首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We have previously demonstrated a marked change in sugar moieties of glycoproteins of the cuticle of the blue crab, Callinectes sapidus, between 0.5 and 3 h post-ecdysis. The present study has identified a glycosidase that appears in the cuticle during the early post-ecdysial hours. The enzyme has affinities for p-nitrophenyl derivatives of both N-acetylglucosamine and N-acetylgalactosamine. Both activities are competitively inhibited by chitobiose, suggesting that the enzyme could be a N-acetylhexosaminidase (EC 3.2.1.52). Atypical of N-acetylhexosaminidases described to date, this enzyme has a pH optimum of 7.0. The enzyme activity is high during the post-ecdysial period coincident with the changes in glycoprotein profiles observed in vivo. Partial purification of the enzyme has been accomplished by Sephacryl size-exclusion chromatography followed by concanavalin A affinity chromatography.  相似文献   

2.
—The isoelectric point, surface charge and Km for choline of choline acetyltransferase from different species were determined. Choline acetyltransferase from mouse and monkey brain was resolved into three molecular forms with isoelectric points at 7·1, 7·5, 8·4 and 7·0, 7·35, 8·35 respectively, whereas choline acetyltransferase from the electric organ of Torpedo and from rabbit brain showed a molecular form with isoelectric point 6·6 and 6·9, respectively. With the exception of rabbit brain enzyme, there was a good correlation between the isoelectric points and surface charges of the different choline acetyltransferases. The Km's for choline were 0·66, 0·88, 0·92 and 3·5 mM for monkey, mouse, rabbit and Torpedo choline acetyltransferase respectively. The separated molecular forms of mouse and monkey enzymes did not show any significant difference in their affinity for choline.  相似文献   

3.
Endo-β-N-acetylglucosaminidase from Arthrobacter protophormiae was activated by the addition of glucose, mannose, N-acetylglucosamine, and β-allose. While the enzyme did not appear to be significantly affected by the addition of galactose or N-acetylgalactosamine. These results indicate that the C-4 and C-6 positions of the monosaccharide are the most important for enzyme activation. Moreover, the enzyme was activated by the addition of disaccharides such as cellobiose, gentiobiose, and di-N-acetylchitobiose, but not by polysaccharides such as starch and yeast mannan. In the presence of N-acetylglucosamine, the enzyme activation occurred well over pH 4.0 and the Km value of the enzyme for (Man)6(GlcNAc)2-Asn-dansyl changes from 1.2 mM to 3.2 mM.  相似文献   

4.
β-Hexosaminidases (EC 3.2.1.52) are lysosomal enzymes that remove terminal β-glycosidically bound N-acetylglucosamine and N-acetylgalactosamine residues from a number of glycoconjugates. Reliable assay systems are particularly important for the diagnosis of a family of lysosomal storage disorders, the GM2 gangliosidoses that result from inherited β-hexosaminidase deficiency. More recently, aberrant hexosaminidase levels have also been found to be associated with a variety of inflammatory diseases. Apart from patient testing and carrier screening, practical in vitro assays are indispensable for the characterization of knock-out mice with potentially altered hexosaminidase activities, for detailed structure-function studies aimed at elucidating the enzymatic mechanism, and to characterize newly described enzyme variants from other organisms. The purpose of this article is to discuss convenient hexosaminidase assay procedures for these and other applications, using fluorogenic or chromogenic artificial substrates as well as the physiological glycolipid substrate GM2. Attempts are also made to provide an overview of less commonly used alternative techniques and to introduce recent developments enabling high-throughput screening for enzyme inhibitors.  相似文献   

5.
Abstract—The effect of pentylenetetrazol (PTZ) on acetylcholinesterase (E.C.3.1.1.7) was studied in vitro. The kinetics of the reaction were studied on AChE in crude homogenates of rat brain and in purified preparations from Electrophorus electricus. The Km for rat brain AChE was 1·22 × 10-4m, with a Vmax of 1·37 μmol/g/min whereas the K4 for competitive inhibition of the enzyme by PTZ was 4·7 × 10-3m. The commercially purified enzyme exhibited a Km of 1·73 × 10-4m and a Ki of 1·00 × 10-3m.  相似文献   

