首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Obrist  Daniel  Yakir  Dan  Arnone III  John A. 《Plant and Soil》2004,267(1-2):1-12
Infection of tall fescue (Festuca arundinacea Schreb.) with its endemicNeotyphodium coenophialum-endophyte (Morgan-Jones and Gams) Glenn, Bacon and Hanlin appears to reduce copper (Cu) concentrations in forage and serum of grazing animals, contributing to a range of immune-related disorders. A greenhouse experiment was conducted to identify effects of novel endophyte strains on Cu acquisition by tall fescue (Festuca arundinacea Schreb.) varieties Grasslands Flecha and Jesup infected with a novel, non ergot producing endophyte strain AR542, and two perennial ryegrass (Lolium perenne L.) varieties Aries and Quartet infected with a novel, non lolitrem B producing strain AR1, and their noninfected (E−) forms. Individual endophyte/grass associations were cultivated in nutrient solutions at 1.0 (P+) and 0.0 mM (P−) phosphorus concentrations. The Cu2+-binding activity of extracellular root exudates, and concentrations of Cu and other heavy metals in roots and shoots were measured. Extracellular root exudates of AR542-infected vs. E− tall fescue had higher Cu2+-binding activity only in P− nutrient solution as shown by lower concentration of free Cu2+ (0.096 vs. 0.188 mmol Cu2+ g−1 root DM, respectively). The Cu2+-binding activity by root exudates of perennial ryegrass was not affected by endophyte infection, but was higher (i.e., lower concentration of free Cu2+) in P− vs. P+ nutrient solution (0.068 vs. 0.114 mmol Cu2+ g−1 root DM). In this hydroponic experiment, Cu concentrations in shoots of both grasses were not a function of Cu2+-binding activity and endophyte effects on heavy metal concentrations in shoots and roots were specific for each variety. The Cu2+-binding activity of extracellular root exudates may affect Cu accumulation by field-grown, endophyte-infected tall fescue under P-limiting growth conditions and warrants verification by more specific methods.  相似文献   

2.
Conditional stability constants (log K), and binding site densities (Γmax) for dissolved metals and biota are important input parameters for the Biotic Ligand Model. However, determination of these binding parameters is likely to be influenced by solution kinetics because roots have a large metal-binding capacity and can accumulate metals rapidly. The aim of this study was to determine if the rate of free metal ion diffusion to the root surface, and amount of metal in the bulk solution, is sufficient to accommodate the maximum root–metal accumulation capacity. The extent to which these kinetic limitations affect the magnitude of log K and Γmax values was also assessed. Seven day old hydroponically grown durum wheat (Triticum turgidum L. var durum, cv ‘Arcola’) were exposed to solutions with p{Cu2+}s ranging from 10.54 to 2.26 (~20 °C, pH = 6.0, ionic strength = 0.03 M). Exposure solutions were prepared with and without the metal buffer nitrilotriacetic acid (NTA) so that the total amount of metal in the exposure solution, and net flux of metal to the root, could be varied. The results demonstrate that NTA enhances Cu accumulation at exposure p{Cu2+}s between 10 and 6. Comparison of the diffusive flux to the root with the metal flux into the root, for (−NTA) and (+NTA) Cu exposures, showed that the flux of the un-buffered free metal ion to the root was not large enough to accommodate the maximum Cu binding capacity between 10 and 6 p{Cu2+} in solution. The total amount of Cu in solution may have limited uptake for exposure p{Cu2+}s of 10.01 and 9.01, but the background concentrations of Cu in the control plants prevented definitive conclusions from being made within this exposure range. Similar results were found for Mn and Ni. For Cd, which had lower background concentrations in the roots, the amount of metal in solution did not limit uptake until a p{Cd2+} of 10.01. Limiting the supply of Cu2+ to the root (i.e. low {Cu2+}s with no NTA) caused only a moderate bias in Γmax values, but suppressed the log K value by 3.44 log units. The log K values for Cd, Mn and Ni, in the absence of NTA, were more similar than expected, which suggests that the kinetics of free ion re-supply to the root surface limited metal uptake, as it did for Cu. Section Editor: T. B. Kinraide  相似文献   

