首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the capacity of leaves for orderly dissipation of excitation energy in photosynthesis is exceeded, one mechanism by which the excess energy appears to be dissipated is through a nonradiative decay process. This process is observed as a reversible quenching of chlorophyll fluorescence emission (77K) from both photosystem II and photosystem I which persists in darkness (Demmig and Björkman 1987, Planta 171, 171–184). Fluorescence quenching was induced in soybean (Glycine max (L.) Merr.) leaves by two methods: 1) changing the composition of the gas surrounding the leaf from normal air to 2% O2, 0% CO2 at a low, constant photon flux density (PFD=photon fluence rate), and 2) increasing the PFD in the presence of normal air. In either case the quenching was fully reversible after return to the original condition (low PFD, normal air). The half-time of the relaxation of the quenching was in the order of 30 min. Both treatments resulted in reversible dephosphorylation of the light-harvesting chlorophyll-protein complex of photosystem II (LHC-II). Treatment under photoinhibitory conditions (high PFD plus chloramphenicol) also caused dephosphorylation of LHC-II. Therefore, phosphorylation of LHC-II cannot account for the observed fluorescence quenching. In addition, our results indicate that in vivo a factor other than the redox state of the plastoquinone pool controls LHC-II phosphorylation. This factor may be pH, the pH gradient across the thylakoid membranes.Abbreviations and symbols CAP chloramphenicol - Fo, FM, Fv instantaneous, maximumr variable fluorescence emission - LHC-II light-haryesting chlorophyll-protein complex of PSII - kDa kilodalton - pH pH gradient across the thylakoid membrane - PFD photon flux density (photon fluence rate) - PQ plastoquinone - PSI, PSII photosystem I, II - Q acceptor of PSII C.I.W.-D.P.B. Publication No. 926  相似文献   

2.
The functions of the light-harvesting complex of photosystem II (LHC- II) have been studied using thylakoids from intermittent-light-grown (IML) plants, which are deficient in this complex. These chloroplasts have no grana stacks and only limited lamellar appression in situ. In vitro the thylakoids showed limited but significant Mg2+-induced membrane appression and a clear segregation of membrane particles into such regions. This observation, together with the immunological detection of small quantities of LHC-II apoproteins, suggests that the molecular mechanism of appression may be similar to the more extensive thylakoid stacking seen in normal chloroplasts and involve LHC-II polypeptides directly. To study LHC-II function directly, a sonication- freeze-thaw procedure was developed for controlled insertion of purified LHC-II into IML membranes. Incorporation was demonstrated by density gradient centrifugation, antibody agglutination tests, and freeze-fracture electron microscopy. The reconstituted membranes, unlike the parent IML membranes, exhibited both extensive membrane appression and increased room temperature fluorescence in the presence of cations, and a decreased photosystem I activity at low light intensity. These membranes thus mimic normal chloroplasts in this regard, suggesting that the incorporated LHC-II interacts with photosystem II centers in IML membranes and exerts a direct role in the regulation of excitation energy distribution between the two photosystems.  相似文献   

3.
We have found that treatment of the photosynthetic membranes of green plants, or thylakoids, with the nonionic detergent Triton X-114 at a 10:1 ratio has three effects: (a) photosystem I and coupling factor are solubilized, so that the membranes retain only photosystem II (PS II) and its associated light-harvesting apparatus (LHC-II); (b) LHC-II is crystallized, and so is removed from its normal association with PS II; and (c) LHC-II crystallization causes a characteristic red shift in the 77 degrees K fluorescence from LHC-II. Treatment of thylakoids with the same detergent at a 20:1 ratio results in an equivalent loss of photosystem I and coupling factor, with LHC-II and PS II being retained by the membranes. However, no LHC-II crystals are formed, nor is there a shift in fluorescence. Thus, isolation of a membrane protein is not required for its crystallization, but the conditions of detergent treatment are critical. Membranes with crystallized LHC-II retain tetrameric particles on their surface but have no recognizable stromal fracture face. We have proposed a model to explain these results: LHC-II is normally found within the stromal half of the membrane bilayer and is reoriented during the crystallization process. This reorientation causes the specific fluorescence changes associated with crystallization. Tetrameric particles, which are not changed in any way by the crystallization process, do not consist of LHC-II complexes. PS II appears to be the only other major complex retained by these membranes, which suggests that the tetramers consist of PS II.  相似文献   

