首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
2.
Three cobalt complexes containing the salen type ligand, bis(salicylidene)-meso-1,2-diphenylethylenediaminato (mdpSal2−), are reported. The complexes differ in nuclearity and include the mononuclear, Co(mdpSal) (1), which contains a Co(II) metal center bound to one mdpSal−2 ligand frame in a square planar geometry. The second complex is the dinuclear [Co(mdpSal)Cl]2 (2) in which both cobalt ions have been oxidized to the +3 oxidation state. The overall geometry of complex 2 is an edge-sharing bioctahedron with the coordination sphere around each cobalt metal center consisting of one mdpSal−2 ligand and one Cl ion. The shared edge between the Co(III) ions contains two bridging phenolate groups, one from each ligand frame. Complex 3 is a linear, mixed valence, trinuclear species, [Co(mdpSal)(OAc)(μ-OAc)]2Co, with the oxidation states of the metal centers assigned as Co(III)-Co(II)-Co(III). The terminal Co(III) centers are equivalent with the central Co(II) lying on the inversion center of the molecule. Each cobalt ion in 3 adopts an octahedral geometry with the terminal Co(III) ions being bound to one mdpSal2− ligand each. All phenolate groups bridge to the central Co(II). The coordination sphere about each metal center in the trinuclear complex is completed by four acetate groups, two of which bind in a μ-fashion bridging from the terminal Co(III) metal centers to the central Co(II). The complexes have been characterized by X-ray crystallography as well as UV-Vis and IR spectroscopy.  相似文献   

3.
The Schiff base ligand, oxalic bis[(2-hydroxybenzylidene)hydrazide], H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.  相似文献   

4.
D'souza VM  Bennett B  Copik AJ  Holz RC 《Biochemistry》2000,39(13):3817-3826
The metal-binding properties of the methionyl aminopeptidase from Escherichia coli (MetAP) were investigated. Measurements of catalytic activity as a function of added Co(II) and Fe(II) revealed that maximal enzymatic activity is observed after the addition of only 1 equiv of divalent metal ion. Based on these studies, metal binding constants for the first metal binding event were found to be 0.3 +/- 0.2 microM and 0.2 +/- 0.2 microM for Co(II)- and Fe(II)-substituted MetAP, respectively. Binding of excess metal ions (>50 equiv) resulted in the loss of approximately 50% of the catalytic activity. Electronic absorption spectral titration of a 1 mM sample of MetAP with Co(II) provided a binding constant of 2.5 +/- 0.5 mM for the second metal binding site. Furthermore, the electronic absorption spectra of Co(II)-loaded MetAP indicated that both metal ions reside in a pentacoordinate geometry. Consistent with the absorption data, electron paramagnetic resonance (EPR) spectra of [CoCo(MetAP)] also indicated that the Co(II) geometries are not highly constrained, suggesting that each Co(II) ion in MetAP resides in a pentacoordinate geometry. EPR studies on [CoCo(MetAP)] also revealed that at pH 7.5 there is no significant spin-coupling between the two Co(II) ions, though a small proportion ( approximately 5%) of the sample exhibited detectable spin-spin interactions at pH values > 9.6. EPR studies on [Fe(III)_(MetAP)] and [Fe(III)Fe(III)(MetAP)] also suggested no spin-coupling between the two metal ions. (1)H nuclear magnetic resonance (NMR) spectra of [Co(II)_(MetAP)] in both H(2)O and D(2)O buffer indicated that the first metal binding site contains the only active-site histidine residue, His171. Mechanistic implications of the observed binding properties of divalent metal ions to the MetAP from E. coli are discussed.  相似文献   

