首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
1. Spermine has previously been reported to be an activator of mitochondrial Ca2+ uptake [Nicchitta & Williamson (1984) J. Biol. Chem. 259, 12978-12983]. This is confirmed in the present studies on rat heart, liver and kidney mitochondria by using the activities of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) as probes for matrix Ca2+, and also, for the heart mitochondria, by using entrapped fura-2. 2. As also found previously [Damuni, Humphreys & Reed (1984) Biochem. Biophys. Res. Commun. 124, 95-99], spermine activated extracted pyruvate dehydrogenase phosphate phosphatase. However, it was found to have no effects at all on the extracted NAD+-isocitrate or 2-oxoglutarate dehydrogenases. It also had no effects on activities of the enzymes in mitochondria incubated in the absence of Ca2+, or on the Ca2+-sensitivity of the enzymes in uncoupled mitochondria. 3. Spermine clearly activated 45Ca uptake by coupled mitochondria, but had no effect on Ca2+ egress from mitochondria previously loaded with 45Ca. 4. Spermine (with effective Km values of around 0.2-0.4 mM) caused an approx. 2-3-fold decrease in the effective ranges of extramitochondrial Ca2+ in the activation of the Ca2+-sensitive matrix enzymes in coupled mitochondria from all of the tissues. The effects of spermine appeared to be largely independent of the other effectors of mitochondrial Ca2+ transport, such as Mg2+ (inhibitor of uptake) and Na+ (promoter of egrees). 5. In the most physiological circumstance, coupled mitochondria incubated with Na+ and Mg2+, the presence of saturating spermine (2 mM) resulted in an effective extramitochondrial Ca2+ range for matrix enzyme activation of from about 30-50 nM up to about 800-1200 nM, with half-maximal effects around 250-400 nM-Ca2+. The implications of these findings for the regulation of matrix and extramitochondrial Ca2+ are discussed.  相似文献   

2.
Spermine enhances electrogenic Ca2+ uptake and inhibits Na(+)-independent Ca2+ efflux in rat brain mitochondria. As a result, Ca2+ retention by brain mitochondria increases greatly and the external free Ca2+ level at steady-state can be lowered to physiologically relevant concentrations. The stimulation of Ca2+ uptake by spermine is more pronounced at low concentrations of Ca2+, effectively lowering the apparent Km for Ca2+ uptake from 3 microM to 1.5 microM. However, the apparent Vmax is also increased. At low Ca2+ concentrations, Ca2+ uptake is diffusion-limited. Spermine strongly inhibits Ca2+ binding to anionic phospholipids and it is suggested that this increases the rate of surface diffusion which reduces the apparent Km for uptake. The same effect could inhibit the Na(+)-independent efflux if the rate of efflux is limited by Ca2+ dissociation from the efflux carrier. In brain mitochondria (but not in liver) the spermine effect depends on the presence of ADP. In a medium that contains physiological concentrations of Pi, Mg+, K+, ADP and spermine, brain mitochondria sequester Ca2+ down to 0.1 microM and below, depending on the matrix Ca2+ load. Moreover, brain mitochondria under the same conditions buffer the external medium at 0.4 microM, a concentration at which the set point becomes independent of the matrix Ca2+ content. Thus, mitochondria appear to be capable of modulating calcium oscillations in brain cells.  相似文献   