3.
Summary Excised roots of rice (Oryzae sativa L.) cv IR26 absorbed both Zn2+ and Cu2+ from 0.01 mM to 0.50 mM external solutions at rates twice those of cv M101 over a 30-min period. However, the latter have a two-fold greater affinity (1/Km) for Zn2+ and Cu2+ than do those of the former. Zinc2+ and Cu2+ mutually and competitively inhibited uptake of each other, indicating that both micronutrient cations are absorbed through the same uptake mechanism or carrier sites. Further, these differences in uptake rates are restricted to roots but they cannot be explained by variations in root surface areas. Excised roots of tomato (Lycopersicon esculentum L.) cv Kewalo absorbed Zn2+ and Cu2+ much more rapidly than did cv Sel 7625-2. Uptake of each cation was competitively and reciprocally inhibited by the other, so Zn2+ and Cu2+ are seemingly accumulated through the same uptake system in tomato also. Tomato cultivars Kewalo and Sel 7625-2 did not differ with regard to affinities of the root apices for Zn2+ and Cu2+; however. Vmax values for Zn2+ and Cu2+ uptake by roots of cv Kewalo were three-fold greater than those for cv Sel 7625-2. Journal Series 2991 of the Hawaii Institute of Tropical Agriculture and Human Resources. Supported by USDA/CSRS Grants Program in Tropical and Subtropical Agriculture (83-CSRS-2-2245).  相似文献   

4.
Effect of Cu Toxicity on Growth of Cowpea (Vigna unguiculata)   总被引:1,自引:0,他引:1  
Accurate determination of the rhizotoxicity of Cu in dilute nutrient solutions is hindered by the difficulty of maintaining constant, pre-determined concentrations of Cu (micromolar) in solution. The critical Cu2+ activity associated with a reduction in the growth of solution-grown cowpea (Vigna unguiculata (L.) Walp. cv. Caloona) was determined in a system in which Cu was maintained constant through the use of a cation exchange resin. The growth of roots and shoots was found to be reduced at solution Cu2+ activities ≥1.7 μM (corresponding to 90% maximum growth). Although root growth was most likely reduced due to a direct Cu2+ toxicity, it is considered that the shoot growth reduction is attributable to a decrease in tissue concentrations of K, Ca, Mg, and Fe and the formation of interveinal chlorosis. At high Cu2+ activities, roots were brown in color, short and thick, had bent root tips with cracking of the epidermis and outer cortex, and had local swellings behind the roots tips due to a reduction in cell elongation. Root hair growth was reduced at concentrations lower than that which caused a significant reduction in overall root fresh weight.  相似文献   

5.
Changes in phenolics (PhC - phenolic compounds) measured as UV-absorbing compounds (UVAC) and their localization as well as growth, lipid peroxidation (TBARS level) and proline (Pro) level in three-day-old roots of seedlings (To stage) obtained from hydroprimed (H) and hydroprimed with melatonin (H-MEL) seeds after 2 days of chilling (5 °C) and 2 days of re-warming were examined. H and H-MEL resulted in inhibition of root growth under optimal conditions, but after re-warming, a positive effect of MEL was noted. The results also showed a positive MEL impact on TBARS level already after chilling and especially after re-warming. Exposure of Vigna radiata seedlings to chilling caused a significant increase in Pro level, especially in H-MEL roots, but after re-warming it drastically decreased. Under chilling stress, accumulation of UVAC also decreased. However, after re-warming it returned to the level observed in the roots grown constantly at 25 °C. Even if after re-warming of V. radiata seedlings only slight accumulation of total PhC was observed, phenolic deposits accumulating in the vacuoles of H-MEL roots were completely different from those in the vacuoles of the control and H roots. H-MEL application to the seeds resulted in a significant increase in small granular composite materials, while in the control and H roots, large oval deposits prevailed. Taken together, it is probable that all of these differences were connected with positive effects of MEL on chilled V. radiata seedlings after re-warming.  相似文献   