6.
—Forssman hapten (N-acetyl-α-galactosaminosyl-N-acetyl-β-galactosaminosyl-α-galactosyl-β-galactosyl-glucosylceramide), prepared from sheep erythrocytes was specifically labelled with tritium at the terminal N-acetyl-α-galactosamine moiety by the galactose oxidase-sodium [3H]borohydride method. Activities to cleave the terminal N-acetyl-α-galactosamine from Forssman hapten were detected in the high-speed supernatant of the frozen-thawed and sonicated crude mitochondrial fraction from adult rat brain and kidney. The optimal pH of the reaction was approximately 4·4. The reaction was linear for at least 1 h for the kidney enzyme and up to 3 h for the brain enzyme. Taurocholate was required for the activity. The optimal concentration was 1·5-2 mg/ml. Several other detergents and bile salts tested could not replace taurocholate. The apparent Km of the brain and kidney enzymes were 1·0×10?4M and 3·5×10?4m , respectively. During development, Forssman hapten-cleaving activities of both brain and kidney gradually declined in specific activity as the animal matured. These changes were similar to those of nonspecific p-nitrophenyl N-acetyl-α-galactosaminidase. Several rat organs examined all showed detectable activities to cleave Forssman hapten.  相似文献   

7.
A psychrotrophic bacterium, strain Mct-9, which produced an N-acetylglucosamine-6-phosphate deacetylase, was isolated from a deep-seawater sample in the Mariana Trough. The Mct-9 strain was identified as Alteromonas sp. The native enzyme had a molecular mass of 164,000 Da, and was predicted to be composed of four identical subunits with molecular masses of 41,000 Da. The purified enzyme hydrolyzed N-acetylglucosamine (GlcNAc), GlcNAc-6-phosphate, and GlcNAc-6-sulfate. Considering the low K m and high k cat /K m for GlcNAc-6-phosphate, it probably acts as a GlcNAc-6-phosphate deacetylase in vivo. The enzyme was functional in the temperature range of 5° to 70°C and displayed optimal activity at 55°C. The optimal temperature was higher than that of the deacetylase from the mesophilic bacterium Vibrio cholerae non-O1. The characteristics of the GlcNAc-6-phosphate deacetylase from Alteromonas sp. are unique among psychrotrophs and psychrophiles, whose intracellular enzymes are mostly thermolabile. Received May 6, 1999; accepted August 16, 1999.  相似文献   

8.
An hexokinase (EC 2.7.1.1) and a glucokinase (EC 2.7.1.2) from the red yeast Rhodotorula glutinis are described. Both enzymes have been separated and some of their properties studied. The two enzymes share many properties, the Kmfor glucose is 0.1 mm for both enzymes and the Km values for ATP are 0.5 mm and 0.6 mm respectively for hexokinase and glucokinase. The hexokinase shows a Km of 2 mm for fructose and 0.1 mm for mannose; the glucokinase has a Km for mannose of 0.2 mm. Both enzymes are constitutive, show competitive inhibition by N-acetylglucosamine and xylose, have weak affinity for glucosamine and exhibit a broad pH optimum. The molecular weights determined by gel filtration are 110,000 for glucokinase and 96,000 for hexokinase. The maximal activity of both hexose kinases nearly accounts for glucose utilization by Rh. glutinis.  相似文献   

9.
A rapid, simple, and inexpensive method has been developed for preparing UDP-N-acetylgalactosamine in amounts sufficient for several thousand assays of enzymes that employ this nucleotide sugar as substrate. The UDP-N-acetylglucosamine-4-epimerase in extracts of porcine submaxillary glands was used to convert UDP-N-acetylglucosamine to an equilibrium mixture of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine (molar ratio, 77:23). The two nucleotide sugars were separated from components in the extract by ion-exchange chromatography and then separated from one another by affinity chromatography on a column of Griffonia simplicifolia lectin I bound to agarose. The UDP-N-acetylgalactosamine was obtained in pure form by ion-exchange chromatography in an overall yield of 91% from the equilibrium mixture. The separation of the two nucleotide sugars by affinity chromatography also provides a rapid assay for the UDPGlcNAc-4-epimerase, which is more accurate and less time consuming than earlier published assays.  相似文献   

