首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
Terence A. Smith 《Phytochemistry》1977,16(11):1647-1649
After purification, the polyamine oxidase from the leaves of oat seedlings grown in the dark appeared to be homogeneous on electrophoresis. The MW determined by density gradient centrifugation was 119 000. The enzyme would not oxidise diaminodipropylamine and neither diaminodipropylamine nor diaminopropane were inhibitors at concentrations up to 1 mM. With spermidine as substrate, the energy of activation was 19.7 kJ/mol and activity was reduced to 50% on heating for 10 min at 50°. With spermine as substrate, activity was increased up to 3-fold in the presence of M sodium chloride. This stimulation was not observed with spermidine as substrate The enzyme was also stimulated by sodium phosphate and sodium citrate at high concentrations. The pH for optimal stability was 6.5, the same as the pH for maximum activity with both spermidine and spermine as substrates. For spermidine and spermine the Kms were 8 × 10 ?6 M and 2 × 10 ?6 M respectively. Loss of activity on storage of leaves at ? 15° was ca 5 % per week and in extracts the loss was ca 10 % per week.  相似文献   

2.
Two forms of p-nitrophenyl α-D-mannosidase and p-nitrophenyl α-D-galactosidase were purified from the protein bodies of mature Lupinus angustifolius seeds. A MW of 300 000 was calculated for both α-mannosidase A and B with Km = 1.92 and 2.70 mM and activation energies of 10.9 and 10.8 kcal/mol, respectively. α-Galactosidase I and II had MWs of 70800 and 17000 with Km = 0.282 and 0.556 mM and activation energies 17.7 and 11.5 kcal/mol, respectively. The enzymes had acid pH optima and were inhibited by various metal ions, carbohydrates and glycoproteins. They were able to release free sugar from several putative natural substrate oligosaccharides and the Lupinus storage glycoprotein, α-conglutin.  相似文献   

3.
UDP-Galactose 4′-epimerase was purified ca 800-fold through a multi-step procedure which included affinity chromatography using NAD+ -Agarose. Three forms of the enzyme were separated by gel-filtration but only the major form was purified. The pH optimum of the enzyme was 9.5. Exogenous NAD+ was not required for enzymic activity but its removal caused inactivation. The enzyme was unstable below pH 7.0 but stable at pH 8.0 in the presence of glycerol and at ?20° for two months. The equilibrium constant for the enzyme-catalysed reaction was 3.2 ± 0.15. The Km for UDP-galactose and UDP-glucose were 0.12 mM and 0.25 mM, respectively. The inhibition by NADH was competitive, with a Ki of 5 μM. The MW of the enzyme was 78 000; the two minor forms showed the values of 158 000 and 39 000, respectively.  相似文献   

4.
An indole 2,3-dioxygenase was purified ca 38-fold from maize leaves. The enzyme had an MW of about 98000, an optimum pH of 5.0 and the energy of activation was 9.1 kcal/mol. The Kmax for indole was 1.4 × 10?4 M. The enzyme was inhibited by diethyldithiocarbamate, salicylaldoxime and sodium dithionite. The inhibition by diethyldithiocarbamate was specifically reversed by Cu2+. The dialysed enzyme was stimulated by Cu2+. Four atoms of oxygen were utilized in the disappearance of 1 mole of indole. Inhibition of the enzyme by -SH compounds and -SH group inhibitors, and their partial removal by Cu2+ only, suggested the involvement of -SH groups in binding of Cu2+ at the catalytic site.  相似文献   