3.
In experiments carried out with the use of the radioactive label (45Ca2+) on suspension of the rat uterus myocytes processed by digitonin solution (0.1 mg/ml), influence of spermine and cyclosporin A on Mg2+, ATP-dependent Ca2+ transport in mitochondria at different Mg2+ concentration were investigated. Ca2+ accumulation in mitochondria was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). It has been shown, that spermine (1 mM) stimulates Mg2+, ATP-dependent Ca2+ accumulation in mitochondria irrespective of Mg2+ concentration (3 or 7 mM) in the incubation medium. At the same time cyclosporin A (5 microM) effects on Ca2+ accumulation in mitochondria depend on Mg2+ concentration in the incubation medium: at 3 mM Mg2+ the stimulating effect was observed, and at 7 mM Mg2+ - the inhibitory one. In conditions which led to the increase of nonspecific mitochondrial permeability and, accordingly, to dissipation of electrochemical potential (it was reached by 5 min. preincubation of myocytes suspension in the medium that contained 10 microM Ca2+, 2 mM phosphate and 3 or 7 mM Mg2+, but not ATP) significant inhibition of Mg2+, ATP-dependent Ca2+ accumulation in mitochondria was observed. The inhibition to the greater degree was observed when medium ATP and Mg2+ were absent simultaneously in the preincubation. Thus the quality of spermine effects on Ca2+ accumulation was kept: stimulation in the presence both of 3 mM and 7 mM Mg2+. Ca2+ accumulation did not reach the control level when 3 mM Mg2+ and 1 mM spermine was present and ATP absent in the preincubation medium. However, in the presence of 7 mM Mg2+ and 1 mM spermine practically full restoration (up to a control level) of Ca2+ accumulation was observed. At the same time with other things being equal such restoration was not observed at simultaneous absence of ATP and Mg2+ in the preincubation medium. The quality of cyclosporin A effects on Ca2+ accumulation in mitochondria was also kept: stimulation - in the presence of 3 mM Mg2+, inhibition - in the presence of 7 mM Mg2+ in the preincubation medium. And, at last, in the presence of cyclosporin A irrespective of the fact which preincubation medium was used, Ca2+ accumulation level practically did not depend on Mg2+ concentration.  相似文献   

4.
Interactions between spermine and Mg2+ on mitochondrial Ca2+ transport   总被引:2,自引:0,他引:2  
The effects of the polyamine spermine on the regulation of Ca2+ transport by subcellular organelles from rat liver, heart, and brain were investigated using ion-sensitive minielectrodes and a 45Ca2+ tracer method. Spermine stimulated Ca2+ uptake by mitochondria but not by microsomes. In the presence of spermine, isolated mitochondria could maintain a free extramitochondrial Ca2+ concentration of 0.3-0.2 microM. Stimulation of the initial rates of Ca2+ uptake and 45Ca2+ cycling of mitochondria by spermine shows that this was accomplished through a decrease of the apparent Km for Ca2+ uptake by the Ca2+ uniporter. The half maximally effective concentration of spermine (50 microM) was in the range of physiological concentrations of this polyamine in the cell. Spermidine was five times less effective. Putrescine was ineffective. The stimulation of mitochondrial Ca2+ uptake by spermine was inhibited by Mg2+ in a concentration-dependent manner. However, the diminished contribution of the mitochondria to the regulation of the free extraorganellar Ca2+ concentration could mostly be compensated for by microsomal Ca2+ uptake. Spermine also reversed ruthenium red-induced Ca2+ efflux from mitochondria. It is concluded that spermine is an activator of the mitochondrial Ca2+ uniporter and Mg2+ an antagonist. By this mechanism, the polyamines can confer to the mitochondria an important role in the regulation of the free cytoplasmic Ca2+ concentration in the cell and of the free Ca2+ concentration in the mitochondrial matrix.  相似文献   

5.
Polyamines stimulate the binding of hexokinase type II to mitochondria   总被引:1,自引:0,他引:1  
Spermine and spermidine enhanced the binding of hexokinase isoenzyme type II to mitochondria, both of which were prepared from Ehrlich-Lettre hyperdiploid ascites tumor cells, at much lower concentrations than Mg2+. Chymotrypsin-treated hexokinase II could not bind to the mitochondrial membrane in the presence of either spermine or Mg2+, indicating that the effect of spermine is not a nonspecific action, since the treatment of chymotrypsin cleaves only the region essential for the binding without any significant effect of the catalytic activity. Both spermine and Mg2+ antagonized the glucose 6-phosphate-induced release of mitochondria-bound hexokinase, and promoted the binding of the solubilized hexokinase II even in the presence of glucose 6-phosphate. However, inhibition of the activity of soluble hexokinase by glucose 6-phosphate was not reversed by spermine and Mg2+. Hexokinase II rebound to mitochondria with spermine and Mg2+ produced glucose 6-phosphate using ATP generated inside the mitochondria, and no difference was observed between the spermine- and Mg2+-rebound systems. Significance of the binding of hexokinase to mitochondria, especially with polyamines, is discussed with reference to high glycolytic rate in tumor cells.  相似文献   