4.
Overwintering needles of the evergreen conifer Douglas fir exhibited an association between arrest of the xanthophyll cycle in the dissipating state (as zeaxanthin + antheraxanthin; Z + A) with a strongly elevated predawn phosphorylation state of the D1 protein of the photosystem II (PSII) core. Furthermore, the high predawn phosphorylation state of PSII core proteins was associated with strongly increased levels of TLP40, the cyclophilin-like inhibitor of PSII core protein phosphatase, in winter versus summer. In turn, decreases in predawn PSII efficiency, Fv/Fm, in winter were positively correlated with pronounced decreases in the non-phosphorylated form of D1. In contrast to PSII core proteins, the light-harvesting complex of photosystem II (LHCII) did not exhibit any nocturnally sustained phosphorylation. The total level of the D1 protein was found to be the same in summer and winter in Douglas fir when proteins were extracted in a single step from whole needles. In contrast, total D1 protein levels were lower in thylakoid preparations of overwintering needles versus needles collected in summer, indicating that D1 was lost during thylakoid preparation from overwintering Douglas fir needles. In contrast to total D1, the ratio of phosphorylated to non-phosphorylated D1 as well as the levels of the PsbS protein were similar in thylakoid versus whole needle preparations. The level of the PsbS protein, that is required for pH-dependent thermal dissipation, exhibited an increase in winter, whereas LHCII levels remained unchanged.  相似文献   

5.
State transitions, or the redistribution of light-harvesting complex II (LHCII) proteins between photosystem I (PSI) and photosystem II (PSII), balance the light-harvesting capacity of the two photosystems to optimize the efficiency of photosynthesis. Studies on the migration of LHCII proteins have focused primarily on their reassociation with PSI, but the molecular details on their dissociation from PSII have not been clear. Here, we compare the polypeptide composition, supramolecular organization, and phosphorylation of PSII complexes under PSI- and PSII-favoring conditions (State 1 and State 2, respectively). Three PSII fractions, a PSII core complex, a PSII supercomplex, and a multimer of PSII supercomplex or PSII megacomplex, were obtained from a transformant of the green alga Chlamydomonas reinhardtii carrying a His-tagged CP47. Gel filtration and single particles on electron micrographs showed that the megacomplex was predominant in State 1, whereas the core complex was predominant in State 2, indicating that LHCIIs are dissociated from PSII upon state transition. Moreover, in State 2, strongly phosphorylated LHCII type I was found in the supercomplex but not in the megacomplex. Phosphorylated minor LHCIIs (CP26 and CP29) were found only in the unbound form. The PSII subunits were most phosphorylated in the core complex. Based on these observations, we propose a model for PSII remodeling during state transitions, which involves division of the megacomplex into supercomplexes, triggered by phosphorylation of LHCII type I, followed by LHCII undocking from the supercomplex, triggered by phosphorylation of minor LHCIIs and PSII core subunits.  相似文献   

6.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.  相似文献   

7.
It was shown earlier that in etiolated bean (Phaseolus vulgaris, var. red kidney) leaves exposed to continuous light for a short time and then transferred to darkness a reorganization of their photosystem II (PSII) unit components occurs. This reorganization involves disorganization of the light-harvesting complex of PSII (LHC-II), destruction of its chlorophyll b and the 25 kilodalton polypeptide, and reuse of its chlorophyll a for the formation of additional, small in size, PSII units (Argyroudi-Akoyunoglou, Akoyunoglou, Kalosakas, Akoyunoglou 1982 Plant Physiol 70: 1242-1248). The present study further shows that parallel to the PSII unit reorganization a reorganization of the PSI unit components also occurs: upon transfer to darkness the 24, 23, and 21 kilodalton polypeptides, components of the light-harvesting complex of PSI (LHC-I), are decreased, the 69 kilodalton polypeptide, component of the chlorophyll a-rich P700-protein complex (CPI), is increased and new smallsized PSI units are formed. Concomitantly, the cytochrome f/chlorophyll and the cytochrome b/chlorophyll ratios are gradually increased. This suggests that the concentration of the electron transport components is also modulated in darkness to allow for adequate electron flow to occur between the newly synthesized PSII and PSI units.  相似文献   