5.
Fronds of the fern nardoo (Marsilea drummondii) contain a thiaminase I enzyme at very high levels of activity. Highest levels of enzyme activity were found in vigorously growing plant material. The thiaminase I has been purified to a final sp act value of 2.07 μkat/mg protein at 30° and pH 6.5. It was shown to have similar properties to thiaminase I enzymes purified from bracken fern, rock fern and freshwater mussels. These enzymes have MW values in the range 93 000–115 000, energies of activation of 14 000 cal mol, pH optima of 8–9 and are quite stable in the pH range 3 to 12 and to extended incubation at 55°. The temperature for 50 % denaturation is 60–65°. p-CMB, mersalyl acid and HgCl2 (10t-6 M) are potent inhibitors, but monoiodacetic acid (10?4 M) has no effect. A wide range of heterocyclic bases, sulphydryl compounds, and amines, including the non-aromatic amines 6-aminohexanoic acid and ethanolamine, act as co-substrates in the thiaminase I reaction; however, their effectiveness is dependent on both their degrees of basicity and to some extent, their stereochemistry. When the co-substrate activity of a range of substituted anilines were compared, no correlation was found between the degree to which the base activates the reaction and the pKb (or Hammett's sigma constant) of the base.  相似文献   

6.
A repressible extracellular alkaline phosphatase (with activity increasing steadily even up to pH 10.5) was purified from cultures of the wild-type strain 74A of Neurospora crassa, after growth on acetate and under limiting amounts of inorganic phosphate for 72 hr at 30°. The enzyme was homogeneous on polyacrylamide gel electrophoresis (PAGE) with or without sodium dodecyl sulphate (SDS). The MW was ca 172 000 and 82 000 as determined by Sephadex G-200 gel filtration and SDS-PAGE, respectively. The enzyme contained 23.6% neutral sugars, cations were not required for activity, and it was not inactivated by 5,5-dithiobis-(2-nitrobenzoic acid) (DTNB) at pH 8. Kinetic data showed Michaelian behaviour for the enzymatic hydrolysis of 4-nitrophenyl disodium orthophosphate (PNP-P) at pH 9 (the Km value and Hill coefficient were 2.2 × 10?4 M and 0.95, respectively). It was also shown that, at pH 9, the apparent number of Pi bound per dimer molecule equalled one, with a Ki value of 7.0 × 10?4 M. The secreted enzyme showed half-lives of 23.5, 49.0 and 23.5 min at, pH 5.4, 7.4 and 9.0, respectively, after thermal inactivation at 60°. At pH 5.4, the half-life value was quite similar, while the others were respectively 2 and 4 times greater than those previously described for the repressible alkaline phosphatase retained by the mycelium at pH 5.6 or secreted by ‘slime’ cells.  相似文献   

7.
Polyphenol oxidase has been partially purified from Xanthosomasagittifolium. The enzyme showed activity towards pyrogallol,DL-ß-3,4-dihydroxyphenylalanine (DOPA) and catechol.Of these three, pyrogallol was the best substrate. The effectsof various compounds as inhibitors of the reaction catalysedby the enzyme were tested. p-Nitrophenol competitively inhibitedthe binding of both catechol and pyrogallol to the enzyme. Inhibitionby the substrate analogue, p-cresol was of the mixed type whilethiourea and diethyldithiocarbamate inhibited the enzyme uncompetitively.The approximate molecular weight of the enzyme determined bygel filtration was 47 000.  相似文献   

