首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apidaecins are 18–20-residue long proline-rich peptides expressed in insects as part of the innate immune system. They are very active against Gram-negative bacteria, especially Enterobacteriaceae. The C-terminal sequence PRPPHPRL is highly conserved, whereas the N-terminal region is variable. By replacing all 18 residues of apidaecin 1a and apidaecin 1b individually by alanine (Ala-scan), we have shown that single mutations in the C-terminal half of the peptides drastically reduced and mostly abolished the antibacterial activity against Escherichia coli. Conversely, substitutions in the N-terminal eight residues produced no, or only minor effects. The activity loss was correlated to the ability of apidaecin 1b and its mutants to enter Gram-negative bacteria, most likely because they no longer bind to a protein transporter. This assumed binding, however, was not inhibited by truncated apidaecin peptides added at tenfold higher concentrations. Interestingly, the antibacterial activity of full length apidaecin 1b was enhanced about four times by addition of a N-terminally truncated apidaecin peptide [11–18]-apidaecin 1b, as indicated by lower MIC-values against E. coli, although the short 5(6)-carboxyfluorescein-labeled peptide did not enter the bacteria. In contrast, the activity against the Gram-positive bacterium Micrococcus luteus was not located in the C-terminal sequence of apidaecins 1a and b, but depended mostly on the presence of all four basic residues.  相似文献   

2.
3.
Genetic engineering of lactic acid bacteria (LAB) requires a reliable gene expression system. Especially, a stable promoter is an important genetic element to induce gene expression in such a system. We report on a novel tuf promoter (Ptuf) of Lactococcus lactis subsp. lactis IL1403 that was screened and selected through analysis of previously published microarray data. Ptuf activity was examined and compared with three other known lactococcal promoters (PdnaJ, PpfkA, and Pusp45) using different bacteria as expression hosts. Each promoter was, respectively, fused to the promoterless and modified bmpB gene as a reporter, and we estimated promoter activity through BmpB expression. All promoters were active in IL1403, and Ptuf activity was strongest among them. The activity of each promoter differed by host bacteria (Lactobacillus plantarum Lb25, Lactobacillus reuteri ATCC23272, and Escherichia coli Top10F’). Ptuf had the highest activity in IL1403 when growth reached late log phase. The activity of each promoter correlated with the expression of each cognate gene in the microarray data (R 2 = 0.7186, P = 0.06968). This study revealed that novel food-grade promoters such as IL1403 Ptuf can be selected from microarray data for food-grade microorganisms and Ptuf can be used to develop a reliable gene expression system in L. lactis.  相似文献   

4.
In the development of an oral vaccine against Helicobacter pylori, H. pylori urease subunit B (UreB) was expressed in a food-grade delivery vehicle, Lactococcus lactis NZ3900. The ureB gene (Genbank accession no. FJ436980) was amplified by polymerase chain reaction (PCR) from MEL-Hp27. The PCR-amplified ureB gene was cloned in the E. coli–L. lactis shuttle vector pNZ8110 and transformed into E. coli MC1061. After the transformant had been identified, the recombinant plasmid was purified and electrotransformed into L. lactis NZ3900. The conditions of UreB expression in the L. lactis transformant were optimized by orthogonal experiment. The maltose binding protein (MBP)-UreB fusion protein expressed by TB1/pMAL-c2X-ureB was used to cultivate mice polyclonal anti-UreB serum after purification by the amylose prepacked column. The Western blot method was adopted to confirm whether the UreB expressed by L. lactis transformant had immunoreactivity. The optimized conditions for UreB expression were as follows. Nisin 40 ng/ml was added to the medium when the recombinant grew to OD600≈0.30–0.40 and the induction time lasted 5 h. As a result, the maximum yield of UreB was 27.26 μg/mL of medium, and the maximum percentage of UreB in cell extracts of the L. lactis transformant reached its peak at 20.19%. Western blot analysis showed that the UreB protein expressed by L. lactis transformant had favorable immunoreactivity. All these results make an appealing case for construction of the food-grade vaccine for H. pylori.  相似文献   