8.
9.
Lutescens-1, a tobacco mutant with a maternally inherited dysfunction, displayed an unusual developmental phenotype. In vivo measurement of chlorophyll fluorescence revealed deterioration in photosystem II (PSII) function as leaves expanded. Analysis of thylakoid membrane proteins by polyacrylamide gel electrophoresis indicated the physical loss of nuclear- and chloroplast-encoded polypeptides comprising the PSII core complex concomitant with loss of activity. Freeze fracture electron micrographs of mutant thylakoids showed a reduced density, compared to wild type, of the EFs particles which have been shown previously to be the structural entity containing PSII core complexes and associated pigment-proteins. The selective loss of PSII cores from thylakoids resulted in a higher ratio of antenna chlorophyll to reaction centers and an altered 77 K chlorophyll fluorescence emission spectra; these data are interpreted to indicate functional isolation of light-harvesting chlorophyll a/b complexes in the absence of PSII centers. Examination of PSII reaction centers (which were present at lower levels in mutant membranes) by monitoring the light-dependent phosphorylation of PSII polypeptides and flash-induced O2 evolution patterns demonstrated that the PSII cores which were assembled in mutant thylakoids were functionally identical to those of wild type. We conclude that the lutescens-1 mutation affected the correct stoichiometry of PSII centers, in relation to other membrane constituents, by disrupting the proper assembly and maintenance of PSII complexes in lutescens-1 thylakoid membranes.  相似文献   

10.
The chlorophyll-protein complexes of the thylakoid membrane from Prochlorothrix hollandica were identified following electrophoresis under nondenaturing conditions. Five complexes, CP1-CP5, were resolved and these green bands were analyzed by spectroscopic and immunological methods. CP1 contains the photosystem I (PSI) reaction center, as this complex quenched fluorescence at room temperature, and had a 77 K fluorescence emission peak at 717 nm. CP4 contains the major chlorophyll-a-binding proteins of the photosystem II (PSII) core, because this complex contained polypeptides which cross-reacted to antibodies raised against Chlamydomonas PSII proteins 5 and 6. Furthermore, fluorescence excitation studies at 77 K indicated that only a Chl a is bound to CP4. Complexes CP2, CP3 and CP5 contained functionally bound Chl a and b as judged by absorption spectroscopy at 20 degrees C and fluorescence excitation spectra at 77 K. CP2, CP3 and CP5 all contain polypeptides of 30-33 kDa which are immunologically distinct from the LHC-II complex of higher plant thylakoids.  相似文献   

11.
Thylakoids of the diatom Cyclotella meneghiniana were separated by discontinuous gradient centrifugation into photosystem (PS) I, PSII, and fucoxanthin-chlorophyll protein (FCP) fractions. FCPs are homologue to light harvesting complexes of higher plants with similar function in e.g. brown algae and diatoms. Still, it is unclear if FCP complexes are specifically associated with either PSI or PSII, or if FCP complexes function as one antenna for both photosystems. However, a trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have been described for C. meneghiniana, already. In this study, biochemical and spectroscopical evidences are provided that reveal a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PSII associated Fcp antenna resembles FCPa since it contains Fcp2 and Fcp6, at least three different Fcp polypeptides are associated with PSI. By re-solubilisation and a further purification step Fcp polypeptides were partially removed from PSI and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby a protein related to Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PSI, whereas presumably Fcp5, a subunit of the FCPb complex, is only loosely bound to the PSI core. Thus, an association of FCPb and PSI is assumed.  相似文献   