6.
Wheat (Triticum aestivum L.) cultivars GK Tiszatáj, Yubileinaya, GK Öthalom and a landrace Kobomugi were grown for 18 d in hydroponic cultures containing 0 (control), 0.1, 1.0 or 10.0 µM Cu2+. On a dry mass basis, cvs. Tiszatáj and Kobomugi accumulated slightly more Cu2+ in the root tissues than did cvs. Yubileinaya and Öthalom, but their controls also contained higher amounts of Cu2+. As a result of perturbation in the plasma membrane functions the K+ content of roots was reduced at 10 µM Cu2+ in all cultivars, whereas the K+/Na+ ratio decreased significantly only in the roots of cv. Öthalom. In the sensitive cultivar, Öthalom, the dry mass of the roots decreased while the cysteine content, which is a limiting factor for glutathione synthesis, did not satisfactorily increase with increasing tissue Cu2+ content. This suggests that in cv. Öthalom the membrane damage of the root cells at 10 µM Cu2+ concentration may affect the sulphur availability or metabolism. Concentrations of glutathione and hydroxymethyl-glutathione, a tripeptide which may play a similar biochemical role to glutathione, were also lower in the sensitive cultivar. In the absence of glutathione the root tissues failed to cope with the oxidative stress caused by the excessive amount of Cu2+. A significant accumulation of iron in the roots of the sensitive cultivar at 10 µM Cu2+ supply enhanced the oxidative damage.  相似文献   

7.
Accumulation of some proteins isolated from the cell wall of roots of the Al-sensitive (Alfor) and the Al-resistant (Bavaria) barley cultivars were followed during treatment with different Al3+ concentrations, pH changes of the root medium, and several heavy metals (Cu2+, Cd2+, Co2+). SDS-PAGE analysis revealed an Al-induced accumulation of polypeptides with molecular mass of 14, and 16 kDa and a group of polypeptides around 27 kDa. The accumulation pattern of Al-induced polypeptides was very similar in both cultivars but in the Al-resistant Bavaria it was induced at lower Al concentration and earlier than it was in the Al-sensitive cultivar Alfor. Changes in pH values of root medium (pH 3.5–6.5) did not show any effect on the accumulation of Al-induced cell wall polypeptides either in Al-sensitive or in Al-tolerant barley cultivar. Heavy metals (Cu, Cd, and Co) at concentration of 10 μM resulted in similar accumulation of individual polypeptides as we found after Al treatment. In comparison to Al, quantitative differences in polypeptides accumulation induced by Cu, Cd and Co were less expressed that of Al treatment. More pronounced accumulation and earlier induction of individual cell wall polypeptides in roots of Al-resistant barley cultivar than in Al-sensitive, might indicate some possible role of these polypeptides in plant resistance to Al stress.  相似文献   

8.
He J  Qin J  Long L  Ma Y  Li H  Li K  Jiang X  Liu T  Polle A  Liang Z  Luo ZB 《Physiologia plantarum》2011,143(1):50-63
To characterize the dynamics of Cd2+ flux in the rhizosphere and to study cadmium (Cd) plant‐internal partitioning in roots, wood, bark and leaves in relation to energy metabolism, reactive oxygen species (ROS) formation and antioxidants, Populus × canescens plantlets were exposed to either 0 or 50 µM CdSO4 for up to 20 days in the nutrient solution. A strong net Cd2+ influx in root apex was observed after Cd exposure for 24 h, even if net Cd2+ influx decreased gradually in roots. A large amount of Cd was accumulated in roots. Cd ions were uploaded via the xylem to leaves and further transported to the phloem where significant accumulation was detected. Cd accumulation led to decreased photosynthetic carbon assimilation but not to the depletion in soluble carbohydrates. Increased levels of ROS were present in all tissues, except the bark of Cd‐exposed poplars. To combat Cd‐induced superoxide and hydrogen peroxide, P.×canescens appeared to rely mainly on the formation of soluble phenolics as these compounds showed the highest accumulation in the bark and the lowest in wood. Other potential radical scavengers such as proline, sugar alcohols and antioxidant enzymes showed tissue‐ and exposure time‐specific responses to Cd. These results indicate a complex pattern of internal Cd allocation in P.×canescens resulting in higher ROS stress in wood than in bark and intermediate responses in roots and leaves, probably because of differential capacities of these tissues for the production of protective phenolic compounds.  相似文献   

