor) and tomato mosaic virus (ToMV) were produced by Agrobacterium-mediated transformation. To facilitate selection for positive transformants in transgenic peppers carrying an L gene, we developed a simple and effective screening procedure using hypersensitive response upon ToMV challenge inoculation. In this procedure, positive transformants could be clearly differentiated from the nontransformed plants. Transgenic pepper plants expressing the CP genes of both viruses were tested for resistance against CMV-Kor and pepper mild mottle virus (PMMV). In most transgenic plants, viral propagation was substantially retarded when compared to the nontransgenic plants. These experiments demonstrate that our transgenic pepper plants might be a useful marker system for the transgene screening and useful for classical breeding programs of developing virus resistant hot pepper plants.  相似文献   

14.
We have previously reported the graft transmission of target specificity for RNA silencing using transgenic Nicotiana benthamiana plants expressing the coat protein gene (CP, including the 3′ non-translated region) of Sweet potato feathery mottle virus. Transgenic plants carrying the 5′ 200 and 400 bp regions of CP were newly produced. From these plants, two silenced and two non-silenced lines were selected to investigate the manifestation of transitive RNA silencing by graft experiments. Non-silenced scions carrying the entire transgene were grafted onto either 5′ or 3′ silencing inducer rootstocks. When non-silenced scions were grafted onto 5′ silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions and spread toward the 3′ region of the transgene mRNA. Similarly, when non-silenced scions were grafted onto 3′ silencing inducer rootstocks, RNA silencing was induced in the non-silenced scions, but was restricted to the 3′ region of the transgene and did not spread to the 5′ region. In addition, results from crossing experiments, involving non-silenced and 3′ silencing inducer plants, confirmed the above finding. This indicates that RNA silencing spreads in the 5′–3′ direction, not in the 3′–5′ direction, along the transgene mRNA.  相似文献   

15.
16.
17.
To study and induce meiotic recombination in plants, we generated and analyzed transgenic tomato hybrids F1-RecA and F1-NLS-recA-LicBM3 expressing, respectively, the recA gene of Escherichia coli and the NLS-recA-licBM3 gene. It was found that the recA and NLS-recA-licBM3 genes are inherited through the maternal and paternal lineages, they have no selective influence on the pollen and are contained in tomato F1-RecA and F1-NLS-RecA-LicBM3 hybrids outside the second chromosome in the hemizygous state. The comparative analysis of the meiotic recombination frequency (rf) in the progenies of the transgenic and nontransgenic hybrids showed that only the expression of the recA gene of E. coli in cells of the F1-RecA plants produced a 1.2-1.5-fold increase in the frequency of recombination between some linked marker genes of the second chromosome of tomato.  相似文献   

18.
19.
For some crops, the only possible approach to gain a specific trait requires genome modification. The development of virus‐resistant transgenic plants based on the pathogen‐derived resistance strategy has been a success story for over three decades. However, potential risks associated with the technology, such as horizontal gene transfer (HGT) of any part of the transgene to an existing gene pool, have been raised. Here, we report no evidence of any undesirable impacts of genetically modified (GM) grapevine rootstock on its biotic environment. Using state of the art metagenomics, we analysed two compartments in depth, the targeted Grapevine fanleaf virus (GFLV) populations and nontargeted root‐associated microbiota. Our results reveal no statistically significant differences in the genetic diversity of bacteria that can be linked to the GM trait. In addition, no novel virus or bacteria recombinants of biosafety concern can be associated with transgenic grapevine rootstocks cultivated in commercial vineyard soil under greenhouse conditions for over 6 years.  相似文献   

20.
Recombination is a frequent phenomenon in RNA viruses whose net result is largely influenced by selective pressures. RNA silencing in plants acts as a defense mechanism against viruses and can be used to engineer virus resistance. Here, we have investigated the influence of RNA silencing as a selective pressure to favor recombinants of PVX-HCT, a chimeric Potato virus X (PVX) vector carrying the helper-component proteinase (HC-Pro) gene from Plum pox virus (PPV). All the plants from two lines expressing a silenced HC-Pro transgene were completely resistant to PPV. However a significant proportion became infected with PVX-HCT. Analysis of viral RNAs accumulating in silenced plants revealed that PVX-HCT escaped silencing-based resistance by removal of the HC-Pro sequences that represented preferential targets for transgene-promoted silencing. The virus vector also tended to lose the HC-Pro insert when infecting transgenic plants containing a nonsilenced HC-Pro transgene or wild-type (wt) Nicotiana benthamiana plants. Nevertheless, loss of HC-Pro sequences was faster in nonsilenced transgenic plants than in wt plants, suggesting the transgene plays a role in promoting a higher selective pressure in favor of recombinant virus versions. These results indicate that the outcome of recombination processes depends on the strength of selection pressures applied to the virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号