8.
The (Na++K+)-activated, Mg2+-dependent ATPase from rabbit kidney outer medulla was prepared in a partially inactivated, soluble from depleted of endogenous phospholipids, using deoxycholate. This preparation was reactivated 10 to 50-fold by sonicated liposomes of phosphatidylserine, but not by non-sonicated phosphatidylserine liposomes or sonicated phosphatidylcholine liposomes. The reconstituted enzyme resembled native membrane preparations of (Na++K+)-ATPase in its pH optimum being around 7.0 showing optimal activity at Mg2+: ATP mol ratios of approximately 1 and a Km value for ATP of 0.4 mM.Arrhenius plots of this reactivated activity at a constant pH of 7.0 and an Mg2+: ATP mol ratio of 1:1 showed a discontinuity (sharp change of slope) at 17 °C, With activation energy (Ea) values of 13–15 kcal/mol above this temperature and 30–35 kcal below it. A further discontinuity was also found at 8.0 °C and the Ea below this was very high (> 100 kcal/mol).Incresed Mg2+ concentrations at Mg2+: ATP ratios in excess of 1:1 inhibited the (Na++K+)-ATPase activity and also abolished the discontinuities in the Arrhenius plots.The addition of cholesterol to phosphatidylserine at a 1:1 mol ratio partially inhibited (Na++K+)-ATPase reactivation. Arrhenius plots under these conditions showed a single discontinuity at 20°C and Ea values of 22 and 68kcal/mol above and below this temperature respectively. The ouabain-insensitive Mg2+-ATPase normally showed a linear Arrhenius plot with an Ea of 8 kcal/mol. The cholesterol-phosphatidylserine mixed liposomes stimulated the Mg2+-ATPase activity, which now also showed a discontinuity at 20 °C with, however, an increased value of 14 kcal/mol above this temperature and 6 kcal/mol below. Kinetic studies showed that cholesterol had no significant effect on the Km for ATP.Since both of cholesterol and Mg2+ are know to alter the effects of temperature on the fluidity of phospholipids the above result are discussed in this context.  相似文献   

9.
The observed equilibrium constants (Kobs) for the reactions of d-2-phosphoglycerate phosphatase, d-2-Phosphoglycerate3? + H2O → d-glycerate? + HPO42?; d-glycerate dehydrogenase (EC 1.1.1.29), d-Glycerate? + NAD+ → NADH + hydroxypyruvate? + H+; and l-serine:pyruvate aminotransferase (EC 2.6.1.51), Hydroxypyruvate? + l-H · alanine± → pyruvate? + l-H · serine±; have been determined, directly and indirectly, at 38 °C and under conditions of physiological ionic strength (0.25 m) and physiological ranges of pH and magnesium concentrations. From these observed constants and the acid dissociation and metal-binding constants of the substrates, an ionic equilibrium constant (K) also has been calculated for each reaction. The value of K for the d-2-phosphoglycerate phosphatase reaction is 4.00 × 103m [ΔG0 = ?21.4 kJ/mol (?5.12 kcal/mol)]([H20] = 1). Values of Kobs for this reaction at 38 °C, [K+] = 0.2 m, I = 0.25 M, and pH 7.0 include 3.39 × 103m (free [Mg2+] = 0), 3.23 × 103m (free [Mg2+] = 10?3m), and 2.32 × 103m (free [Mg2+] = 10?2m). The value of K for the d-glycerate dehydrogenase reaction has been determined to be 4.36 ± 0.13 × 10?13m (38 °C, I = 0.25 M) [ΔG0 = 73.6 kJ/mol (17.6 kcal/mol)]. This constant is relatively insensitive to free magnesium concentrations but is affected by changes in temperature [ΔH0 = 46.9 kJ/mol (11.2 kcal/mol)]. The value of K for the serine:pyruvate aminotransferase reaction is 5.41 ± 0.11 [ΔG0 = ?4.37 kJ/mol (?1.04 kcal/mol)] at 38 °C (I = 0.25 M) and shows a small temperature effect [ΔH0 = 16.3 kJ/ mol (3.9 kcal/mol)]. The constant showed no significant effect of ionic strength (0.06–1.0 m) and a response to the hydrogen ion concentration only above pH 8.5. The value of Kobs is 5.50 ± 0.11 at pH 7.0 (38 °C, [K+] = 0.2 m, [Mg2+] = 0, I = 0.25 M). The results have also allowed the value of K for the d-glycerate kinase reaction (EC 2.7.1.31), d-Glycerate? + ATP4? → d-2-phosphoglycerate3? + ADP3? + H+, to be calculated to be 32.5 m (38 °C, I = 0.25 M). Values for Kobs for this reaction under these conditions and at pH 7.0 include 236 (free [Mg2+] = 0) and 50.8 (free [Mg2+] = 10?3m).  相似文献   

