首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 878 毫秒
1.
R C Gupta  E G Kranias 《Biochemistry》1989,28(14):5909-5916
A Ca2+-calmodulin-dependent protein kinase was purified to apparent homogeneity from the cytosolic fraction of canine myocardium, with phospholamban as substrate. Purification involved sequential chromatography on DEAE-cellulose, calmodulin-agarose, DEAE-Bio-Gel A, and phosphocellulose. This procedure resulted in a 987-fold purification with a 5.4% yield. The purified enzyme migrated as a single band on native polyacrylamide gels, and it exhibited an apparent molecular weight of 550,000 upon gel filtration. Gel electrophoresis under denaturing conditions revealed a single protein band with Mr 55,000. The purified kinase could be autophosphorylated in a Ca2+-calmodulin-dependent manner, and under optimal conditions, 6 mol of Pi was incorporated per mole of 55,000-dalton subunit. The activity of the enzyme was dependent on Ca2+, calmodulin, and ATP.Mg2+. Other ions which could partially substitute for Ca2+ in the presence of Mg2+ and saturating calmodulin concentrations were Sr2+ greater than Mn2+ greater than Zn2+ greater than Fe2+. The substrate specificity of the purified Ca2+-calmodulin-dependent protein kinase for cardiac proteins was determined by using phospholamban, troponin I, sarcoplasmic reticulum membranes, myofibrils, highly enriched sarcolemma, and mitochondria. The protein kinase could only phosphorylate phospholamban and troponin I either in their purified forms or in sarcoplasmic reticulum membranes and myofibrils, respectively. Exogenous proteins which could also be phosphorylated by the purified protein kinase were skeletal muscle glycogen synthase greater than gizzard myosin light chain greater than brain myelin basic protein greater than casein. However, phospholamban appeared to be phosphorylated with a higher rate as well as affinity than glycogen synthase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The high-purified vesicles of pig myometrium sarcolemma closed, mainly, so that the cytoplasmatic side is outside possess the Ca2+ (calmodulin)-dependent protein kinase activity. The initial rate of the endogenic phosphorylation without exogenic calmodulin is 6.3 and with its presence--10.7 pmol of 32Pi 1 min per 1 mg of protein. Km for ATP is equal to 164 microM, and Vmax--0.27 nmol of 32Pi 1 min per 1 mg of protein. Exogenic calmodulin increases the affinity to ATP (50 microM), Vmax being unchanged. Under optimal concentrations of calmodulin (10(-7)-10(-6) M) and 10(-4) M Ca2+ the protein kinase activity is 0.132 nmol of 32Pi min per 1 mg of protein. Electrophoresis in DS-PAAG has shown that membrane proteins with molecular weight of 105, 58, 25, 12 and 2 kDa are basic substrates of Ca2+ (calmodulin)-dependent phosphorylation. Trifluoperazine++ in the concentration of 40 microM inhibits phosphorylation of all five proteins. Ca2+ (calmodulin)-dependent phosphorylation is supposed to be a regulator of Ca2+-transport processes of sarcolemma.  相似文献   

3.
Canine cardiac sarcoplasmic reticulum is phosphorylated by adenosine 3',5'-monophosphate (cAMP)-dependent and by Ca2+-calmodulin-dependent protein kinases on an Mr 22 000 protein called phospholamban. Both types of phosphorylation are associated with an increase in the initial rate of Ca2+ transport. Thus, phospholamban appears to be a regulator for the calcium pump in cardiac sarcoplasmic reticulum. However, there is conflicting evidence as to the degree of association of the Ca2+-ATPase with its regulator, phospholamban. In this study, we report that phospholamban does not copurify with a Ca2+-ATPase preparation of high specific activity. Although 32P-labeled phospholamban is solubilized in the same fraction as the Ca2+-ATPase from cardiac sarcoplasmic reticulum, it dissociates from the Ca2+ pump during subsequent purification steps. Our isolation procedure results in an increase of over 4-fold in the specific activity of the Ca2+-ATPase, but a decrease of 2.5-fold in the specific activity of 32Pi-phosphoester bonds (pmol Pi/mg). Furthermore, the purified Ca2+-ATPase enzyme preparation is not a substrate for protein kinase in vitro to any significant extent. These data indicate that phospholamban does not copurify with the Ca2+-ATPase from cardiac sarcoplasmic reticulum. Isolation of a Ca2+-ATPase preparation essentially free of phospholamban will aid in future kinetic studies designed to elucidate similarities and differences in the Ca2+-ATPase parameters from cardiac and skeletal muscle (which is known not to contain phospholamban).  相似文献   