5.
Chen S  Zhang R  Duan G  Shi J 《Current microbiology》2011,62(6):1726-1731
Helicobacter pylori is the principal cause of chronic active gastritis, peptic ulcer, and gastric cancer. To develop an oral vaccine against H. pylori infection, we had expressed the H. pylori ureB gene (Genbank accession no. FJ436980) in nisin-controlled expression vectors using Lactococcus lactis NZ3900 as host. The ureB gene was amplified by PCR from a H.pylori strain MEL-Hp27. Then the ureB gene was fused translationally downstream of the nisin-inducible promoter nisA in a L. lactis plasmid pNZ8149. Lactose utilization based on the complementation of the lacF gene was used as a dominant selection marker for the food-grade expression system employing L. lactis NZ3900. The conditions of UreB expression in this system were optimized by orthogonal experiment. The optimized conditions have been determined as follows: induction of expression was carried out at the cells density of OD600 ≈ 0.4 with 25 ng/ml nisin, and harvest after 5 h. The maximum percentage of recombinant UreB was estimated to be 7% of total soluble cellular proteins and the yield was 12.9 μg/ml. Western blot demonstrated that the UreB protein was expressed in the L. lactis transformant and had favorable immunoreactivity. These results indicated that the lactococci-derived vaccines could be promising candidates as alternative vaccine strategies for preventing H. pylori infection.  相似文献   

6.
Zhang W  Wang C  Huang C  Yu Q  Liu H  Zhang C  Pei X 《Current microbiology》2011,62(2):639-644
Recombinant Lactococcus lactis MG1363/pMG36e-lacZ exhibiting high β-galactosidase activities were constructed by us in the previous study. However, erythromycin resistance present in these recombinants restricted their practical application in food preparation. This study was conducted to delete the gene coding for erythromycin resistance present in recombinant L. lactis, as a result of which these bacteria express food-grade β-galactosidase. In this study, the recombinant plasmid pMG36e-lacZ was digested with restriction enzymes BclI and HpaI and the food-grade plasmid FGZW was rebuilt. FGZW was transformed into Escherichia coli JM109 and L. lactis MG1363. Erythromycin resistance, enzyme activity determination, gene sequencing and SDS-PAGE analysis indicated that these new recombinant bacteria lost erythromycin resistance and its relevant gene but still expressed β-galactosidase activities, although a decrease in the expression of β-galactosidase of these new strains was observed. The β-galactosidase food-grade expression system was successfully constructed and it could provide a new solution for the management of lactose intolerance. These results might promote the usage of gene-modified microorganisms and related technology in the food sector, which has the highest priority for food safety.  相似文献   

7.
Some antimicrobial peptides (AMPs) have been described to exert immunomodulatory effects, which may contribute to their in vivo antibacterial activity. Very recently, we could show that novel oncocin and apidaecin derivatives are potently antibacterially active in vivo. Therefore, we studied oncocin and apidaecin derivatives for their effects on murine dendritic cells (DC) and macrophages and compared them with well‐known immunomodulatory activities of murine cathelicidin‐related antimicrobial peptide (CRAMP). To characterize the immunomodulatory activity of the peptides on key cells of the innate immune system, we stimulated murine DC and macrophages with the oncocin and apidaecin derivatives alone, or in combination with lipopolysaccharide (LPS). We analyzed the secretion of pro‐inflammatory cytokines, the expression of surface activation markers, and the chemotactic activity of the AMPs. In contrast to LPS, none of the oncocin and apidaecin derivatives alone has an influence on cytokine or surface marker expression by DC and macrophages. Furthermore, the tested oncocin and apidaecin derivatives do not modulate the immune response after LPS stimulation, whereas CRAMP shows a reduction of the LPS‐mediated immune response as expected. All peptides tested are not chemotactic for DC. Together, lack of in vitro immunomodulatory effects by oncocin and apidaecin derivatives on key cells of the innate murine immune system suggests that their potent in vivo antibacterial activity relies on a direct antibacterial effect. This will simplify further pharmaceutical investigation and development of insect peptides as therapeutic compounds against bacterial infections. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Recent surveillance data on antimicrobial resistance predict the beginning of the post‐antibiotic era with pan‐resistant bacteria even overcoming polymyxin as the last available treatment option. Thus, new substances using novel modes of antimicrobial action are urgently needed to reduce this health threat. Antimicrobial peptides are part of the innate immune system of most vertebrates and invertebrates and accepted as valid substances for antibiotic drug development efforts. Especially, short proline‐rich antimicrobial peptides (PrAMP) of insect origin have been optimized for activity against Gram‐negative strains. They inhibit protein expression in bacteria by blocking the 70S ribosome exit tunnel (oncocin‐type) or the assembly of the 50S subunit (apidaecin‐type binding). Thus, apidaecin analog Api137 and oncocin analog Onc112 supposedly bind to different nearby or possibly partially overlapping binding sites. Here, we synthesized Api137/Onc112‐conjugates bridged by ethylene glycol spacers of different length to probe synergistic activities and binding modes. Indeed, the antimicrobial activities against Escherichia coli and Pseudomonas aeruginosa improved for some constructs, although the conjugates did not bind better to the 70S ribosome of E. coli than Api137 and Onc112 using 5(6)‐carboxyfluorescein‐labelled Api137 and Onc112 in a competitive fluorescence polarization assay. In conclusion, Api137/Onc112‐conjugates showed increased antimicrobial activities against P. aeruginosa and PrAMP‐susceptible and ‐resistant E. coli most likely because of improved membrane interactions, whereas the interaction to the 70S ribosome was most likely not improved relying still on the independent apidaecin‐ and oncocin‐type binding modes. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Nattokinase has been reported as an oral health product for the prevention of atherosclerosis. We developed a novel strategy to express a nattokinase from Bacillus subtilis in a live delivery vehicle, Lactococcus lactis. Promoter P nisZ and signal peptide SPUsp were used for inducible and secretory expression of nattokinase in L. lactis. Western blotting analysis demonstrated that nattokinase was successfully expressed, and about 94% of the enzyme was secreted to the culture. The recombinant nattokinase showed potent fibrinolytic activity, equivalent to 41.7 urokinase units per milliliter culture. Expression and delivery of such a fibrinolytic enzyme in the food-grade vehicle L. lactis would facilitate the widespread application of nattokinase in the control and prevention of thrombosis diseases.  相似文献   