10.
Urease (EC 3.5.1.5) was purified from Spirulina maxima by ammonium sulfate precipitation, DEAE-cellulose chromatography and gel filtration on Sephadex G-200. The enzyme had maximum activity at pH 8.7, a Km for urea of 0.12 mM and a MW of ca 232 000. A MW of 38 000 was determined for the subunits. The enzyme was inactivated by p-hydroxymercuribenzoate.  相似文献   

11.
Arginine decarboxylase activity in the shoots of seedlings was high in oats, intermediate in barley and low in rice, maize, wheat and rye. After partial purification, the arginine decarboxylase from the shoots of potassium deficient oat seedlings was separated into two fractions, A (MW 195 000) and B (MW 118 000), by gel chromatography. On gel electrophoresis, the mobilities of these fractions were respectively 0.12 and 0.55 relative to bromophenol blue at pH 9.5. Fraction A was twice as active as fraction B in extracts of seedlings grown with both normal and potassium deficient nutrition, despite the greater activity ( × 5) of the potassium deficient plants. The properties of the two fractions were similar with respect to pH optimum (7–7.5), Km (3 × 10 ?5M) and the effect of inhibitors. Fraction A was purified to apparent homogeneity by DEAE-cellulose chromatography. The enzyme was specific for l-arginine and it was strongly inhibited by NSD 1055, d-arginine and canavanine. Mercaptoethanol and dithiothreitol stimulated the enzyme by ca 50% and p-chloromercuribenzoate was an inhibitor. Pyridoxal phosphate stimulated activity by ca 30% and EDTA stimulated activity by 30%. Ca2+ and Mg2+ inhibited the enzyme by 50% at ca 20 mM. Putrescine and the polyamines showed only moderate inhibition at 10 mM, but agmatine reduced activity to 30% at this concentration.  相似文献   

12.
A highly purified isoenzyme of wheat o-diphenolase was characterized. The isoenzyme had a MW of ca 115 000, as determined by Sephadex G-100 gel filtration. The copper content was 0.20%, and the amino acid composition was determined. Two subunits (MWs ca 30 000 and 23 500) were detected by SDS gel electrophoresis. The Km was found to be 5.1 mM for 4-methylcatechol and kinetic analysis showed that the isoenzyme exhibited substrate inhibition. The isoenzyme was characterized by its response to some inhibitors.  相似文献   

13.
Trihydroxybenzenes are degraded anaerobically through the phloroglucinol pathway. In Pelobacter acidigallici as well as in Pelobacter massiliensis, pyrogallol is converted to phloroglucinol in the presence of 1,2,3,5-tetrahydroxybenzene by intermolecular hydroxyl transfer. The enzyme catalyzing this reaction was purified to chromatographic and electrophoretic homogeneity. Gel filtration and electrophoresis revealed a heterodimer structure with an apparent molecular mass of 127 kDa for the native enzyme and 86 kDa and 38 kDa, respectively, for the subunits. The enzyme was not sensitive to oxygen. HgCl2, p-chloromercuribenzoic acid, and CuCl2 inhibited strongly the reaction indicating an essential function of SH-groups. Transhydroxylase had a pH-optimum of 7.0 and a pI of 4.1. The apparent temperature optimum was in the range of 53°C to 58°C. The activation energy for the conversion of pyrogallol and 1,2,3,5-tetrahydroxybenzene to phloroglucinol and tetrahydroxybenzene was 31.4 kJ per mol. Purified enzyme exhibited a specific activity of 3.1 mol. m−1 mg−1 protein and an apparent Km for pyrogallol and 1,2,3,5-tetrahydroxybenzene of 0.70 mM and 0.71 mM, respectively. The enzyme was found to contain per mol heterodimer 1.1 mol molybdenum, 12.1 mol iron and 14.5 mol acid-labile sulfur. Requirement for molybdenum for transhydroxylating enzyme activity was proven also by cultivation experiments. No hints for the presence of flavins were obtained. The results presented here support the hypothesis that a redox reaction is involved in this intermolecular hydroxyl transfer.  相似文献   