5.
The chief motive behind this research is the interest provoked by the presence of metal ions as necessary stabilizers of the negative charges of phosphate groups in nucleic acids. The effect that the presence of different metal ions produces on the band principally assigned to the nu(s) PO(3)(2-) mode has been studied using FT-IR and FT-Raman spectroscopy. The results obtained reveal the diagnostic capacity of these techniques in determining the type of metal ion interaction with respect to the mononucleotides that form DNA and RNA, providing a tool for improving the knowledge of the stabilizing or destabilizing effects of these ions on such macromolecules. The metal complexes of the ribonucleotides 5'-CMP and 5'-GMP with Mg(II), Ca(II), Sr(II), Ba(II), Cr(III), Co(II), Cu(II), Zn(II), Cd(II), Al(III) and Ga(III) were obtained in this study. After studying and analyzing the IR and Raman spectra of all these complexes and comparing them with the spectra of the corresponding disodium salts, it was verified that, independently of the type of nucleotide involved, the presence of the metal in the vicinity of the phosphate group produces an alteration in the aforementioned nu(s) PO(3)(2-) band. This effect is related to the type of interaction that the phosphate group has with the metal. Three components are observed: (1) one near 983-975 cm(-1) (detectable in IR and Raman), associated with phosphate groups in an electrostatic type of interaction with the metal ion, separated by two or more water molecules; (2) another near 989-985 cm(-1) (only in IR), associated with phosphate groups in indirect interaction through the water molecules of the coordination sphere of the metal ions; and (3) the IR and Raman bands near 1014-1001 cm(-1), which represent phosphate groups directly bonded to the metal ion. These results are supported by the behavior of 5'-CMP in aqueous solution in the presence of Mg(II) ions.  相似文献   

6.
Copper is an essential plant micronutrient playing key roles in cellular processes, among them photosynthesis. In Arabidopsis thaliana, copper delivery to chloroplasts, mainly studied by genetic approaches, is thought to involve two P(IB)-type ATPases: AtHMA1 and AtHMA6/PAA1. The lack of biochemical characterization of AtHMA1 and PAA1, and more generally of plant P(IB)-type ATPases, is due to the difficulty of getting high amounts of these membrane proteins in an active form, either from their native environment or after expression in heterologous systems. In this study, we report the first biochemical characterization of PAA1, a plant copper-transporting ATPase. PAA1 produced in Lactococcus lactis is active, forming an aspartyl phosphate intermediate in the presence of ATP and the adequate metal ion. PAA1 can also be phosphorylated using inorganic phosphate in the absence of transition metal. Both phosphorylation types allowed us to demonstrate that PAA1 is activated by monovalent copper ions (and to a lower extent by silver ions) with an apparent affinity in the micromolar range. In agreement with these biochemical data, we also demonstrate that when expressed in yeast, PAA1 induces increased sensitivities to copper and silver. These data provide the first enzymatic characterization of a P(IB-1)-type plant ATPase and clearly identify PAA1 as a high affinity Cu(I) transporter of the chloroplast envelope.  相似文献   

7.
We have studied the Cu(II), Co(II), and Fe(III) complexes of the antineoplastic drug bleomycin by using electron spin--echo envelope spectroscopy. For all three complexes, nitrogen coordination of the metal ions is demonstrated. For the Cu(II)-- and Co(II)--drug complexes, we have been able to identify imidazole as a metal ligand.  相似文献   

8.
Four ternary metal--ortho-iodohippurate (I-hip)--acyclovir (ACV) complexes, [M(I-hip)(2)(ACV)(H(2)O)(3)] where M is Co(II) (1), Ni(II) (2), Cu (3) and Zn(II) have been obtained by reaction between the corresponding binary complexes M(II)(I-hip)(2)xnH(2)O and ACV. Three ternary complexes (M=Co, Ni and Zn) and the corresponding Zn(II)--ortho-iodohippurate binary derivative have been structurally characterized by X-ray diffraction: The studies show these three ternary complexes are isostructural and present, in solid state, an interesting stacking between the nucleobase and the aryl ring of the hippurate moiety, which probably promotes the formation of ternary complexes. Moreover, the two different ligands interact between them by means of ancillary hydrogen bonds with water molecules coordinated to the metal ion. It must be mentioned that these two recognition factors, hydrogen bonds plus stacking, could explain the reason for the isostructurality of these ternary derivatives with so different three metal ions, with diverses trends in coordination numbers and geometries. In solid state, there are two enantiomeric molecules that are related by an inversion center as the crystal-building unit (as a translational motif) for the ternary complexes.  相似文献   