4.
A Molla  J G Demaille 《Biochemistry》1986,25(11):3415-3424
Phospholamban, the cardiac sarcoplasmic reticulum proteolipid, is phosphorylated by cAMP-dependent protein kinase, by Ca2+/phospholipid-dependent protein kinase, and by an endogenous Ca2+/calmodulin-dependent protein kinase, the identity of which remains to be defined. The aim of this study was therefore to characterize the latter kinase, called phospholamban kinase. Phospholamban kinase was purified approximately 42-fold with a yield of 11%. The purified fraction exhibits a specific activity of 6.5 nmol of phosphate incorporated into exogenous phospholamban per minute per milligram of protein. Phospholamban kinase appears to be a high molecular weight enzyme and presents a broad substrate specificity, synapsin-1, glycogen synthase, and smooth muscle myosin regulatory light chain being the best substrates. Phospholamban kinase phosphorylates synapsin-1 on a Mr 30 000 peptide. The enzyme exhibits an optimum pH of 8.6, a Km for ATP of 9 microM, and a requirement for Mg2+ ions. These data suggest that phospholamban kinase might be an isoenzyme of the multifunctional Ca2+/calmodulin-dependent protein kinase. Consequently we have searched for Mr 50 000-60 000 phosphorylatable subunits among cardiac sarcoplasmic reticulum proteins. A Mr 56 000 protein was found to be phosphorylated in the presence of Ca2+/calmodulin. Such phosphorylation alters the electrophoretic migration velocity of the protein. In addition, this protein that binds calmodulin was always found to be present in fractions containing phospholamban kinase activity. This Mr 56 000 protein is therefore a good candidate for being a subunit of phospholamban kinase. However, the Mr 56 000 calmodulin-binding protein and the Mr 53 000 intrinsic glycoprotein which binds ATP are two distinct entities.  相似文献   

5.
A Ca2+-phospholipid-dependent protein kinase C was isolated from the soluble fraction of bovine brain, using hydrophobic chromatography on phenyl-Sepharose CL-4B and high performance liquid chromatography on a Mono Q column. The enzyme had a specific activity of 822 nmol 32P/mg protein/min with histone H1 as a substrate. Phosphorylation of pig myocardium sarcolemma protein substrates was stimulated by Ca2+ and phosphatidylserine; the optimal concentrations of these compounds were 10(-4) M and 200 micrograms/ml, respectively. The value of Km(app) for Ca2+ was 3.10(-6) M. An addition of exogenous dioleine increased the enzyme affinity for Ca2+ which led to a decrease of Ca2+ concentration necessary for the maximal activation to occur. The optimal concentration of ATP needed for sarcolemmal preparation phosphorylation was 0.3-0.4 mM, which seems to be due to the high activity of sarcolemmal ATPases. The proteins phosphorylated in sarcolemmal preparations were identified, using SDS polyacrylamide gel electrophoresis with subsequent autoradiography. The 250, 140, 67, 58, 25 and 11 kD proteins appeared to be phosphorylated in the greatest degree. Since in myocardial sarcolemma protein kinase C predominantly phosphorylates the same proteins as does the cAMP-dependent protein kinase, it was assumed that protein kinase C can also play a role in the regulation of Ca2+-transporting systems of sarcolemma.  相似文献   