10.
—Choline acetyltransferase was extracted from Lactobacillus plantarum by relatively gentle procedures involving penicillin treatment, osmotic shock and passage through a French pressure cell. After partial purification, the extract was compared with choline acetyltransferase of calf caudate nucleus for kinetic properties and response to a class of inhibitors which consists of analogues of styrylpyridine. Both enzymes obeyed a sequential mechanism with Michaelis constants for the bacterial enzyme, Km= 8 μm vs. acetyl-CoA and 0·44 mm vs. choline; and for the caudate nucleus enzyme, Km= 15 μm vs. acetyl-CoA and 0·8 mm vs. choline. Both were stabilized by dithiothreitol and EDTA. The extracts differed in that the bacterial enzyme was more labile and apparently was susceptible to conformational changes, which modified its response to the styrylpyridinetype inhibitors. The use of intact cells of Lactobacillus plantarum as an in vivo system for studying the inhibition of choline acetyltransferase by styrylpyridines was possible only for non-quaternary analogues, which exist as an equilibrium mixture of charged and uncharged species.  相似文献   

11.
The kinetic parameters of the inhibition of pigeon brain acetylchlolinesterase (AChE) by procaine hydrochloride were investigated. Procaine (0·083–1·67 mM) reversibly inhibited AChE activity (15–83 percent) in a concentration dependent manner, the IC50 being about 0·38 mM. The Michaelis-Menten constant (Km) for the hydrolysis of acetylthiocholine iodide was found to be 1·53 × 10?4 M and the Vmax was 1·06 μmol min?1 mg?1 protein. Dixon as well as Lineweaver-Burk plots and their secondary replots indicated that the nature of the inhibition is of the linear mixed type which is considered to be a mixture of partial competitive and pure non-competitive. The values of Ki(slope) and Ki (intercepts) were estimated as 0·14 mM and 0·22 mM respectively by the primary Dixon and by the secondary replots of the Lineweaver-Burk plot. The Ki′/Ki ratio shows that procaine has a greater affinity of binding for the peripheral than for the active site.  相似文献   

12.
Concanavalin A, which binds to specific carbohydrate determinants on the cell surface, was used to investigate the binding of prolactin to its receptors in liver membranes from female rats. The binding of 125I-labeled ovine prolactin to receptors was sharply inhibited by concanavalin A. This effect was reversed by the competitive sugar α-methyl-D-mannopyranoside and thus required the presence of specifically bound lectin. Concentrations of concanavalin A of up to 50 μg/ml caused a progressive decrease in the apparent affinity of the prolactin receptor for hormone. When higher concentrations were used, the number of available binding sites decreased. Concanavalin A-resistant receptors, about 30% of the total, had the same dissociation constant (Kd) as the controls. The binding of 125I-labeled concanavalin A in the same membrane preparations showed the presence of two distinct types of concanavalin A binding. At low concentrations, the lectin bound with high affinity (Kd ≈ 6.6 · 10?8 M). At high lectin concentrations, low affinity (Kd ≈ 6.7 · 10?5 M) binding predominated. Since high affinity concanavalin A binding was saturated at 50 μg/ml, this class of binding most likely alters the affinity of the prolactin receptor for hormone; low affinity concanavalin A binding may mask prolactin receptors, making them inaccessible to the hormone.Binding sites for concanavalin A and prolactin appear to be independent but closely related since (i) concanavalin A did not displace bound prolactin from its receptor, and (ii) detergent-solubilized 125I-labeled prolactin-receptor complexes bound to concanavalin A-Sepharose and were eluted by α-methyl-D-mannopyranoside.  相似文献   

13.
A β-N-acetylglucosaminidase produced by a novel fungal source, the moderately thermophilic aerobic ascomycete Talaromyces emersonii, was purified to apparent homogeneity. Submerged fermentation of T. emersonii, in liquid medium containing algal fucoidan as the main carbon source, yielded significant amounts of extracellular N-acetylglucosaminidase activity. The N-acetylglucosaminidase present in the culture-supernatant was purified by hydrophobic interaction chromatography and preparative electrophoresis. The enzyme is a dimer with molecular weight and pI values of 140 and 3.85, respectively. Substrate specificity studies confirmed the glycan specificity of the enzyme for N-acetylglucosamine. Michaelis-Menten kinetics were observed during enzyme-catalyzed hydrolysis of the fluorescent substrate methylumbelliferyl-β-D-N-acetylglucosaminide at 50°C, pH 5.0 (Km value of 0.5 mM). The purified N-acetylglucosaminidase displayed activity over broad ranges of pH and temperature, yielding respective optimum values of pH 5.0 and 75°C. The T. emersonii enzyme was less susceptible to inhibition by N-acetylglucosamine and other related sugars than orthologs from other sources. The enzyme was sensitive to Hg2+, Co2+ and Fe3+.  相似文献   