10.
The genetic improvement of Lactococcus lactis is a matter of biotechnological interest in the food industry and in the pharmaceutical and medical fields. However, to construct a food-grade delivery system, both the presence of antibiotic markers or plasmid sequences should be avoided and the maintenance and expression of the cloned gene should be guaranteed. The objective of this work was to produce crossover mutants of L. lactis with a reporter gene under the control of an inducible promoter in order to evaluate the level of gene expression. We utilized a nuclease gene of Staphylococcus aureus as a reporter gene, P nisA as the nisin-inducible promoter, a non-essential gene involved in histidine biosynthesis of L. lactis as the site for homologous recombination, and pRV300 as a suicide vector for the genomic integration in L. lactis NZ9000. Single- and double-crossover mutants were identified by genotype and phenotype. Relative to episomal transformants of L. lactis, the level of expression of the heterologous protein after nisin induction was similar in the crossover mutants, suggesting that a single copy of the heterologous gene can be used to produce the protein of interest.  相似文献   

11.
Brucella abortus is a facultative intracellular gram-negative bacterial pathogen that infects humans and animals by entry mainly through the digestive tract. B. abortus causes abortion in pregnant cattle and undulant fever in humans. The immunogenic B. abortus ribosomal protein L7/L12 is a promising candidate antigen for the development of oral live vaccines against brucellosis, using food-grade lactic acid bacteria (LAB) as a carrier. The L7/L12 gene was expressed in Lactococcus lactis, the model LAB, under the nisin-inducible promoter. Using different signals, L7/L12 was produced in cytoplasmic, cell-wall-anchored, and secreted forms. Cytoplasmic production of L7/L12 gave a low yield, estimated at 0.5 mg/liter. Interestingly, a secretable form of this normally cytoplasmic protein via fusion with a signal peptide resulted in increased yield of L7/L12 to 3 mg/liter; secretion efficiency (SE) was 35%. A fusion between the mature moiety of the staphylococcal nuclease (Nuc) and L7/L12 further increased yield to 8 mg/liter. Fusion with a synthetic propeptide (LEISSTCDA) previously described as an enhancer for heterologous protein secretion in L. lactis (Y. Le Loir, A. Gruss, S. D. Ehrlich, and P. Langella, J. Bacteriol. 180:1895-1903, 1998) raised the yield to 8 mg/liter and SE to 50%. A surface-anchored L7/L12 form in L. lactis was obtained by fusing the cell wall anchor of Streptococcus pyogenes M6 protein to the C-terminal end of L7/L12. The fusions described allow the production and targeting of L7/L12 in three different locations in L. lactis. This is the first example of a B. abortus antigen produced in a food-grade bacterium and opens new perspectives for alternative vaccine strategies against brucellosis.  相似文献   