14.
The polyphenoloxidase (PPO) from black poplar senescent leaves has been purified to almost complete homogeneity by a combination of ammonium sulphate precipitation, Sephadex G75 filtration and DEAE-cellulose chromatography. The purified enzyme has a MW of 60 000 and is probably a Cu+ enzyme. Peroxidase (PO) activity co-purifies with PPO and has the same MW as it. The two enzymes differ in pH optimum and in response to the effect of ionic strength. Natural phenols are either substrates, inhibitors or activators of black poplar PPO. This enzyme is an o-diphenoloxidase which binds substrates with Km in the millimolar range. With caffeic and chlorogenic acids inhibition by excess substrate is observed. Benzoic acid phenols and cinnamic acid phenols are either competitive or non-competitive inhibitors of PPO. Hydroquinone is a highly potent non-competitive inhibitor of the enzyme (Ki  90 μM). Ferulic acid is a potent activator of the PPO-catalysed oxidation of catechol (Ka  0.34 mM, νsato  7.7).  相似文献   

15.
Tapan K. Biswas 《Phytochemistry》1985,24(12):2831-2833
The β-galactosidase activity in cotyledons of Vigna sinensis increases during seed germination and is inhibited by cycloheximide. The increasing activity may be due to the de novo synthesis of enzyme protein. The enzyme has been partially purified by gel filtration and characterized with respect to some biochemical parameters. The optimum pH and optimum temperature are 4.5 and 55°, respectively and the enzymes follows typical Michaelis kinetics with Km and Vmax of 4.5 x 10?4 M and 2.0 x 10?5 mol/hr respectively. Ki for galactose and lactose are 4.5 and 220 mM, respectively. The energy of activation of the enzyme for p-nitrophenyl β-D-galactoside is 9.83 kcal/mol. The apparent relative MW of the enzyme as determined by gel filtration was 56000.  相似文献   

16.
Carbonic anhydrase (CA) was purified from four different cell localisation (outer peripheral, cytosolic, inner peripheral and integral) in bovine stomach using affinity chromatography with Sepharose-4B-l-tyrosine sulphanilamide. During the purification steps, the activity of the enzyme was measured using p-nitrophenyl acetate at pH 7.4. Optimum pH and optimum temperature values for all CA samples were determined, and their Km and Vmax values for the same substrate by Lineweaver–Burk graphics. The extent of purification for all CA localizations was controlled by SDS-PAGE. The Km values at optimum pH and 20°C were 0.625?mM, 0.541?mM, 0.785?mM and 0.862?mM with p-nitro phenyl acetate, for all CA localizations. The respective Vmax values at optimum pH and 20°C were 0.875?μmol/L?min, 0.186?μmol/L?min, 0.214?μmol/L?min and 0.253?μmol/L?min with the same substrate. The Ki and I50 values for the inhibitors sulphanilamide, KSCN, NaN3 and acetazolamide were determined for all the CA localizations.  相似文献   