14.
Abstract— The enzyme in rat brain responsible for the de-acetylation of N-acetyl-aspartic acid has been partially purified. In contrast to the enzyme from hog kidney which is stable at 70°C, it rapidly denatures above 57°C. The rat brain enzyme has the same Km for its substrate and the same solubility in ammonium sulphate solution as the hog kidney enzyme. Results of migration on starch gel electro-phoreses and isoelectric focusing indicate a pI for the amidohydrolase of 5.1. A variety of potential substrates, modulators, and inhibitors have been examined.  相似文献   

15.
Alcaligenes xylosoxydans subsp. xylosoxydans A-6 (Alcaligenes A-6) produced N-acyl-D-aspartate amidohydrolase (D-AAase) in the presence of N-acetyl-D-aspartate as an inducer. The enzyme was purified to homogeneity. The enzyme had a molecular mass of 56 kDa and was shown by sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) to be a monomer. The isoelectric point was 4.8. The enzyme had maximal activity at pH 7.5 to 8.0 and 50°C, and was stable at pH 8.0 and up to 45°C. N-Formyl (Km=12.5 mM), N-acetyl (Km=2.52 mM), N-propionyl (Km=0.194 mM), N-butyryl (Km=0.033 mM), and N-glycyl (Km =1.11 mM) derivatives of D-aspartate were hydrolyzed, but N-carbobenzoyl-D-aspartate, N-acetyl-L-aspartate, and N-acetyl-D-glutamate were not substrates. The enzyme was inhibited by both divalent cations (Hg2+, Ni2+, Cu2+) and thiol reagents (N-ethylmaleimide, iodoacetic acid, dithiothreitol, and p-chloromercuribenzoic acid). The N-terminal amino acid sequence and amino acid composition were analyzed.  相似文献   

16.
A new strategy for the fluorometric determination of glycosyltransferase activities is reported. The method involves dansyl chloride derivatization of the reduced form (pNH2phenyl) of a hydrophobic, aglycon moiety covalently linked to a number of acceptor substrates (pNO2phenyl). Focusing on the Golgi enzyme core 2N-acetylglucosaminyltransferase, we found that synthesis and fractionation of the dansylated substrate derivative were rapid, easy and inexpensive. Additionally, the corresponding enzyme assay proved reproducible and very sensitive, as 0.4 pmol of reaction product were readily detected. This fluorometric approach appears therefore to be a valid tool for investigating the monitoring differential expression of glycosyltransferases exhibiting low levels of enzyme activity.Abbreviations T transferase - Gal D-N-galactose - GlcNAc D-N-acetylglucosamine - GalNAc D-N-acetylgalactosamine - HPLC high pressure liquid chromatography - UDP uridine diphosphate - TES 2-{[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]amino}ethanesulfonic acid - pNp para-nitrophenyl - NMR nuclear magnetic resonance - DMSO dimethyl sulphoxide  相似文献   

17.
—The detailed subcellular distribution and some properties of acetyl-CoA hydrolase were studied in the rat brain. The brain homogenate (S1) hydrolysed acetyl-CoA at a rate of approx 2·3 nmol/min/mg of protein at 37°C. The total activity of acetyl-CoA hydrolase was distributed in the following order: soluble > mitochondrial > microsomal, synaptosomal > myelin fraction. The order of the specific activity of the enzyme was: soluble, microsomal > mitochondrial > synaptosomal > myelin fraction. The synaptic vesicle fraction (D) had relatively high specific activity among the intraterminal particulate fractions, having two or three times higher specific activity than that of the synaptic cytoplasmic membrane fraction (F or G). Attempts to de-occlude acetyl-CoA hydrolase in the particulate fraction showed that only the enzyme activity in the myelin fraction was increased markedly by the treatment with ether or Triton X-100. Lineweaver-Burk plots gave straight lines for each subcellular fraction and apparent Km values for acetyl-CoA were between 0·1 and 0·2 mM. Neither diisopropyl fluorophosphate nor physostigmine at the concentration of 0·1 mm inhibited the enzyme activity.  相似文献   