9.
In the present study, the effect of copper (Cu2+) and lead (Pb2+) ions on the growth and lipid composition of various parts of the fern, Matteuccia sthruthiopteris, was examined. Plants were incubated in the presence or absence of 1, 10, 100 μM of Cu(NO3)2 or Pb(NO3)2. Cu2+ and Pb2+ ions at concentrations of 1 and 10 μM caused an increased growth of the roots and leaves. A higher concentration of Pb2+ did not show any effect on growth, whereas that of Cu2+ slowed down the growth of the whole plants. The roots accumulated more than 700 μg of Cu2+ and 400 μg of Pb2+ per 1 g dry weight when the plants were incubated with the higher concentrations of metals, whereas in the leaves the concentration of Cu2+ was much lower and did not exceed 12 μg/g dry weight. No accumulation of Pb2+ ions by leaves was detected. The lipid composition of photosynthetic leave tissues was shown to be affected by the presence of metal ions in the root medium at either concentration studied. Various changes in lipid classes were noted as responsive reactions of M. sthruthiopteris to the heavy metal ions in nutrient medium. Cu2+ ions decreased the content of total lipids, total phospholipids, and individual phosphatidylcholines and phosphatidylethanolamines, whereas Pb2+ ions caused a decrease in the content of total lipids and glycolipids. Changes in the lipid composition were more pronounced in the mature leaves than in the scrolls of the studied fern.  相似文献   

10.
Accumulation of reactive oxygen species in arbuscular mycorrhizal roots   总被引:1,自引:0,他引:1  
Fester T  Hause G 《Mycorrhiza》2005,15(5):373-379
We investigated the accumulation of reactive oxygen species (ROS) in arbuscular mycorrhizal (AM) roots from Medicago truncatula, Zea mays and Nicotiana tabacum using three independent staining techniques. Colonized root cortical cells and the symbiotic fungal partner were observed to be involved in the production of ROS. Extraradical hyphae and spores from Glomus intraradices accumulated small levels of ROS within their cell wall and produced ROS within the cytoplasm in response to stress. Within AM roots, we observed a certain correlation of arbuscular senescence and H2O2 accumulation after staining by diaminobenzidine (DAB) and a more general accumulation of ROS close to fungal structures when using dihydrorhodamine 123 (DHR 123) for staining. According to electron microscopical analysis of AM roots from Z. mays after staining by CeCl3, intracellular accumulation of H2O2 was observed in the plant cytoplasm close to intact and collapsing fungal structures, whereas intercellular H2O2 was located on the surface of fungal hyphae. These characteristics of ROS accumulation in AM roots suggest similarities to ROS accumulation during the senescence of legume root nodules.  相似文献   

11.
《Phytochemistry》1996,41(1):105-109
In the early growth phase of Sesamum indicum cv. PB-1, the decrease in fresh and dry mass was higher with 1.0 mM Cd2+ than with the same level of Pb2+ and Cu2+. Recovery from the metal stress was considerable in the root fresh weight and almost completely in the root dry weight when 10.0 mM (1.9 EC), calcium chloride was supplied to the growing seedlings along with the metal salts in various combinations. Accumulation of Pb2+, Cd2+ and Cu2+ was differential to the metals and the plant parts when supplied without or with 10.0 mM calcium chloride. The order of endogenous metal accumulation was Cu2+Cd2+Pb2+ and roots accumulated more metal than the leaves in the absence, as well as in the presence, of calcium chloride. Calcium chloride could recover loss of in vivo NRA in roots caused by either of the metal combinations, whereas the salt could recover the loss in leaf NRA caused only by Pb2+Cd2+ (1.0 mM each). Response of root and leaf NRA was on the other hand, different when the enzyme was assayed directly using an in vitro assay method, and the salt accelerated the loss in enzyme activity drastically. The organic-N content of root and leaf was, however, increased significantly (p < 0.001) with calcium chloride alone and with the metals supplied in various combinations. Our data indicate that instead of a high endogenous accumulation of Cu2+, Cd2+ and Pb2+ in roots and leaves the metal toxicity is recovered to a great extent in the presence of 10.0 mM calcium chloride in the root environment regarding growth and nitrate reduction of the roots and leaves of young sesame seedlings.  相似文献   