12.
The smallest extrinsic polypeptide of the water-oxidizing complex (PsbQ) was extracted and purified from spinach (Spinacia oleracea) photosystem II (PSII) membranes. It was then crystallized in the presence of Zn2+ and its structure was determined by X-ray diffraction at 1.95-Å resolution using the multi-wavelength anomalous diffraction method, with the zinc as the anomalous scatterer. The crystal structure shows that the core of the protein is a four-helix bundle, whereas the amino-terminal portion, which possibly interacts with the photosystem core, is not visible in the crystal. The distribution of positive and negative charges on the protein surface might explain the ability of PsbQ to increase the binding of Cl and Ca2+ and make them available to PSII.  相似文献   

13.
Oxygen-evolving photosystem II (PSII) isolated from a marine centric diatom, Chaetoceros gracilis, contains a novel extrinsic protein (Psb31) in addition to four red algal type extrinsic proteins of PsbO, PsbQ′, PsbV, and PsbU. In this study, the five extrinsic proteins were purified from alkaline Tris extracts of the diatom PSII by anion and cation exchange chromatographic columns at different pH values. Reconstitution experiments in various combinations with the purified extrinsic proteins showed that PsbO, PsbQ′, and Psb31 rebound directly to PSII in the absence of other extrinsic proteins, indicating that these extrinsic proteins have their own binding sites in PSII intrinsic proteins. On the other hand, PsbV and PsbU scarcely rebound to PSII alone, and their effective bindings required the presence of all of the other extrinsic proteins. Interestingly, PSII reconstituted with Psb31 alone considerably restored the oxygen evolving activity in the absence of PsbO, indicating that Psb31 serves as a substitute in part for PsbO in supporting oxygen evolution. A significant difference found between PSIIs reconstituted with Psb31 and with PsbO is that the oxygen evolving activity of the former is scarcely stimulated by Cl and Ca2+ ions but that of the latter is largely stimulated by these ions, although rebinding of PsbV and PsbU activated oxygen evolution in the absence of Cl and Ca2+ ions in both the former and latter PSIIs. Based on these results, we proposed a model for the association of the five extrinsic proteins with intrinsic proteins in diatom PSII and compared it with those in PSIIs from the other organisms.  相似文献   

14.
《BBA》2023,1864(2):148953
The multi-subunit membrane protein complex photosystem II (PSII) catalyzes the light-driven oxidation of water and with this the initial step of photosynthetic electron transport in plants, algae, and cyanobacteria. Its biogenesis is coordinated by a network of auxiliary proteins that facilitate the stepwise assembly of individual subunits and cofactors, forming various intermediate complexes until fully functional mature PSII is present at the end of the process. In the current study, we purified PSII complexes from a mutant line of the thermophilic cyanobacterium Thermosynechococcus vestitus BP-1 in which the extrinsic subunit PsbO, characteristic for active PSII, was fused with an N-terminal Twin-Strep-tag. Three distinct PSII complexes were separated by ion-exchange chromatography after the initial affinity purification. Two complexes differ in their oligomeric state (monomeric and dimeric) but share the typical subunit composition of mature PSII. They are characterized by the very high oxygen evolving activity of approx. 6000 μmol O2·(mg Chl·h)?1. Analysis of the third (heterodimeric) PSII complex revealed lower oxygen evolving activity of approx. 3000 μmol O2·(mg Chl·h)?1 and a manganese content of 2.7 (±0.2) per reaction center compared to 3.7 (±0.2) of fully active PSII. Mass spectrometry and time-resolved fluorescence spectroscopy further indicated that PsbO is partially replaced by Psb27 in this PSII fraction, thus implying a role of this complex in PSII repair.  相似文献   