6.
Ca2+-release pathways from Ca2+-preloaded mitochondria of the yeast Endomyces magnusii were studied. In the presence of phosphate as a permeant anion, Ca2+ was released from respiring mitochondria only after massive cation loading at the onset of anaerobiosis. Intensive aeration of the mitochondrial suspension rapidly inhibited the efflux of Ca2+ and induced its reuptake. The Ca2+ release was not affected by cyclosporin A, an inhibitor of the nonselective permeability transition of mammalian mitochondria. With acetate as the permeant anion, a spontaneous net Ca2+ efflux began after uptake of about 75% of the added cation. The rate of this efflux was insensitive to cyclosporin A, aeration, and Na+ and was proportional to the Ca2+ load. The Ca2+ release was inhibited by La3+, Mn2+, Mg2+, TPP+, and nigericin (in the presence of KCl) and activated by spermine and hypotonicity. We conclude that Ca2+ efflux from preloaded E. magnusii mitochondria is very similar to the Na+-independent specific pathway for Ca2+ release operative in mitochondria from nonexcitable mammalian tissues.  相似文献   

7.
Manganese stimulates calcium flux through the mitochondrial uniporter   总被引:3,自引:0,他引:3  
Mn2+ alters the balance between the simultaneous uptake and release of Ca2+ across the mitochondrial inner membrane toward a lower external level. Addition of as little as 0.5 microM Mn2+ to energised mitochondria from rat liver, rat heart or guinea-pig brain changed the level at which they buffered Ca2+ in the medium. That extramitochondrial Mn2+ was responsible was suggested by a partial decay in the shift in Ca2+ steady state at a rate similar to the rate at which Mn2+ was accumulated by the mitochondria. The alteration of transmembrane Ca2+ distribution by Mn2+ required that both Mg2+ and Pi be present, and was almost maximal at Mg2+ and Pi levels in the physiological range. Substitution of spermine or Ni2+ for Mg2+, or acetate for Pi, abolished the effect. In contrast to Sr2+, Mn2+ did not inhibit either EGTA- or Ruthenium red-induced release of Ca2+ from the mitochondria. However, when flux through the uniporter was rate-limiting, Mn2+ accelerated Ca2+ uptake. The stimulation showed hyperbolic kinetics, with an element of competition discernible in the Mn2+-Mg2+ interaction. Thus, extramitochondrial Mn2+ at levels occurring in vivo can alter the mitochondrial 'set-point' by stimulating Ca2+ influx through the uniporter.  相似文献   

8.
Kinetic analysis of 45Ca2+ uptake by rat brain mitochondria in Ca2+ - 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that spermine both increased the apparent affinity for Ca2+ and decreased the cooperativity of uptake. Both effects are consistent with an allosteric activation of uptake by spermine. The stimulating effect of spermine on 45Ca2+ uptake was maximal with mitochondria from postnatal day 10 animals and then steadily decreased with increasing age to reach adult values by approximately 30 postnatal days; this was observed independently of the substrates used to fuel mitochondria. Mitochondrial Ca2+ buffering was also analyzed by use of a Ca2+-selective electrode. Addition of a large bolus of Ca2+ produced a decrease in the subsequent equilibrium extramitochondrial Ca2+ concentration (or a "rebound overshoot") under some conditions. It is proposed that this effect is the result of an allosteric activation of Ca2+ uptake by Ca2+. This effect was slowly reversible, or hysteretic, and was blocked by spermine. The overshoot was increased in the presence of higher concentrations of Mg2+ and was absent when mitochondria were incubated with 0.3 mM Mg2+. It was maximal in mitochondria prepared from early postnatal brain, and changes in the magnitude of the effect during development paralleled those obtained with spermine stimulation of 45Ca2+ uptake. The data suggest that spermine produces an allosteric activation of Ca2+ uptake by binding to the same regulatory sites that are involved in the Ca2+-induced activation. The results as a whole suggest that spermine could modulate mitochondrial buffering of the intracellular Ca2+ concentration in brain, particularly during the early postnatal period.  相似文献   