9.
Metal complexes of a sulfonamide possessing strong carbonic anhydrase (CA) inhibitory properties, 5-(2-chlorophenyl)-1, 3, 4-thiadiazole-2-sulfonamide (chlorazolamide) have been obtained from the sodium salt of the sulfonamide and the following metal ions: Mg(II), Zn(II), Mn(II), Cu(II), Co(II), Ni(II), Be(II), Cd(II), Pb(II), AI(III), Fe(III) and La(III). The original sulfonamide and its complexes were assayed for the in vitro inhibition of three CA isozymes, CA I, II, and IV, some of which play a critical role in ocular fluid secretion. All these compounds (the sulfonamide and its metal complexes) behaved as powerful inhibitors against the three investigated isozymes. The parent sulfonamide possessed an extremely weak topical pressure lowering effect when administered as a 1-2% suspension into the rabbit eye, but some of its metal complexes, such as the Mg(II), Zn(II), Mn(II) and Cu(II) derivatives, lower intraocular pressure (IOP) in experimental animals very well. Ex vivo data showed a 99.5-99.9% CA II inhibition in ocular fluids and tissues of rabbits treated with these agents, proving that the observed IOP lowering is due to CA inhibition. The influence of the different metal ions upon the efficiency of the obtained complexes as pressure lowering drugs are discussed, leading to the possibility of designing more selective; potent pharmacological agents from this class  相似文献   

10.
11.
Co(III)-ATP and Co(III)-ADP as well as the parent complexes containing phenanthroline as an additional ligand were found to inhibit ATPase activity competitively in coupling factor 1 from chloroplasts. The Ki values were at the micromolar range and were found to decrease with time of preincubation of the enzyme with the Co(III) complexes. Co(III)-phenanthroline-ATP was found to bind to the enzyme at two sites with dissociation constants of 1 and 3 μm. The labeling as well as the inhibition was completely reversed by dithiothrietol. In addition, the complexes caused a time-dependent release of enzyme-bound Mn(II) ions, thus labeling the metal binding site. The results were interpreted with regard to the mechanism of ATPase activity in coupling factor 1.  相似文献   

12.
Cobalt(III)bovine carbonic anhydrase B was prepared by the oxidation of the cobalt(II) enzyme with hydrogen peroxide and was purified by affinity chromatography. The oxidation reaction is inhibited by specific inhibitors of carbonic anhydrase. The inhibition is explained by the fact that the Co(II)-enzyme . inhibitor complex cannot be directly oxidized by hydrogen peroxide, but has to dissociate to give free Co(II) enzyme which is then oxidized. The Co(III) ion in Co(III) carbonic anhydrase cannot be directly substituted by zinc ions. It can be reduced by either dithionite or BH-4 ions to give, first, their complexes with the Co(II) enzyme, and upon their removal, a fully active Co(II) enzyme. Cyanide and azide bind to cobalt(III) carbonic anhydrase with similar rate constants of 0.060 +/- 0.005 and 0.070 +/- 0.007 M-1 S-1 respectively. These rates are faster than those found for Co(III) inorganic complexes. The Co(III) ion in both Co(III) carbonic anhydrase and Co(III) carboxypeptidase A was found to be diamagnetic, indicating a near octahedral symmetry.  相似文献   