15.
Two different kinds of oxygen evolving photosystem II (PSII) core complexes were isolated in the present study by solubilization of PSII enriched thylakoid membranes from spinach with the non-ionic detergent 6-O-(N-heptylcarbamoyl)-methyl-α-D-glucopyranoside (Hecameg) under different conditions. The PSII core complex isolated at higher ionic strength was similar to that isolated by using octyl-β-D-glucopyranoside (OGP) and lacked the 23 and 17 kDa extrinsic proteins of the oxygen evolving complex but retained the 22 kDa PsbS protein. Solubilization of the PSII membranes with Hecameg at lower ionic strength allowed the isolation of another PSII complex that retained all the three extrinsic proteins (33, 23 and 17 kDa) of the oxygen evolving complex but was depleted of the 22 kDa PsbS protein. This complex exhibited high rates of oxygen evolution and was found to be more sensitive to DCMU indicating a better structural and functional integrity and may be treated as the minimal functional unit required for PSII photochemistry. The detergent Hecameg is relatively inexpensive and the methodology remains simple since it does not require any chromatography or density gradient ultracentrifugation.  相似文献   

16.
Etiolated bean plants were grown in intermittent light with dark intervals of shorter or longer duration, to modulate the rate of chlorophyll accumulation, relative to that of the other thylakoid components formed. We thus produced conditions under which chlorophyll becomes more or less a limiting factor. We then tested whether LHC complexes can be incorporated in the thylakoid. It was found that an equal amount of chlorophyll, formed under the same total irradiation received, may be used for the stabilization of few and large-in-size PS units containing LHC components (short dark-interval intermittent light), or for the stabilization of many and small-in-size PS units with no LHC components (long dark-interval intermittent light). The size of the PS units diminishes as the dark-interval duration is increased, with no further change after 98 minutes. The PSII/cytf ratio remains constant throughout development in intermittent light and equal to that of mature chloroplasts (PSII/cytf = 1) except in the case of very long dark-interval regimes, where about half PSII units per cytf are present. The PSII/PSI ratio was found to be correlated with the PSII unit size (the larger the size, the lower the ratio). The number of PSI units operating on the same electron transfer chain varied depending on the size of the PSII unit (the larger the PSII unit size, the more the PSI units per chain). The results suggest that it is not the chlorophyll content per se which regulates the stabilization of LHC in developing thylakoids and consequently the size of the PS units, but rather the rate by which it is accumulated, relative to that of the other thylakoid components.Abbreviations Chl Chlorophyll - CL Continuous light - CPa the reaction center complex of PSII - CPI the reaction center complex of PSI - CPIa Chlorophyll protein complex containing the CPI and the light harvesting complex of PSI - fr w fresh weight - LDC Light dark cycles - LHC-I Light-harvesting complex of PSI - LHC-II Light harvesting complex of PSII - PS photosystem - PSI photosystem I - PSII photosystem II  相似文献   

17.
Light-harvesting II complexes (LHCII) and photosystem II core complexes (PSIICC) were isolated from spinach (Spinacia oleracea L.) and reconstituted into phosphatidylcholine liposomes and, under heat stress, PSIICC-LHCII proteoliposomes were found to exhibit significantly higher oxygen evolution activity than PSIICC proteoliposomes lacking LHCII. In the presence of LHCII, the temperature of a 10-min heat stress that caused semi-inactivation of oxygen-evolving activity in these liposomes increased from 34 to ~37°C and the total inactivation temperature increased from ~50 to ~60°C. Moreover, with heat stress, decreases in the absorbance and fluorescence spectra of PSIICC-LHCII proteoliposomes were smaller than in LHCII-lacking PSIICC proteoliposomes. These results demonstrated that reconstitution of PSII into liposomes with LHCII increased the antenna size and light harvesting cross-section of PSII and thus, under heat stress, enhanced PSII photochemical activity and thermal stability.  相似文献   