9.
10.
Spermine. A regulator of mitochondrial calcium cycling   总被引:9,自引:0,他引:9  
Steady-state free Ca2+ concentrations have been measured with a Ca2+ electrode using suspensions of isolated rat liver mitochondria or saponin-treated hepatocytes. Mitochondria, when incubated in the presence of Mg2+ and MgATP2-, maintain a steady-state pCa2+ (-log [Ca2+]) of approximately 6.1 (0.8 microM). Addition of spermine lowered this value to a pCa2+ of 6.6 (0.25 microM). Spermine was the most effective polyamine, giving half-maximal effects at 170 microM and maximal effects at 400 microM. With saponin-permeabilized hepatocytes, spermine addition similarly showed that the mitochondria buffered the steady-state medium-free Ca2+ at a level approximating the cytosolic free Ca2+ concentration of intact hepatocytes. The initial rate of Ca2+ uptake by the mitochondrial Ca2+ uniporter was investigated using Ca2+-depleted mitochondria incubated in the presence of succinate and 0.3 mM free Mg2+. Under control conditions, Ca2+ uptake was not observed at free Ca2+ concentrations below 0.5 microM. Spermine (350 microM) increased the rate of Ca2+ uptake at all Ca2+ concentrations below 4.5 microM, but at higher Ca2+ concentrations, it was inhibitory. Spermine also affected mitochondrial Ca2+ efflux by decreasing the apparent Km from 16 to 3.8 nmol of Ca2+/mg of mitochondrial protein with no change of Vmax. Experiments with 45Ca2+ confirmed that spermine increased mitochondrial Ca2+ cycling at 0.2 microM free Ca2+. Hepatic spermine contents are reported to be about 1 mumol/g, wet weight, suggesting that this polyamine may have an important physiological role in intracellular calcium homeostasis.  相似文献   

11.
In experiments, which were carried out with the use of a radioactive label (45Ca2+) on the suspension of rat uterus myocytes treated by digitonin solution (0.1 mg/ml), influence of Mg ions and spermine on Mg2+, ATP-dependent Ca2+ transport in mitochondria and sarcoplasmic reticulum was investigated. Ca2+ accumulation in mitochondria (1324 +/- 174 pmol Ca2+/10(6) cells for 1 min - the control) was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). Oxalate-stimulated Ca2+ accumulation in sarcoplasmic reticulum (136 +/- 17 pmol Ca2+/10(6) cells for 1 min - the control) was tested as such which was not sensitive to ruthenium red and was blocked by thapsigargin. It has been shown, that initial speed and level of energy-dependent Ca2+ accumulation in mitochondria considerably exceeded the values of these parameters for sarcoplasmic reticulum Ca2+-accumulation system. Ca2+ accumulation kinetic in mitochondria was characterized by a steady-state phase (for 5-10 min. of incubation) while accumulation kinetic of this cation in sarcoplasmic reticulum corresponded to zero order reaction. Increase of Mg2+ concentration up to 5 mM led to activation of Ca2+-accumulation systems in mitochondria and sarcoplasmic reticulum (values of activation constants K(Mg) for Mg2+ were 2.8 and 0.6 mM, accordingly). Concentration dependence of spermine action on Ca2+ accumulation in mitochondria was described by a dome-shaped curve with a maximum at 1 mM spermine. In case of sarcoplasmic reticulum Ca2+ pump only the inhibition phase was tested at spermine concentration above 1 mM. However values of inhibition constants for both transporting systems were practically identical--5.2 +/- 0.6 and 5.7 +/- 0.7 mM, accordingly. Hence, Mg ions carry out the important role in regulation of energy-dependent Ca2+ transporting systems both in uterus smooth muscle mitochondria and sarcoplasmic reticulum. Spermine acts first of all on mitochondrial calcium uniporter.  相似文献   