12.
The mechanisms enabling plants to tolerate high concentrations of available Cu in their rhizosphere are still poorly understood. To better understand the mechanisms involved, Lupinus albus L. (white lupin) was grown over 40 days in a hydroponic system compelling roots to develop under sterile conditions in the presence of a nutrient solution containing 0.5, 20 or 62 M Cu. The following parameters were investigated in detail: low molecular weight phenols in nutrient solution (colorimetric assay), high molecular weight phenols in roots and in solution (HPLC-MS, HPLC-UV), pH, redox potential in solution (electrochemistry) and Cu distribution in the plant (AAS) as well as in apical root sections (EDX microanalysis). Finally, in vitro adsorption studies using voltammetry were conducted to evaluate the Cu adsorption behaviour of different phenolic compounds. When exposed to 62 M Cu, biomass production of white lupin was strongly reduced. Plants grown in the presence of 20 M Cu had a similar dry matter production compared to the control plants grown in a 0.5 M Cu solution. However, an increased release of soluble and high molecular weight phenols into the solution was observed. The concentration of polyphenolic compounds in the roots (particularly isoflavonoids like genistein and genistein-(malonyl)-glucoside) was significantly higher for lupins grown in a 20 M Cu solution compared to the control plants. As shown by an in vitro adsorption study, these phenolic compounds can bind Cu ions. In addition, plants exposed to 20 and 62 M Cu cumulated high Cu amounts in root cell walls whereas only low amounts reached the symplasm. Therefore, it is proposed that the complexation of Cu2+ ions in the rhizosphere and in the roots apoplasm by phenolic compounds could alleviate Cu-mediated toxicity.  相似文献   

13.
The cadmium (Cd2+) and lead (Pb2+)-induced changes in Cu,Zn-SOD gene expression on the level of mRNA accumulation and enzyme activity were analyzed in roots of soybean (Glycine max) seedlings. The Cd2+ caused the induction of copper–zinc superoxide dismutase (Cu,Zn-SOD) mRNA accumulation, at each analyzed metal concentration (5–25 mg/l), whereas in Pb2+-treated roots this effect was observed only at the medium metal concentrations (50–100 mg/l of Pb2+). The analysis of Cu,Zn-SOD activity proved an increase in enzyme activity during Cd2+/Pb2+ stresses, however in Pb2+-treated plants the activity of enzyme was not correlated with respective mRNAs level. Presented data suggest that different metals may act on various level of Cu,Zn-SOD expression in plants exposed to heavy metals stress.  相似文献   

14.
Eichhornia crassipes (Mart.) has strong ability to remove Cu2+ from copper-contaminated water. Physiological responses in E. crassipes exposed to known concentrations of Cu2+ were examined in this study, and demonstrated that E. crassipes could accumulate 314 mg kg−1 dry weight of Cu when exposed to 5 mg l−1 of Cu2+ for periods up to 14 d. However, there were marked changes in physiology of the plant commencing at Cu2+ concentrations of 1 mg l−1. Results of this study showed that E. crassipes could tolerate moderate concentrations (i.e. 0.5 mg l−1) of Cu2+, without significant changes in photosynthetic pigment concentrations, while high concentrations (i.e. 5 and 10 mg l−1) of Cu2+ resulted in substantial loss in pigment concentrations. Increases in malondiadehyde (MDA) content were also demonstrated in plant exposure to high Cu2+ concentrations. Soluble protein content increased to a level slightly higher than the control at <0.5 mg l−1 of Cu2+, but then decreased with exposure to >1 mg l−1 of Cu2+. Our results suggest that E. crassipes has a substantial capacity to accumulate copper when cultivated at moderate concentrations of Cu2+, without marked changes in its physiology. The findings indicate that E. crassipes is a promising possibility for phytoremediation of moderately Cu-contaminated water bodies. Handling editor: S. M. Thomaz  相似文献   