17.
A kinetic study of the rate of pyruvate reduction by goldfish LDH-M4 (the homotetrameric form of lactate dehydrogenase which predominates in skeletal muscle) provided an analysis of the effects of pH and temperature on v (reaction velocity) and estimates of how temperature might affect catalysis in vivo, where the physiological pH regulation imposes a temperature coefficient of ?0.015 to ?0.020 pH unit/ °C. Consistent with published data for other LDHs, (i) V (maximum reaction velocity) was pH insensitive over a physiological pH range, (ii) the Km for pyruvate, KP, was sensitive to both pH and temperature, and (iii) the Km for NADH and the dissociation constant for NADH were both sensitive to temperature, but not to pH. V approximately doubled with each 10 °C (Ea = 11.7 kcal/mol). The effects of pH and temperature on KP were consistent with two enthalpic contributions, an ionization enthalpy (ΔHi°) of 7.2 kcal/mol (probably a histidine imidazole), and an enthalpy (ΔHSO) of 5.8 kcal/mol for the combination of pyruvate with the nonionized (pH ? pK′) LDH-NADH complex. When the pH was varied according to the physiological temperature coefficient, v was more sensitive to temperature than for conditions of constant pH, the usual design of kinetic experiments. This effect was due to the decreased temperature sensitivity of KP caused by partial concellation of the ΔHi° effect by the pH regulation: dpHdT ? dpK′dT. At constant pH, on the other hand, KP increased strongly with temperature and had the effect of offsetting (especially at higher pH values) the large increases in V. It was suggested that the magnitudes of ΔHi° and ΔHSO might have been important in the evolution of LDHs and other enzymes of cold-blooded animals.  相似文献   

18.
Polyphenol oxidase (PPO) of nettle (Urtica dioica L.) was extracted and purified through (NH4)2SO4 precipitation, dialysis, and CM-Sephadex ion-exchange chromatography and was used for its characterization. The PPO showed activity to catechol, 4-methylcatechol, L-3,4-dihydroxyphenylalanine (L-DOPA), L-tyrosine, p-cresol, pyrogallol, catechin and trans-cinnamic acid. For each of these eight substrates, optimum conditions such as pH and temperature were determined and L-tyrosine was found to be one of the most suitable substrates. Optimum pH and temperature were found at pH 4.5 and 30°C respectively and Km and Vmax values were 7.90?×?10?4?M, and 11290?EU/mL for with L-tyrosine as substrate. The inhibitory effect of several inhibitors, L-cysteine chloride, sodium azide, sodium cyanide, benzoic acid, salicylic acid, L-ascorbic acid, glutathione, thiourea, sodium diethyl dithiocarbamate, β-mercaptoethanol and sodium metabisulfite were tested. The most effective was found to be sodium diethyl dithiocarbamate which acted as a competitive inhibitor with a Ki value of 1.79?×?10?9?M. In addition one isoenzyme of PPO was detected by native polacrylamide slab gel electrophoresis.  相似文献   

19.
The sequence cato encoding catechol 1,2-dioxygenase from Candida tropicalis JH8 was cloned, sequenced, and expressed in Escherichia coli. The sequence cato contained an ORF of 858?bp encoding a polypeptide of 285?amino acid residues. The recombinant catechol 1,2-dioxygenase exists as a homodimer structure with a subunit molecular mass of 32 KD. Recombinant catechol 1,2-dioxygenase was unstable below pH 5.0 and stable from pH 7.0 to 9.0; its optimum pH was at 7.5. The optimum temperature for the enzyme was 30°C, and it possessed a thermophilic activity within a broad temperature range. Under the optimal conditions with catechol as substrate, the Km and Vmax of recombinant catechol 1,2-dioxygenase were 9.2?µM and 0.987?µM/min, respectively. This is the first article presenting cloning and expressing in E. coli of catechol 1,2-dioxygenase from C. tropicalis and characterization of the recombinant catechol 1,2-dioxygenase.  相似文献   

20.
A peroxidase has been purified to homogeneity from Euphorbia characias latex using ammonium sulfate precipitation and chromatography on DEAE-cellulose, hydroxylapatite and SP-Sephadex columns. The substrate specificity of the enzyme is typical of a plant peroxidase except that it shows no activity with indole-3-acetic acid. The pH optimum of the enzyme was 5.75 and the isoelectric point 7.4. The activation energy was 14 kcal/mol. The prosthetic group was shown to be ferriprotoporphyrin IX. Gel chromatography and PAGE indicate that the purified protein is composed of a single polypeptide chain having a MW of ca 48 000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号