12.
Gliotoxin (GT) is a hydrophobic fungal metabolite of the epipolythiodioxopiperazine group which reacts with membrane thiols. When added to a suspension of energized brain mitochondria, it induces matrix swelling of low amplitude, collapse of membrane potential (DeltaPsi), and efflux of endogenous cations such as Ca2+ and Mg2+, typical events of mitochondrial permeability transition (MPT) induction. These effects are due to opening of the membrane transition pore. The addition of cyclosporin A (CsA) or ADP slightly reduces membrane potential collapse, matrix swelling and Ca2+ efflux; Mg2+ efflux is not affected at all. The presence of exogenous Mg2+ or spermine completely preserve mitochondria against DeltaPsi collapse, matrix swelling and Ca2+ release. Instead, Mg2+ efflux is only slightly affected by spermine. Our results demonstrate that, besides inducing MPT, gliotoxin activates a specific Mg2+ efflux system from brain mitochondria.  相似文献   

13.
In extracts of rat heart mitochondria, Sr2+ mimicked the activatory effects of Ca2+ on the Ca2(+)-sensitive intramitochondrial enzymes, pyruvate dehydrogenase phosphate phosphatase, isocitrate dehydrogenase (NAD+), and 2-oxoglutarate dehydrogenase, but at about tenfold higher concentrations (effective range approximately 1-100 muM) in each case. Ba2+ had no effect on extracted phosphatase, but did mimic the effect of Ca2+ on the other two enzymes with effective concentration ranges similar to those of Sr2+; as with Ca2+ and Sr2+, effective Ba2+ ranges were slightly (2-3-fold) raised by increases in ATP/ADP. In intact uncoupled rat heart mitochondria, the effects of Sr2+ and Ba2+ on the pyruvate and 2-oxoglutarate dehydrogenases were essentially similar to their effects in extracts. In fully coupled rat heart or liver mitochondria, the effective concentration ranges of extramitochondrial Sr2+, leading to activation of the matrix enzymes, were always approximately tenfold higher than those for Ca2+ under all conditions. Ba2+ did not affect pyruvate dehydrogenase in coupled mitochondria, but was shown to activate 2-oxoglutarate dehydrogenase in heart or liver mitochondria, and also isocitrate dehydrogenase (NAD+) in the latter; effective concentration ranges for extramitochondrial Ba2+ were approximately 100-fold greater than those for Ca2+, and like those for Ca2+ and Sr2+, were affected markedly by Mg2+ and spermine (which inhibit and promote mitochondrial Ca2+ uptake, respectively) but, in contrast to Ca2+ and Sr2+, they were hardly affected at all by Na+ (which promotes mitochondrial Ca2+ egress). Ba2+ effects were also blocked by ruthenium red (an inhibitor of mitochondrial Ca2+ uptake), but not so effectively as its blockage of the effects of Sr2+ and Ca2+. Ba2+ and Sr2+ both mimicked the inhibitory effects of extramitochondrial Ca2+ on the Na+/Ca2+ exchanger, but only Sr2+ could mimic Ca2+ in exchanging for internal Ca2+ by this mechanism. Both Sr2+ and Ba2+ changed the fluorescent properties of fura-2 or indo-1 in a similar manner to Ca2+, but with higher kd values. In fura-2-loaded rat heart mitochondria, increases in matrix Sr2+ and Ba2+ and the effects of the transport effectors could be readily demonstrated.  相似文献   

14.
Spermine, a polyamine present in the mammalian cells at rather high concentration, has, among other actions, a remarkable stabilizing effect on mitochondria, functions which have generally been attributed to the capability of this and other polyamines to bind to membrane anionic sites. In the present paper evidence is provided that at physiological concentrations spermine may also be transported into rat liver mitochondrial matrix space, provided that mitochondria are energized and inorganic phosphate is simultaneously transported. The close dependence of spermine transport is also demonstrated by the concurrent efflux of spermine and inorganic phosphate when mitochondria preloaded with the two ionic species are deenergized either with uncouplers or respiratory chain inhibitors. Furthermore, Mersalyl, the known inhibitor of phosphate transport, prevents both spermine uptake and release. Mg2+ inhibits the transport of spermine conceivably by competing for the some binding sites on the mitochondrial membrane. The physiological significance of these results is discussed.  相似文献   