18.
Chitin deacetylase, active in the presence of acetate (96% of the enzymatic activity was retained in the presence of 100 mm sodium acetate), was purified to electrophoretic homogeneity from a culture filtrate of Colletotrichum lindemuthianum (944-fold with a recovery of 4.05%). The enzyme was induced in the medium after the eighth day of incubation simultaneously with the blackening of the medium. The molecular mass of the enzyme was 31.5 kDa and 33 kDa as judged by SDS–PAGE and gel filtration, respectively, suggesting that the enzyme is a single polypeptide. The optimum temperature was 60°C and the optimum pH was 11.5–12.0 when glycol chitin was used as substrate. The enzyme was active toward glycol chitin, partially N-deacetylated water soluble chitin, and chitin oligomers the degrees of polymerization of which were more than four, but was less active with chitin trimer and dimer, and inactive with N-acetylglucosamine. The Km and kcat for glycol chitin were 2.55 mm and 27.1s?1, respectively, and those for chitin pentamer were 414 μm and 83.2s?1, respectively. The reaction rates of the enzyme toward glycol chitin and chitin oligomers seemed to follow the Michaelis–Menten kinetics.  相似文献   

19.
In this report, we describe the preparation of a library ofN-linked glycans from whole murine brain obtained by the large-scale hydrazinolysis of an acetone powder of the tissue followed by chromatographic procedures. 84% of the characterized oligosaccharides were found to be anionic, the remainder neutral. The anionic species were successively neutralized by neuraminidase (29%), aq. hydrofluoric acid (30%), and methanolysis (26%), indicating that approximately equal portions were sensitive to desialylation, dephosphorylation and desulfation, respectively. The presence of the sulfated fraction was confirmed by direct35SO4 metabolic labelling. A residual partially characterized fraction was found to be anionic through possession of carboxylic acid groups, unrelated to sialic acid. The purified oligosaccharides, in the absence of their original protein conjugates, were shown to retain those immunological characteristics essential for recognition by a specific monoclonal antibody, LS (412), that is known to recognize a carbohydrate epitope present on a number of neural adhesion molecules and functional in neural cell adhesion. These properties confirm the viability of scaling up the size of the hydrazinolysis procedure and adapting it to whole tissue for the production of glycan libraries and for the probing of structures of interest.Abbreviations ConA concanavalin A - ELISA enzyme-linked immunosorbent assay - Fuc fucose - Gal galactose - GalNAc N-acetylgalactosamine - GlcNAc N-acetylglucosamine - g.u. glucose units - HRP horseradish peroxidase - HVE high voltage electrophoresis - Man mannose - MS mass spectrometry - N-CAM neural cell adhesion molecule  相似文献   

20.
Abstract— –Enzymic transformation of [4-14C]dehydroepiandrosterone or [4-14C]dehydro-epiandrosterone sulphate to androstenediol or its sulphate occurred when incubated with a microsomal preparation of rat brain or a whole rat blood homogenate. The brain enzyme which appeared to cause this transformation had a pH optimum at 60, was NADPH2-dependent, and had an apparent Km of 4·6 × 10?6m . When the subcellular fractions of rat brain were compared for transformation, microsomes had the highest specific activity, followed by the cytosol. The crude nuclear and mitochondrial fractions had no significant activity. The level of enzymic activity in the brain microsomes increased from that for rats sacrificed at 7 days of postnatal age to a maximum for rats sacrificed at 1 month of age; then the activity appeared to level off in rats older than 1 month. Microsomes obtained from the cerebellum had the highest specific activity in comparison to that obtained from the cerebral cortex, the diencephalon, and the brain stem. The incubated preparations of rat brain also converted dehydroepiandrosterone sulphate to androstenediol sulphate without hydrolysis. The enzyme in rat blood which was similar to that in the brain was also partially characterized. The blood enzyme had a pH optimum at 6–5, was nearly exclusively present in erythrocytes, was also NADPH2-dependent, and had an apparent Km of 2·7 × 10?4m . The developmental pattern of the blood enzyme specific activity was similar to that of the rat brain enzyme. Upon haemolysis, most activity was recovered in the haemolysate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号