18.
In the oxygen-evolving photosystem-II (PSII) of higher plantchioroplasts and green algae, most of the light-harvesting functionis performed by the chlorophyll (Chl) a-b-protein complex (LHC-II).On the average, the LHC-II contains about 210 Chl (a+b) moleculesper PSII reaction center. The polypeptide composition, copynumber and organization of assembly in the LHC-II complex arenot fully understood at present. This work utilized the chlorinaf2 mutant of barley (lacking Chl b and having a LHC-II antennaof only 13 Chl a molecules) to determine the organization andstability of assembly of proteins in the LHC-II. High-resolutionSDS-PAGE and immunoblot analysis showed the presence of fourmain constitutive polypeptides in the wild-type LHC-II (termedhere subunits a, b, c and d) with molecular masses in the range30–25 kDa. Of those, only subunit d (a 25 kDa polypeptide)was found to occur at an equal copy number per PSII reactioncenter in both wild-type and in the Chl b-less chlorina f2 mutant.All other subunits were either absent or existed in much loweramounts in the mutant. Subunit d is a polypeptide constituentof the major Chl-protein subcomplex (CPII) of the LHC-II. Itis stably incorporated in the thylakoid membrane in the absenceof Chl b and probably binds the 13 Chl a molecules in the residualLHC-II antenna of the chlorina f2 mutant. We propose that, ofall LHC-II polypeptides, subunit d is most proximal to the PSIIcore and may serve as a linker in the process of excitationenergy transfer from the bulk LHC-II to the PSII reaction centerin chloroplasts. (Received February 25, 1992; Accepted May 12, 1992)  相似文献   

19.
Ten rice chlorina mutants of Type I, which totally lack chlorophyllb and hence are unable to synthesize light-harvesting chlorophylla/b protein complexes of photosystem II (LHC-II), containedmRNA for proteins related to LHC-II. Immunoblotting with anantiserum, which had been raised against the 24 and 25 kDa apoproteinsof LHC-II and found to cross-react with the 26 kDa protein ofLHC-II and the 20 and 21 kDa apoproteins of light-harvestingchlorophyll a/b protein complexes of photosystem I (LHC-I),revealed that all the five proteins related to LHC-Iand LHC-IIwere present in reduced amounts in the Type I mutants. ThreeType HA mutants, which have a chlorophyll a/b ratio of 10, weremore abundant in the apoproteins, while three Type IIB mutantswith the ratio of 15 were heterogeneous in terms of the apoproteincontent. All the chlorina mutants contained less P700 comparedwith the wild type rice, but were relatively more abundant inthe LHC-I proteins than the LHC-II proteins. The results showthat all the rice chlorina strains are mutants of chlorophyllb synthesis and the deficiency of chlorophyll b differentlyaffects accumulation of the apoproteins of LHC-I and LHC-II.To balance light absorption between the two photosystem, lossof LHC-II is partly counter-balanced by a decrease in the numberof PSI complexes in the mutants. (Received January 21, 1988; Accepted April 28, 1988)  相似文献   

20.
Oxygenic photosynthesis produces various radicals and activeoxygen species with harmful effects on photosystem II (PSII).Such photodamage occurs at all light intensities. Damaged PSIIcentres, however, do not usually accumulate in the thylakoidmembrane due to a rapid and efficient repair mechanism. Theexcellent design of PSII gives protection to most of the proteincomponents and the damage is most often targeted only to thereaction centre D1 protein. Repair of PSII via turnover of thedamaged protein subunits is a complex process involving (i)highly regulated reversible phosphorylation of several PSIIcore subunits, (ii) monomerization and migration of the PSIIcore from the grana to the stroma lamellae, (iii) partial disassemblyof the PSII core monomer, (iv) highly specific proteolysis ofthe damaged proteins, and finally (v) a multi-step replacementof the damaged proteins with de novo synthesized copies followedby (vi) the reassembly, dimerization, and photoactivation ofthe PSII complexes. These processes will shortly be reviewedpaying particular attention to the damage, turnover, and assemblyof the PSII complex in grana and stroma thylakoids during thephotoinhibition–repair cycle of PSII. Moreover, a two-dimensionalBlue-native gel map of thylakoid membrane protein complexes,and their modification in the grana and stroma lamellae duringa high-light treatment, is presented. Key words: Arabidopsis thylakoid membrane proteome, assembly of photosystem II, D1 protein, light stress, photosystem II photoinhibition, repair of photosystem II  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号