6.
The gel-overlay technique with 125I-labelled calmodulin allowed the detection of several calmodulin-binding proteins of Mr 280 000, 150 000, 97 000, 56 000, 35 000 and 24 000 in canine cardiac sarcoplasmic reticulum. Only two calmodulin-binding proteins could be identified unambiguously. Among them, the 97 000-Mr protein that undergoes phosphorylation in the presence of Ca2+ and calmodulin, is likely to be glycogen phosphorylase. In contrast, the (Ca2+ + Mg2+)-activated ATPase did not appear to bind calmodulin under our experimental conditions. The second known calmodulin target is dephosphophospholamban, which migrates with an apparent Mr of 24 000. The dimeric as well as the monomeric form of phospholamban was found to bind calmodulin. Phospholamban shifts the apparent Kd of erythrocyte (Ca2+ + Mg2+)-activated ATPase for calmodulin, suggesting thus a tight binding of calmodulin to the proteolipid. Interestingly enough, phospholamban phosphorylation by either the catalytic subunit of cyclic AMP-dependent protein kinase or the Ca2+/calmodulin-dependent phospholamban kinase was found to inhibit calmodulin binding.  相似文献   

7.
Highly purified pig myocardium sarcolemma vesicles possess the Ca2+,Mg2+-ATPase activity (4.1 mumol Pi/mg protein/hour) and induce the ATP-dependent accumulation of 45Ca2+ (6.0 nmol/mg protein/min). This reaction is not stimulated by oxalate; Ca2+ are released from the vesicles by saponin and Na+ treatment, which suggests that Ca2+ transport against the concentration gradient is induced by myocardium sarcolemma vesicles and not by sarcoplasmic reticulum fragments. The phorbol ester possessing a biological activity of a growth-promoting factor and activating membrane-bound protein kinase C stimulates the Ca2+,Mg2+-ATPase activity and the ATP-dependent accumulation of Ca2+, whereas its counterpart devoid of biological activity does not influence Ca2+ transport. Polymixin B, a specific inhibitor of protein kinase C, prevents the activating effect of phorbol esters on Ca2+ accumulation inside the vesicles. It is suggested that the ATP-dependent transport of Ca2+ in myocardium sarcolemma is controlled by Ca2+-phospholipid-dependent phosphorylation catalyzed by protein kinase C.  相似文献   

8.
The occurrence of phospholipid-sensitive calcium-dependent protein kinase (referred to as C kinase) and its endogenous substrate proteins was examined in a membrane preparation from rat pancreatic zymogen granules. Using exogenous histone H1 as substrate, C kinase activity was found in the membrane fraction. The kinase was solubilized from membranes using Triton X-100 and partially purified using DEAE-cellulose chromatography. An endogenous membrane protein (Mr approximately equal to 18 000) was found to be specifically phosphorylated in the combined presence of Ca2+ and phosphatidylserine. Added diacylglycerol was effective in stimulating phosphorylation of exogenous histone by the partially purified C kinase, but had no effect upon phosphorylation of the endogenous 18 kDa protein by the membrane-associated C kinase. Phosphorylation of the 18 kDa protein was rapid (detectable within 30 s following exposure to Ca2+ and phosphatidylserine), and highly sensitive to Ca2+ (Ka = 4 microM in the presence of phosphatidylserine). These findings suggest a role for this Ca2+-dependent protein phosphorylation system in the regulation of pancreatic exocrine function.  相似文献   