13.
XANES spectroscopy has been used to investigate whether it is possible to determine the oxidation state and coordination environment of Co complexes following treatment of cancer cells with Co(III) or Co(II) complexes. Our results show that the variation of the XANES with coordination geometry make it impossible to do this in a completely reliable way which is in contrast to the situation for platinum and chromium. It was established that the XANES spectrum obtained from cells treated with [Co(diNOsar)]Br(3) remained unchanged with respect to its XANES spectrum obtained in solution, demonstrating that the [Co(diNOsar)]Br(3) complex remained intact after 24h in cellular media (diNOsar=1,8-dinitro-3,6,10,13,16,19-hexaazabicyclo[6.6.6]eicosane). In contrast, the XANES spectra obtained from cells treated with Na[Co(acac)(3)] and [Co(acac)(3)] differed from the XANES spectra of the respective complexes obtained in solution, indicating a change in co-ordination environment for both complexes upon uptake in cells. The similarity of these spectra suggests that appearance of this XANES can be used as an indication of loss of the carrier ligands, a useful indicator in the study of hypoxia selective complexes. The results obtained for Na[Co(acac)(3)] and [Co(acac)(3)] are consistent with the intracellular coordination of cobalt(III) to sulfur ligands upon cellular uptake.  相似文献   

14.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

15.
Pseudomonas aeruginosa synthesizes two siderophores, pyochelin and pyoverdin, characterized by widely different structures, physicochemical properties, and affinities for Fe(III). Titration experiments showed that pyochelin, which is endowed with a relatively low affinity for Fe(III), binds other transition metals, such as Cu(II), Co(II), Mo(VI), and Ni(II), with appreciable affinity. In line with these observations, Fe(III) and Co(II) at 10 microM or Mo(VI), Ni(II), and Cu(II) at 100 microM repressed pyochelin synthesis and reduced expression of iron-regulated outer membrane proteins of 75, 68, and 14 kDa. In contrast, pyoverdin synthesis and expression of the 80-kDa receptor protein were affected only by Fe(III). All of the metals tested, except Mo(VI), significantly promoted P. aeruginosa growth in metal-poor medium; Mo(VI), Ni(II), and Co(II) were more efficient as pyochelin complexes than the free metal ions and the siderophore. The observed correlation between the affinity of pyochelin for Fe(III), Co(II), and Mo(VI) and the functional effects of these metals indicates that pyochelin may play a role in their delivery to P. aeruginosa.  相似文献   

16.
Redox-active metal ions such as Fe(II)\(III) and Cu(I)\(II) have been proposed to activate reactive oxygen and nitrogen species (RONS) and thus, perpetuate oxidative damage. Here, we show that concentrations of metal ions and EDTA complexes with superoxide-destroying activities equivalent to 1 U SOD are Fe(III) 5.1 microM, Mn(II) 0.77 microM, Cu(II)-EDTA 3.55 microM, Fe(III)-EDTA 2.34 microM, and Mn(II)-EDTA 1.38 microM. The most active being the aquated Cu(II) species which exhibited superoxide-destroying activity equivalent to 2U of SOD at 0.29 microM. Hydrogen peroxide-destroying activities were as follows Fe(III)-EDTA ca. 70 U/mg and aquated Fe(III) 141 U/mg. In contrast, DTPA prevented superoxide-destroying activity and significantly depleted hydrogen peroxide-destroying activity. In conclusion, non-protein bound transition metal ions may have significant anti-oxidant effects in biological systems. Caution should be employed in bioassays when chelating metal ions. Our results demonstrate that DTPA is preferential to EDTA for inactivating redox-active metal ions in bioassays.  相似文献   

17.
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstrated that ZIPB is selective for two group 12 transition metal ions, Zn2+ and Cd2+, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.  相似文献   

18.
1. Human lactoferrin and transferrin are capable of binding several transition metal ions [Fe(III), Cu(II), Mn(III), Co(III)] into specific binding sites in the presence of bicarbonate. 2. Increased conformational stability and increased resistance to protein unfolding is observed for these metal-ion complexes compared to the apoprotein form of these proteins. 3. Mn(III)-lactoferrin and transferrin complexes exhibit steeper denaturation transitions than the Co(III) complexes of these proteins suggesting greater cooperativity in the unfolding process. 4. The incorporation of Fe(III) into the specific metal binding sites offers the greatest resistance to thermal unfolding when compared to the other transition metal ions studied. 5. Non-coincidence of unfolding transitions is observed, with fluorescence transition midpoints being lower than those determined by absorbance measurements. 6. Fully denatured proteins in the presence of urea and alkyl ureas exhibit fluorescence wavelength maxima at 355-356 nm indicative of tryptophan exposure upon protein unfolding.  相似文献   