15.
Enhanced cadmium accumulation in maize roots—the impact of organic acids   总被引:4,自引:0,他引:4  
Low molecular weight organic acids are important components of root exudates and therefore, knowledge regarding the mechanisms of cadmium (Cd) uptake and distribution within plants under the influence of organic acids, is necessary for a better understanding of Cd behavior in the plant–soil system. In this study, acetic and malic acids increased the uptake of Cd by maize (Zea mays L. cv. TY2) roots and enhanced Cd accumulation in shoots under hydroponic conditions. Concentration-dependent net Cd influx in the presence and absence of organic acids could be resolved into linear and saturable components. The saturable component followed Michaelis–Menten kinetics, which indicated that Cd uptake across the plasma membrane was transporter-mediated. While the K m values were similar, the V max values in the presence of acetic and malic acids were respectively 6.0 and 3.0 times that of the control. Zinc transporters were the most probable pathways for Cd accumulation. It was hypothesized that Cd(II)–organic acid complexes associated with the root zone, could decompose and liberate Cd2+ for subsequent absorption by maize roots; and that in the layer of the roots or within the root free space, depletion of Cd2+ was buffered by the presence of Cd(II)–organic acid complexes. Plant response to elevated Cd levels involved overproduction of organic acids in maize roots as a resistance mechanism to alleviate Cd toxicity.  相似文献   

16.
Seedlings of two Indica rice (Oryza sativa L.) cvs. HUR-105 and Vandana, differing in Al-tolerance were used to identify the key mechanisms involved in their differential behaviour towards Al toxicity. Cv. HUR-105 appeared to be Al sensitive by showing significant reduction (p ≤ 0.01) in root/shoot length, fresh weight, dry weight and water content in presence of 421 μM Al3+ in growth medium whereas cv. Vandana appeared to be fairly Al3+ tolerant. A conspicuous and significant reduction in dry weight of root and shoot was observed in Al sensitive cv. HUR-105 with 178 μM Al3+ treatment for 3 days. Al was readily taken up by the roots and transported to shoots in both the rice cultivars. Localization of absorbed Al was always greater in roots than in shoots. Our results of the production of reactive oxygen species (ROS) H2O2 and O2 .? and activities of major antioxidant enzymes such as total superoxide dismutase (SOD), Cu/Zn SOD, Mn SOD, Fe SOD, catalase (CAT) and guaiacol peroxidase revealed Al induced higher oxidative stress, greater production of ROS and lesser capacity to scavenge ROS in cv. HUR-105 than Vandana. With Al treatment, higher oxidative stress was noted in shoots than in roots. Greatly enhanced activities of SOD (especially Fe and Mn SOD) and CAT in Al treated seedlings of cv. Vandana suggest the role of these enzymes in Al tolerance. Furthermore, a marked presence of Fe SOD in roots and shoots of the seedlings of Al tolerant cv. Vandana and its significant (p ≤ 0.01) increase in activity due to Al-treatment, appears to be the unique feature of this cultivar and indicates a vital role of Fe SOD in Al-tolerance in rice.  相似文献   

17.
Liao  M. T.  Hedley  M. J.  Woolley  D. J.  Brooks  R. R.  Nichols  M. A. 《Plant and Soil》2000,221(2):135-142
The uptake and distribution of copper was examined in chicory (Cichorium intybus L. cv. Grasslands Puna) and tomato (Lycopersicon esculentumMill. cv. Rondy) plants grown in a Nutrient Film Technique System (NFT) with addition of 0.05, 5, 10 and 20 mg Cu L-1. Biomass production of shoots and roots of both chicory and tomato was strongly depressed by Cu concentrations higher than 5 mg Cu L-1 in the rooting media. Although Cu concentrations in both shoots and roots of both species increased with increasing Cu concentrations in the rooting media, the increase in roots was very much greater than that in shoots, in which the range of concentrations was small. A large proportion of total Cu uptake was retained by roots except when plants were grown in solution Cu concentrations of 0.05 mg Cu L-1. Copper retention by roots limited Cu translocation to xylem and shoots. Copper adsorption by the root appears to buffer against increases of Cu in the rooting media. A cupric-sensitive electrode used in conjunction with total Cu analysis by graphite furnace atomic absorption spectrophotometry (GFAAS) indicated that more than 99.6% of total Cu in xylem sap was in a complexed form. Large differences between measured and predicted Cu accumulation by shoots of tomato (0.134–0.243 mg Cu plant-1, 0.660–4.274 mg Cu plant-1, respectively) and chicory (0.095–0.203 mg Cu plant-1, 0.626–1.620 mg Cu plant-1, respectively) suggest that some xylem transported Cu is recirculated to roots via the phloem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Possible roles of cell wall and cytoplasmic peptides in the tolerance of cells to Cu2+ and Cd2+ ions were studied in suspension-cultured cells of tomato (Lycopersicon esculentum L. cv. Palace). Cu2+ and Cd2+ ions inhibited growth of wild type cells at concentrations more than 100 and 200 μM, respectively. Tomato cells readily developed tolerance to Cd2+ ions up to 1 mM but not to Cu2+ ions, after repeated subculturings in the presence of the respective ions. Such a metal-specific adaptation of cells was not due to the difference in the total uptakes between Cd2+ and Cu2+ ions by cells. Wild-type cells accumulated Cd2+ preferentially into the cytoplasmic peptide fraction and Cu2+ into the cell-wall fraction, when grown under the subtoxic metal conditions. Under excess metal conditions, Cd-tolerant cells produced greater amounts of Cd-binding peptides in the cytoplasm and retained lesser amounts of Cd2+ ions in the cell wall than did wild-type cells. In contrast, tomato cells grown in the presence of Cu2+ ions synthesized no detectable amounts of Cu-binding peptides in the cytoplasm and retained most of the Cu2+ in the cell-wall fraction, irrespective of cell lines. These results suggested that the cytoplasmic peptides rather than cell wall properties have a primary role in the response of tomato cells to excess metal environments.  相似文献   