9.
Properties of neurofilament protein kinase.   总被引:5,自引:0,他引:5       下载免费PDF全文
Neurofilament (NF) protein kinase, partially purified from NF preparations [Toru-Delbauffe & Pierre (1983) FEBS Lett. 162, 230-234], was found to be distinct from both the casein kinase present in NFs and the cyclic AMP-dependent protein kinase which is able to phosphorylate NFs. NF-kinase phosphorylated the three NF protein components. The amount of phosphate incorporated per molecule was higher for NF 200 than for NF 145 and NF 68. Other proteins present in the NF preparations were also used as NF-kinase substrates. Two of them might correspond to the myelin basic proteins with Mr values of 18,000 and 21,000. Four other substrates in the NF preparation were not identified (respective Mr values 53,000, 55,000, 65,000 and greater than 300,000). NF kinase also phosphorylated two additional brain-cell cytoskeletal elements: GFAp and vimentin. Casein, histones and phosvitin, currently used as substrates for protein kinase assays, were very poor phosphate acceptors. Half-maximal NF-kinase activity was obtained at an NF protein concentration of about 0.25 mg/ml in heated, salt-washed, NF preparations. The specific activity was about 5 pmol of 32P incorporated/min per microgram of NF kinase preparation protein. ATP was a phospho-group donor (Km 8 X 10(-5) M), but GTP was not. NF-kinase activity remained stable at 65 degrees C for more than 1 h. The enzyme was not degraded by storage at -20 degrees C for several months in a buffer containing 50% (w/v) sucrose. Maximal activity was obtained with 5 mM-Mg2+ (Mg2+ could be replaced by Co2+); Zn2+ and Cu2+ inhibited the reaction. NF-kinase was not dependent on cyclic AMP, cyclic GMP, Ca2+ or Ca2+ plus dioleoylglycerol and phosphatidylserine.  相似文献   

10.
Purified zymogen granules were prepared from rat pancreas by using an iso-osmotic Percoll gradient. In the presence of [gamma-32P]ATP, phosphorylation of several granule proteins was induced by Ca2+, most notably a Mr-13 000 protein, whereas addition of cyclic AMP was without effect. When phosphatidylserine was also added, Ca2+ increased the phosphorylation of additional proteins, with the largest effect on a protein of Mr 62 000. Purified granules were also able to phosphorylate exogenous substrates. Ca2+-induced phosphorylation of lysine-rich histone was enhanced over 3-fold in the presence of phosphatidylserine, and cyclic AMP-activated protein kinase activity was revealed with mixed histone as substrate. The concentrations of free Ca2+ and cyclic AMP required for half-maximal phosphorylation of both endogenous and exogenous proteins were 1-3 microM and 57 nM respectively. Treatment of granules with 0.25 M-KCl resulted in the release of phosphatidylserine-dependent kinase activity into a high-speed granule supernatant. In contrast, granule-protein substrates of Ca2+-activated kinase activity were resistant to KCl extraction, and in fact were present in purified granule membranes. Kinase activity activated by cyclic AMP was not extracted by KCl treatment. It is concluded that phosphorylation of integral membrane proteins in the zymogen granule can be induced by one or more Ca2+-activated protein kinases. Such a reaction is a potential mechanism by which exocytosis may be regulated in the exocrine pancreas by Ca2+-mediated secretagogues.  相似文献   

11.
Highly purified vesicles of rabbit myocardium sarcolemma with predominant inside-out orientation possess the Ca2+-calmodulin-dependent protein kinase activity. At optimal concentrations of calmodulin (0.5 microM) and Ca2+ (0.1 mM), the activity of protein kinase is 0.21 nmol 32P X min X mg of protein. The Km(app) value for ATP is 3.0 X 10(-6) M, V = 0.27 nmol 32P X mg of protein X min. Endogenous Ca2+-calmodulin-dependent protein kinase phosphorylates four protein substrates in sarcolemmal vesicles (Mr = 145, 22, 11.5, and 6-8 KD). Studies with passive efflux of Ca2+ from the SL vesicles showed that the Ca2+-calmodulin-dependent phosphorylation of protein components of sarcolemma inhibits this reaction.  相似文献   

12.
A calcium-activated, phospholipid-dependent protein kinase (protein kinase C) was purified to near homogeneity from bovine polymorphonuclear leucocytes. The purified enzyme had a specific activity of 10 000 U/mg protein and on SDS gelelectrophoresis the Mr was 88 000. The enzyme activity was almost totally dependent upon phosphatidylserine and could be strongly activated by Ca2+ concentrations in the micromolar range. At lower concentrations of calcium (less than 1 X 10(-7) M) the enzyme was only activated by the simultaneous presence of phosphatidylserine and diolein. Phorbol 12-myristate 13-acetate mimicked the effect of diolein and partially activated the enzyme. Protein kinase C activity and the phorbolester binding protein co-purified throughout all the purification steps.  相似文献   