15.
The effects of Mg2+ on the activity of pyruvate dehydrogenase phosphate phosphatase within intact mitochondria prepared from control and insulin-treated rat epididymal adipose tissue was explored by incubating the mitochondria in medium containing the ionophore A23187. The apparent Ka for Mg2+ was approximately halved in the mitochondria derived from insulin-treated tissue in both the absence and the presence of Ca2+. In this system, the major effect of Ca2+ was also to decrease the apparent Ka for Mg2+, rather than to change the Vmax. of the phosphatase. Damuni, Humphreys & Reed [(1984) Biochem. Biophys. Res. Commun. 124, 95-99] have reported that spermine activates ox kidney pyruvate dehydrogenase phosphate phosphatase. Studies were carried out on phosphatase from pig heart and rat epididymal adipose tissue which confirm and extend this observation. The major effect of spermine is shown to be a decrease in the Ka for Mg2+, which is apparent in both the presence and the absence of Ca2+. Spermine did not affect the sensitivity of the phosphatase to Ca2+ at saturating concentrations of Mg2+. Other polyamines tested were not as effective as spermine. No alteration in the maximum activity or Mg2+-sensitivity of pyruvate dehydrogenase phosphate phosphatase was apparent in extracts of mitochondria from insulin-treated tissue. The close similarity of the effects of spermine and the changes in kinetic properties of pyruvate dehydrogenase phosphate phosphatase within mitochondria from insulin-treated adipose tissue suggests that insulin may activate pyruvate dehydrogenase by increasing the concentration of spermine within the mitochondria. However, it is concluded that insulin is more likely to alter the interaction of the pyruvate dehydrogenase system with some other polybasic intramitochondrial component whose action can be mimicked by spermine.  相似文献   

16.
Analysis of the initial rates of 45Ca2+ uptake by rat brain mitochondria in Ca2+-1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid buffers indicated that nontelencephalic mitochondria exhibited both a much less pronounced stimulatory effect of spermine and significantly more hyperbolic kinetics of Ca2+ uptake than telencephalic mitochondria. Nontelencephalic mitochondria were also markedly less susceptible to a Ca2+-induced hysteretic allosteric activation of the Ca2+ uniporter. A new Ca2+ loading procedure, which strikingly illustrates differences in mitochondrial Ca2+ buffering characteristics, is also described. In this procedure, low concentrations of Ca2+ (1, 2, or 5 microM) were repetitively added to mitochondria every 30 s while changes in free Ca2+ concentration were recorded. Spermine induced a marked attenuation of the rise in free Ca2+ level under these conditions. Steady-state rates of Ca2+ uptake were determined by a quantitative analysis of the buffering of repetitive Ca2+ additions, and, again, brain regional differences were qualitatively similar to those observed in the initial rate kinetics; Ca2+ uptake by nontelencephalic mitochondria in the steady state was markedly less responsive to stimulation by spermine and appeared to have a more hyperbolic dependence on Ca2+ in the absence of spermine. These results also suggest that there is a lag time in the activation of the uniporter by Ca2+, in addition to the hysteresis that has previously been observed in the deactivation of the uniporter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Adrenal cortex mitochondria prepared by a standard method do not exhibit malic enzyme activity. Addition of physiological concentrations of Ca2+ and Mg2+ enables these mitochondria to reduce added NADP+ by malate to form free NADPH. Half-maximum activation of the mitochondrial malic enzyme requires 0.3 mM Ca2+ and 1 mM Mg2+. Solubilized mitochondrial malic enzymes is independent of Ca2+ and has a K M of 0.2 mM for Mg2+. The Ca2+ effect is dependent on an initial period of active Ca2+ uptake which also causes other changes in respiratory properties similar to those observed with mitochondria from other tissues. After Ca2+ accumulation has taken place, free Ca2+, but not additional accumulation, is still required for malic enzyme activity. The requirement for Mg2+ can be met by Mn2+ (1 mM). This concentration of Mn2+ alone yielded only a slight activation of mitochondrial malic enzyme while higher concentrations of Mn2+ alone gave good activation of the mitochondrial malic enzy.e The NADPH generated by the Ca2+-Mg2+ activated malic enzyme effectively supports the 11beta-hydroxylation of deoxycorticosterone, whereas in the presence of malate, or malate plus Mg2+ but absence of Ca2+, the energy linked transhydrogenase supplies all the required NADPH. The activated malic enzyme appears to be more efficient than transhydrogenase in generating NADPH to support 11beta-hydroxylation. Cyanide and azide have been found to inhibit solubilized mitochondrial malic enzyme.  相似文献   