12.
目的:构建能够稳定表达萤火虫荧光素酶报告基因(luc)的乳酸乳球菌(Lactococcus lactis, L.lactis)食品级表达系统,以便后续研究对目的基因进行示踪。方法:从pGL4.10质粒中PCR扩增萤火虫荧光素酶报告基因,测序,克隆至载体pNZ8149,构建pNZ8149-luc表达质粒;电击转化宿主乳酸乳球菌NZ3900,采用乳糖筛选法获得重组的乳酸乳球菌,Nisin诱导,采用微孔板发光检测仪检测荧光素酶的存在,Western Blot检测目标蛋白luc的表达。结果:PCR扩增的荧光素酶报告基因成功克隆至pNZ8149质粒,并电击转化宿主乳酸乳球菌NZ3900,得到乳酸乳球菌表达系统NZ3900/pNZ8149-luc。Nisin诱导后,检测到荧光素酶随诱导时间的延长活性逐渐增强,时间超过24 h之后荧光素酶活性逐渐下降。Western Blot检测到目标蛋白luc在胞内表达。结论:成功构建了p NZ8149-luc表达载体,并能够在乳酸乳球菌体内稳定表达。  相似文献   

13.
K88 (F4) fimbrial adhesin, FaeG, was expressed extracellularly in Lactococcus lactis using a nisin-controlled gene expression system. The antibody response and protective efficacy of the recombinant bacteria (L. lactis [spNZ8048-faeG]) against live enterotoxigenic E. coli (ETEC) C83549 challenge were evaluated in ICR mice. Mice vaccinated with L. lactis [spNZ8048-faeG] had a significantly increased antigen-specific IgG level in the serum and decreased mortality rate (P < 0.05) compared with the control. This indicates that oral immunization of L. lactis [spNZ8048-faeG] can induce an immune-response protection upon challenge with live ETEC in ICR mice. An erratum to this article can be found at  相似文献   

14.
The food-grade Lactococcus lactis is a potential vector to be used as a live vehicle for the delivery of heterologous proteins for vaccine and pharmaceutical purposes. We constructed a plasmid vector pSVac that harbors a 255-bp single-repeat sequence of the cell wall-binding protein region of the AcmA protein. The recombinant plasmid was transformed into Escherichia coli and expression of the gene fragment was driven by the T7 promoter of the plasmid. SDS-PAGE showed the presence of the putative AcmA fragment and this was confirmed by Western blot analysis. The protein was isolated and purified using a His-tag affinity column. When mixed with a culture of L. lactis MG1363, ELISA and immunofluorescence assays showed that the cell wall-binding fragment was anchored onto the outer surface of the bacteria. This indicated that the AcmA repeat unit retained the active site for binding onto the cell wall surface of the L. lactis cells. Stability assays showed that the fusion proteins (AcmA/A1, AcmA/A3) were stably docked onto the surface for at least 5 days. The AcmA fragment was also shown to be able to strongly bind onto the cell surface of naturally occurring lactococcal strains and Lactobacillus and, with less strength, the cell surface of Bacillus sphericus. The new system designed for cell surface display of recombinant proteins on L. lactis was evaluated for the expression and display of A1 and A3 regions of the VP1 protein of enterovirus 71 (EV71). The A1 and A3 regions of the VP1 protein of EV71 were cloned upstream to the cell wall-binding domains of AcmA protein and successfully expressed as AcmA/A1 and AcmA/A3. Whole-cell ELISA showed the successful display of VP1 protein epitopes of EV71 on the surface of L. lactis. The success of the anchoring system developed in this study for docking the A1 and A3 epitopes of VP1 onto the surface of L. lactis cells opens up the possibilities of peptide and protein display for not only Lactococcus but also for other gram-positive bacteria. This novel way of displaying epitopes on the cell surface of L. lactis and other related organisms should be very useful in the delivery of vaccines and other useful proteins.  相似文献   