13.
Sarcomplasmic reticulum from rabbit fast skeletal muscle contains intrinsic protein kinase activity (ATP:protein phosphotransferase, EC 2.7.1.37) and a substrate. The protein kinase activity was Mg2+ dependent and could also phosphorylate exogenous protein substrates. Autophosphorylation of sarcoplasmic reticulum vesicles was not stimulated by cyclic AMP, neither was it inhibited by the heat-stable protein kinase inhibitor protein. The phosphorylated membranes had the characteristics of a protein with a phosphoester bond. An average of 73 pmol Pi/mg protein were incorporated in 10 min at 30 degrees C. Addition of exogenous cyclic AMP-dependent protein kinase increased the endogenous level of phosphorylation by 25-100%. Sarcoplasmic reticulum membrane phosphorylation, mediated by either endogenous cyclic AMP-independent or exogenous cyclic AMP-dependent protein kinase, occurred on a 100 000 dalton protein and both enzyme activities resulted in enhanced calcium uptake and Ca2+-dependent ATPase (ATP phosphohydrolase, EC 3.6.1.3), in a manner similar to cardiac microsomal preparations. Regulation of Ca2+ transport in skeletal sarcoplasmic reticulum may be mediated by phosphorylation of a 100 000 dalton component of these membranes.  相似文献   

14.
Several bovine brain proteins have been found to interact with a hydrophobic chromatography resin (phenyl-Sepharose CL-4B) in a Ca2+-dependent manner. These include calmodulin, the Ca2+/phospholipid-dependent protein kinase (protein kinase C) and a novel Ca2+-binding protein that has now been purified to electrophoretic homogeneity. This latter protein is acidic (pI 5.1) and, like calmodulin and some other high-affinity Ca2+-binding proteins, exhibits a Ca2+-dependent mobility shift on sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, with an apparent Mr of 22 000 in the absence of Ca2+ and Mr 21 000 in the presence of Ca2+. This novel calciprotein is distinct from known Ca2+-binding proteins on the basis of Mr under denaturing conditions, Cleveland peptide mapping and amino acid composition analysis. It may be a member of the calmodulin superfamily of Ca2+-binding proteins. This calciprotein does not activate two calmodulin-dependent enzymes, namely cyclic nucleotide phosphodiesterase and myosin light-chain kinase, nor does it have any effect on protein kinase C. It may be a Ca2+-dependent regulatory protein of an as-yet-undefined enzymic activity. The Ca2+/phospholipid-dependent protein kinase is also readily purified by Ca2+-dependent hydrophobic-interaction chromatography followed by ion-exchange chromatography, during which it is easily separated from calmodulin. A preparation of protein kinase C that lacks contaminating kinase or phosphatase activities is thereby obtained rapidly and simply. Such a preparation is ideal for the study of phosphorylation reactions catalysed in vitro by protein kinase C.  相似文献   