19.
Phytochelatins (PCs) are metal binding peptides involved in heavy metal detoxification. To assess whether enhanced phytochelatin synthesis would increase heavy metal tolerance and accumulation in plants, we overexpressed the Arabidopsis phytochelatin synthase gene (AtPCS1) in the non-accumulator plant Nicotiana tabacum. Wild-type plants and plants harbouring the Agrobacterium rhizogenes rolB oncogene were transformed with a 35S AtPCS1 construct. Root cultures from rolB plants could be easily established and we demonstrated here that they represent a reliable system to study heavy metal tolerance. Cd2+ tolerance in cultured rolB roots was increased as a result of overexpression of AtPCS1, and further enhanced when reduced glutathione (GSH, the substrate of PCS1) was added to the culture medium. Accordingly, HPLC analysis showed that total PC production in PCS1-overexpressing rolB roots was higher than in rolB roots in the presence of GSH. Overexpression of AtPCS1 in whole seedlings led to a twofold increase in Cd2+ accumulation in the roots and shoots of both rolB and wild-type seedlings. Similarly, a significant increase in Cd2+ accumulation linked to a higher production of PCs in both roots and shoots was observed in adult plants. However, the percentage of Cd2+ translocated to the shoots of seedlings and adult overexpressing plants was unaffected. We conclude that the increase in Cd2+ tolerance and accumulation of PCS1 overexpressing plants is directly related to the availability of GSH, while overexpression of phytochelatin synthase does not enhance long distance root-to-shoot Cd2+ transport.  相似文献   

20.
以柠檬香蜂草(Melissa officinalis)幼苗为材料,设置不同浓度Cu~(2+)胁迫(CK、200、400、800和1 000mg·kg~(-1))盆栽实验,测定胁迫0、7、14、21、28d后植物生物量、叶绿素含量、抗氧化酶活性、可溶性蛋白含量、丙二醛(MDA)含量以及植物体内Cu含量等指标,探讨柠檬香蜂草对Cu~(2+)的耐受性及其积累特征。结果表明:(1)相同处理时间下,柠檬香蜂草除MDA含量外其他所有指标均随着Cu~(2+)胁迫处理浓度的增加呈低浓度促进、高浓度抑制的变化趋势,且高浓度组(800和1 000mg·kg~(-1))与低浓度组(200和400mg·kg~(-1))之间差异显著(P0.05);MDA含量在1 000mg·kg~(-1)浓度下持续增长至第14天后开始下降。(2)柠檬香蜂草体内Cu的积累量随Cu胁迫浓度的升高呈先增加后减少的趋势,并在浓度为400mg·kg~(-1)时达到最高值(0.71mg/盆)。(3)在整个胁迫过程中,柠檬香蜂草植株的铜富集系数及其耐性系数均随Cu浓度的增加而减小,各处理浓度对Cu的耐性系数均大于0.5,富集系数均大于1。研究发现,柠檬香蜂草对Cu胁迫具有一定耐受性和富集能力,具有成为铜污染土壤修复植物的潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号