19.
The ability to remove unwanted proteins is an important cellular feature. Classically, this involves the enzymatic addition of ubiquitin moieties followed by degradation in the proteasome. Nedd4 proteins are ubiquitin ligases important not only for protein degradation, but also for protein trafficking. Nedd4 proteins can bind to target proteins either by themselves or through adaptor protein Ndfip1 (Nedd4 family-interacting protein 1). An alternative mechanism for protein removal and trafficking is provided by exosomes, which are small vesicles (50-90-nm diameter) originating from late endosomes and multivesicular bodies (MVBs). Exosomes provide a rapid means of shedding obsolete proteins and also for cell to cell communication. In the present work, we show that Ndfip1 is detectable in exosomes secreted from transfected cells and also from primary neurons. Compared with control, Ndfip1 increases exosome secretion from transfected cells. Furthermore, while Nedd4, Nedd4-2, and Itch are normally absent from exosomes, expression of Ndfip1 results in recruitment of all three Nedd4 proteins into exosomes. Together, these results suggest that Ndfip1 is important for protein trafficking via exosomes, and provides a mechanism for cargoing passenger proteins such as Nedd4 family proteins. Given the positive roles of Ndfip1/Nedd4 in improving neuronal survival during brain injury, it is possible that exosome secretion provides a novel route for rapid sequestration and removal of proteins during stress.  相似文献   

20.
Bowen LM  Dupureur CM 《Biochemistry》2003,42(43):12643-12653
Restriction enzymes are important model systems for understanding the mechanistic contributions of metal ions to nuclease activity. These systems are unique in that they combine distinct functions which have been shown to depend on metal ions: high-affinity DNA binding, sequence-specific recognition of DNA, and Mg(II)-dependent phosphodiester cleavage. While Ca(II) and Mn(II) are commonly used to promote DNA binding and cleavage, respectively, the metal ion properties that are critical to the support of these functions are not clear. To address this question, we assessed the abilities of a series of metal ions to promote DNA binding, sequence specificity, and cleavage in the representative PvuII endonuclease. Among the metal ions tested [Ca(II), Sr(II), Ba(II), Eu(III), Tb(III), Cd(II), Mn(II), Co(II), and Zn(II)], only Mn(II) and Co(II) were similar enough to Mg(II) to support detectable cleavage activity. Interestingly, cofactor requirements for the support of DNA binding are much more permissive; the survey of DNA binding cofactors indicated that Cd(II) and the heavier and larger alkaline earth metal ions Sr(II) and Ba(II) were effective cofactors, stimulating DNA binding affinity 20-200-fold. Impressively, the trivalent lanthanides Tb(III) and Eu(III) promoted DNA binding as efficiently as Ca(II), corresponding to an increase in affinity over 1000-fold higher than that observed under metal-free conditions. The trend for DNA binding affinity supported by these ions suggests that ionic radius and charge are not critical to the promotion of DNA binding. To examine the role of metal ions in sequence discrimination, we determined specificity factors [K(a)(specific)/K(a)(nonspecific)] in the presence of Cd(II), Ba(II), and Tb(III). Most interestingly, all of these ions compromised sequence specificity to some degree compared to Ca(II), by either increased affinity for a noncognate sequence, decreased affinity for the cognate sequence, or both. These results suggest that while amino acid-base contacts are important for specificity, the properties of metal ion cofactors at the catalytic site are also critical for sequence discrimination. This insight is invaluable to our efforts to understand and subsequently design sequence-specific nucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号