15.
Calcium-accumulating vesicles were isolated by differential centrifugation of sonicated platelets. Such vesicles exhibit a (Ca2+ + Mg2+)-ATPase activity of about 10 nmol (min . mg)-1 and an ATP-dependent Ca2+ uptake of about 10 nmol (min . mg)-1. When incubated in the presence of Mg[gamma-32P]ATP, the pump is phosphorylated and the acyl phosphate bond is sensitive to hydroxylamine. The [32P]phosphate-labeled Ca2+ pump exhibits a subunit molecular weight of 120 000 when analyzed by lithium dodecyl sulfate-polyacrylamide gel electrophoresis. Platelet calcium-accumulating vesicles contain a 23 kDa membrane protein that is phosphorylatable by the catalytic subunit of cAMP-dependent protein kinase but not by protein kinase C. This phosphate acceptor is not phosphorylated when the vesicles are incubated in the presence of either Ca2+ or Ca2+ plus calmodulin. The latter protein is bound to the vesicles and represents 0.5% of the proteins present in the membrane fraction. Binding of 125I-labeled calmodulin to this membrane fraction was of high affinity (16 nM), and the use of an overlay technique revealed four major calmodulin-binding proteins in the platelet cytosol (Mr = 94 000, 87 000, 60 000 and 43 000). Some minor calmodulin-binding proteins were enriched in the membrane fractions (Mr = 69 000, 57 000, 39 000 and 37 000). When the vesicles are phosphorylated in the presence of MgATP and of the catalytic subunit of cAMP-dependent protein kinase, the rate of Ca2+ uptake is essentially unaltered, while the Ca2+ capacity is diminished as a consequence of a doubling in the rate of Ca2+ efflux. Therefore, the inhibitory effect of cAMP on platelet function cannot be explained in such simple terms as an increased rate of Ca2+ removal from the cytosol. Calmodulin, on the other hand, was observed to have no effect on the initial rate of calcium efflux when added either in the absence or in the presence of the catalytic subunit of the cyclic AMP-dependent protein kinase, nor did the addition of 0.5 microM calmodulin result in increased levels of vesicle phosphorylation.  相似文献   

16.
Sarcolemmal membranes were isolated from porcine skeletal muscle by modifications of a LiBr-extraction technique. Latency determinations of acetylcholinesterase, ouabain-sensitive p-nitrophenylphosphatase, [3H]ouabain binding, and (Na+ + K+)-ATPase activities indicated that 65-76% of the membranes were sealed inside-out vesicles. The preparations were enriched in cholesterol and phospholipid, and demonstrated adenylate cyclase activity and both cAMP and cGMP phosphodiesterase activities. An indication of the purity of this fraction was that the Ca2+-ATPase activity (0.13 mumol Pi mg-1 min-1 at 37 degrees C) was 3.8% of that of porcine skeletal muscle sarcoplasmic reticulum preparations. Pertussis toxin specifically catalyzed the ADP-ribosylation of a Mr 41,000 sarcolemmal protein, indicating the presence of the inhibitory guanine nucleotide regulatory protein of adenylate cyclase, Ni. An endogenous ADP-ribosyltransferase activity, with several membrane protein substrates, was also demonstrated. The addition of exogenous cAMP-dependent protein kinase or calmodulin promoted the phosphorylation of a number of sarcolemmal proteins. The calmodulin-dependent phosphorylation exhibited an approximate K 1/2 for Ca2+ of 0.5 microM, and an approximate K 1/2 for calmodulin of 0.1 microM. 125I-Calmodulin affinity labeling of the sarcolemma, using dithiobis(succinimidyl propionate), demonstrated the presence of Mr 160,000 and 280,000 calmodulin-binding components in these membranes. These results demonstrate that this porcine preparation will be valuable in the study of skeletal muscle sarcolemmal ion transport, protein and hormonal receptors, and protein kinase-catalyzed phosphorylation.  相似文献   

17.
Phospholamban, a putative regulator of cardiac sarcoplasmic reticulum Ca2+ transport, has been shown to be phosphorylated in vitro by cAMP-dependent protein kinase and an intrinsic Ca2+-calmodulin-dependent protein kinase activity. This study was conducted to determine if Ca2+-calmodulin-dependent phosphorylation of phospholamban occurs in response to physiologic increases in intracellular Ca2+ in intact myocardium. Isolated guinea pig and rat ventricles were perfused with 32Pi after which membrane vesicles were isolated from individual hearts by differential centrifugation. Administration of isoproterenol (10 nM) to perfused hearts stimulated 32P incorporation into phospholamban, Ca2+-ATPase activity, and Ca2+ uptake of sarcoplasmic reticulum isolated from these hearts. These biochemical changes were associated with increases in contractility and shortening of the t 1/2 of relaxation. Elevated extracellular Ca2+ produced comparable increases in contractility but failed to stimulate phospholamban phosphorylation or Ca2+ transport and did not alter the t 1/2 of relaxation. Inhibition of trans-sarcolemmal Ca2+ influx by perfusing the ventricles with reduced extracellular Ca2+ (50 microM) attenuated the increases in 32P incorporation produced by 10 nM isoproterenol. Trifluoperazine (10 microM) also attenuated isoproterenol-induced increases in 32P incorporation into phospholamban. In both cases, Ca2+ transport was reduced to a degree comparable to the reduction in phospholamban phosphorylation. These results suggest that direct physiologic increases in intracellular Ca2+ concentration do not stimulate phospholamban phosphorylation in intact functioning myocardium. Ca2+-calmodulin-dependent phosphorylation of phospholamban may occur in response to agents which stimulate cAMP-dependent mechanisms in intact myocardium.  相似文献   