18.
Calcium uptake in rat liver mitochondria is accelerated by spermine. At a concentration of 2 microM Ca2+ and 1 mM Mg2+ a maximal, 10-fold activation by 1.2 mM spermidine was obtained; a half-maximal activation was attained with 0.2 mM spermine. Spermidine was far less effective than spermine whereas putrescine was ineffective. The acceleration of Ca uptake at low, physiological Ca2+ concentrations is related to the altered kinetics of the Ca uniporter. Corresponding to the alteration by high Ca2+ concentrations previously described, the kinetics changed from sigmoidal in the absence to nearly hyperbolic in the presence of spermine. Mg2+ behaves as an allosteric inhibitor. This phenomenon of the allosteric activation of Ca uptake could not be observed in heart mitochondria.  相似文献   

19.
Specific effects of spermine on Na+,K+-adenosine triphosphatase   总被引:2,自引:0,他引:2  
Specific effects of spermine on Na+,K+-ATPase were observed using an enzyme partially purified from rabbit kidney microsomes by extraction with deoxycholate. 1. Spermine competed with K+ for K+-dependent, ouabain-sensitive nitrophenylphosphatase. The K1 for spermine was 0.075 mm in the presence of 1 mM Mg2+ and 5 mM p-nitrophenylphosphate at pH 7.5. 2. spermine activated Na+,K+-ATPase over limited concentration ranges of K+ and Na+ in the presence of 0.05 mM ATP. The spermine concentration required for half maximal activation was 0.055 mM in the presence of 1 mM K+, 10 mM Na+, 1 mM Mg2+, and 0.05 mM ATP. 3. The activation of Na+,K4-ATPase was not due to substitution of spermine for K+, Na+, or Mg2+. 4. When the concentration of K+ or Na+ was extremely low, or in excess, spermine did not activate Na+,K+-ATPase, but inhibited it slightly. 5. Plots of 1/v vs. 1/[ATP] at various concentrations of spermine showed that spermine decreased the Km for ATP without changing the Vmax. 6. Plots of 1/v vs. 1/[ATP] at concentrations of K+ from 0.05 mM to 0.5 mM showed that K+ increased the Km for ATP with increase in the Vmax in the presence of 0.2 mM spermine similarly to that in the absence of spermine. The contradictory effects of spermine on this enzyme system suggest that the K+-dependent monophosphatase activity does not reflect the second half (the dephosphorylation step) of the Na+,K+-ATPase catalytic cycle.  相似文献   

20.
Rat epididymal-adipose-tissue mitochondria were made selectively permeable to small molecules without the loss of matrix enzymes by treating the mitochondria with toluene under controlled conditions. With this preparation the entire pyruvate dehydrogenase system was shown to be retained within the mitochondrial matrix and to retain its normal catalytic activity. By using dilute suspensions of these permeabilized mitochondria maintained in the cuvette of a spectrophotometer, it was possible to monitor changes of pyruvate dehydrogenase activity continuously while the activities of the interconverting kinase and phosphatase could be independently manipulated. Permeabilized mitochondria were prepared from control and insulin-treated adipose tissue, and the properties of both the pyruvate dehydrogenase kinase and the phosphatase were compared in situ. No difference in kinase activity was detected, but increases in phosphatase activity were observed in permeabilized mitochondria from insulin-treated tissue. Further studies showed that the main effect of insulin treatment was a decrease in the apparent Ka of the phosphatase for Mg2+, in agreement with earlier studies with mitochondria made permeable to Mg2+ by using the ionophore A23187 [Thomas, Diggle & Denton (1986) Biochem. J. 238, 83-91]. No effects of spermine were detected, although spermine diminishes the Ka of purified phosphatase preparations for Mg2+. Since effects of insulin on pyruvate dehydrogenase phosphatase activity are not evident in mitochondrial extracts, it is concluded that insulin may act by altering some high-Mr component which interacts with the pyruvate dehydrogenase system within intact or permeabilized mitochondria, but not when the mitochondrial membranes are disrupted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号