15.
A nisin-resistant Lactococcus lactis strain TML01 was isolated from crude milk. A gene with 99% homology to the nisin-resistance gene, nsr, was identified. The food-grade secretion plasmid, pLEB690 (3746 bp), was constructed based on this novel nsr gene enabling primary selection with up to 5 μg nisin/ml. The functionality of pLEB690 as a secretion vector was shown by expressing and secreting the pediocin AcH gene papA in L. lactis. pLEB690 is therefore, a functional food-grade secretion vector potentially useful for the food industry.  相似文献   

16.
To determine if the food-grade bacterium Lactococcus lactis holds promise as a vaccine antigen delivery vector we have investigated whether this bacterium can be made to produce high levels of a heterologous protein antigen. A regulated expression system has been developed which may be generally suitable for the expression of foreign antigens (and other proteins) In L. lactis. The system utilizes the fast-acting T7 RNA polymerase to transcribe target genes, and provides the first example of the successful use of this polymerase in a Gram-positive bacterium. When the performance of the expression system was characterized using tetanus toxin fragment C (TTFC) up to 22% of soluble cell protein was routinely obtained as TTFC. Mice immunized subcutaneously with L. lactis expressing TTFC were protected from lethal challenge with tetanus toxin. These results show for the first time that L. lactis is able to express substantial quantities of a heterologous protein antigen and that this organism can present this antigen to the Immune system in an immunogenic form.  相似文献   

17.
Nonsense suppressor strains of Lactococcus lactis were isolated using plasmids containing nonsense mutations or as revertants of a nonsense auxotrophic mutant. The nonsense suppressor gene was cloned from two suppressor strains and the DNA sequence determined. One suppressor is an ochre suppressor with an altered tRNAgin and the other an amber suppressor with an altered tRNAser. The nonsense suppressors allowed isolation of nonsense mutants of a lytic bacteriophage and suppressible auxotrophic mutants of L. lactis MG1363. A food-grade cloning vector based totally on DNA from Lactococcus and a synthetic polylinker with 11 unique restriction sites was constructed using the ochre suppressor as a selectable marker. Selection, following etectroporation of a suppressible purine auxotroph, can be done on purine-free medium. The pepN gene from L. lactis Wg2 was subcloned resulting in a food-grade plasmid giving a four- to fivefold increase in lysine aminopeptidase activity.  相似文献   

18.

Background  

A goal for the food industry has always been to improve strains of Lactococcus lactis and stabilize beneficial traits. Genetic engineering is used extensively for manipulating this lactic acid bacterium, while electropolation is the most widely used technique for introducing foreign DNA into cells. The efficiency of electrotransformation depends on the level of electropermealization and pretreatment with chemicals which alter cell wall permeability, resulting in improved transformation efficiencies is rather common practice in bacteria as in yeasts and fungi. In the present study, treatment with lithium acetate (LiAc) and dithiothreitol (DTT) in various combinations was applied to L. lactis spp. lactis cells of the early-log phase prior to electroporation with plasmid pTRKH3 (a 7.8 kb shuttle vector, suitable for cloning into L. lactis). Two strains of L. lactis spp. lactis were used, L. lactis spp. lactis LM0230 and ATCC 11454. To the best of our knowledge these agents have never been used before with L. lactis or other bacteria.  相似文献   

19.
Summary The value of a heterologous peptide extracellular production system in Streptomyces using a secretory protease inhibitor, was examined. DNA was synthesized encoding apidaecin 1b (AP1), an interesting antibacterial peptide discovered in lymph fluid of the honeybee, and was joined to the Streptomyces subtilisin inhibitor (SSI) gene via a 12-bp nucleotide sequence corresponding to the amino acid sequence specific for cleavage by blood coagulation factor Xa. The fusion protein (SSI-AP1) could be expressed and excreted efficiently into the medium by culturing S. lividans 66 harbouring a plasmid vector constructed for SSI secretion, into which the synthetic DNA was introduced. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis and amino acid analysis of the purified SSI-AP1 protided reasonable results of molecular size and composition value. Interestingly, SSI-AP1 protein showed bifunctional activity: inhibitory activity of SSI and antibacterial activity of AP1. The inhibitory activity against Escherichia coli could be also detected after the fusion protein was cleaved by factor Xa. The extracellular production system presented here should provide a useful tool for production, analysis of mode of action, and also for genetic improvement of antimicrobial peptides such as apidaecin.Offprint requests to: H. Momose  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号