18.
Protein kinase and its endogenous substrates in coated vesicles   总被引:3,自引:0,他引:3  
Coated vesicles prepared from bovine brains contained a protein kinase activity which catalyzed the phosphorylation of endogenous structural proteins, Mr 150 000, 120 000, 48 000 and 32 000. An endogenous protein, Mr 48 000 was most strongly phosphorylated by this kinase. This protein kinase also phosphorylated exogenous proteins, phosvitin intensely and casein slightly but not histone or protamine. The enzyme activity was independent of cyclic nucleotides or Ca2+/calmodulin. Mg2+ stimulated the kinase activity. Some divalent cations were substituted for Mg2+; the potency decreased in the order Mn2+, Mg2+, Co2+, Ca2+, Zn2+. Two separate subfractions, the outer coat and the inner vesicle (core), were prepared from coated vesicles by a urea treatment followed by sucrose density gradient centrifugation and dialysis. The kinase activity was found predominantly in the coat subfraction.  相似文献   

19.
Membrane-bound protein kinase C of rat submandibular gland was characterized and the cytosolic kinase C of the tissue was partially purified. The membrane-bound kinase could be activated by Triton X-100 but not EGTA in the presence of both Ca2+ and phosphatidylserine (PS). The Km values for Ca2+ and PS were 150 microM and 5 micrograms, respectively. Addition of 10(-6) M diacylglycerol resulted in an increased affinity of the kinase for Ca2+ (Km = 10 microM). Phorbol 12,13-dibutyrate activated the kinase in the absence of exogenous Ca2+ and PS, suggesting that adequate amounts of each activator are present in the membrane itself. Polymyxin B inhibited the stimulated kinase C activity in a concentration-dependent manner. This inhibition could be overcome by addition of PS. The cytosolic kinase was partially purified 133-fold by chromatography on columns of DEAE-Sephacel and S-300 Sephacryl. The total kinase activity increased with respect to the kinase activity measured in the starting material with column chromatography, suggesting that an inhibitor is present in the cytosolic fraction of the tissue.  相似文献   

20.
A protein phosphatase which dephosphorylates phospholamban was purified from canine cardiac cytosol. Purification involved sequential chromatography on DEAE-Sephacel, polylysine-agarose, heparin-agarose, Mono Q HR 10/10, and Superose 6. The enzyme was composed of three subunits with Mr = 63,000, 55,000, and 38,000, and it could dephosphorylate the sites on phospholamban phosphorylated by either cAMP-dependent or calcium-calmodulin-dependent protein kinase. Phospholamban phosphatase activity was enhanced 12-, 9-, and 3-fold by the divalent cations Mg2+, Mn2+, and Ca2+, respectively. The phosphatase was inhibited by PPi, ATP, NaF, and Pi and the degree of inhibition was different with each compound. The substrate specificity of the purified phosphatase for cardiac phosphoproteins was determined using troponin I, phospholamban, and highly enriched sarcolemmal and sarcoplasmic reticulum preparations, phosphorylated by the cAMP-dependent protein kinase. The phosphatase exhibited the highest activity with phospholamban as substrate. Thus, dephosphorylation of phospholamban by this phosphatase may participate in regulation of sarcoplasmic reticulum function in cardiac muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号