首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 42 毫秒
1.
A novel in situ electrochemical surface plasmon resonance (EC-SPR) immunosensor is presented in this paper. The EC-SPR measurement can be used to in situ monitor the polymer formation, probe immobilization, antigen-antibody interaction and protein immunosensing process. A sandwich immunosensor based on permeable polypyrrole propylic acid (PPA) film is constructed using mouse IgG as a model analyte. The results show that the introduction of capture antibody conjugated enzyme not only enhances the current responses but also increases the SPR angle shift. The calibration curves of electrochemical (EC) and surface plasmon resonance (SPR) measurement exhibit a similar dependence on the bulk concentration of antigen. An approximate linear relationship can be obtained by plotting the data in semi-logarithmic reference frame. Compared with SPR, EC shows higher sensitivity with prolonged time. The in situ EC-SPR immunosensor described herein could have important potentials for diagnostics and medicine applications.  相似文献   

2.
DNA deposition on carbon electrodes under controlled dc potentials   总被引:4,自引:0,他引:4  
The native calf-thymus DNA molecule fully dispersed in solution was deposited onto highly oriented pyrolytic graphite, carbon fiber column and disk electrodes under controlled dc potentials. X-ray photoelectron spectroscopy, atomic force microscopy and electrochemical investigations indicated that network structures of DNA could be formed on various carbon electrode surfaces resulting in significant surface enlargement. The conformation, conductivity and stability of the deposited DNA layer largely depended on the concentration of the DNA deposition solution, the applied dc potential and the mode of electric field. The optimal condition for deposition of the DNA on carbon fiber disk electrode was determined as a deposition potential of 1.8 +/- 0.3 V versus 50 mM NaCl-Ag/AgCl and a deposition DNA solution of 0.1 mg ml(-1). Under this condition, the DNA was covalently bonded on the electrode surface forming a three-dimensional modified layer, generating a 500-fold enlarged effective electrode surface area and similarly enlarged current sensitivity for redox species, such as Co(phen)3(3+). A possible mechanism for the formation of DNA networks is proposed.  相似文献   

3.
The demand for efficient production methods of plasmid DNA (pDNA) has increased vastly in response to rapid advances in the use of pDNA in gene therapy and in vaccines since the advantageous safety concerns associated with non-viral over viral vectors.A prerequisite for the success of plasmid-based therapies is the development of cost-effective and generic production processes of pDNA. However, to satisfy strict regulatory guidelines, the material must be available as highly purified, homogeneous preparations of supercoiled circular covalently closed (ccc) pDNA. Large-scale production of pDNA for therapeutic use is a relatively new field in bioprocessing. The shift from small-scale plasmid production for cell transfection to large-scale production sets new constraints on the bacterial fermentation, processing of bacterial lysate and final purification and formulation of the plasmid DNA. The choice of bacterial strain used for plasmid cultivation affects the plasmid yield, the proportion of different isoforms and the amount of endotoxins in the starting material. The choice of bacterial strain will be greatly influenced by the production and purification procedures of pDNA. Master and working cell banks need to be characterised and established. Alkaline lysis of the bacteria damages the pDNA, resulting in a reduced recovery of ccc pDNA and an increase in partially denaturated ccc pDNA and open circular (oc) forms. Shear stress in these processes needs to be tightly controlled, and buffer composition and pH need to be optimised. To obtain a homogeneous plasmid DNA preparation, different pDNA purification strategies aim at capturing ccc pDNA and eliminating the oc isoform. A highly purified final product corresponding to the stringent recommendations set forth by health and regulatory authorities can be achieved by (i). different chromatography techniques integrated with ultra/diafiltration to achieve optimal purification results; (ii). the formulation of the final pDNA product, that requires a detailed study of the plasmid structure; and (iii). the development of sensitive analytical methods to detect different impurities (proteins, RNA, chromosomal DNA, and endotoxins). We present here a revue of the whole process to obtain such a plasmid DNA, and report an example of RNAse-free purification of ccc pDNA that could be used for gene therapy.  相似文献   

4.
An effective means of facilitating DNA vaccine delivery to antigen presenting cells is through biodegradable microspheres. Microspheres offer distinct advantages over other delivery technologies by providing release of DNA vaccine in its bioactive form in a controlled fashion. In this study, biodegradable poly(D,L-lactide-co-glycolide) (PLGA) microspheres containing polyethylenimine (PEI) condensed plasmid DNA (pDNA) were prepared using a 40 kHz ultrasonic atomization system. Process synthesis parameters, which are important to the scale-up of microspheres that are suitable for nasal delivery (i.e., less than 20 microm), were studied. These parameters include polymer concentration; feed flowrate; volumetric ratio of polymer and pDNA-PEI (plasmid DNA-polyethylenimine) complexes; and nitrogen to phosphorous (N/P) ratio. PDNA encapsulation efficiencies were predominantly in the range 82-96%, and the mean sizes of the particle were between 6 and 15 microm. The ultrasonic synthesis method was shown to have excellent reproducibility. PEI affected morphology of the microspheres, as it induced the formation of porous particles that accelerate the release rate of pDNA. The PLGA microspheres displayed an in vitro release of pDNA of 95-99% within 30 days and demonstrated zero order release kinetics without an initial spike of pDNA. Agarose electrophoresis confirmed conservation of the supercoiled form of pDNA throughout the synthesis and in vitro release stages. It was concluded that ultrasonic atomization is an efficient technique to overcome the key obstacles in scaling-up the manufacture of encapsulated vaccine for clinical trials and ultimately, commercial applications.  相似文献   

5.
The stability, in vitro release, and in vitro cell transfection efficiency of plasmid DNA (pDNA) poly (D,L.-lactide-co-glycolide) (PLGA) microsphere formulations were investigated. PLGA microspheres containing free and polylysine (PLL)-complexed pDNA were prepared by a water-oil-water solvent extraction/evaporation technique. Encapsulation enhanced the retention of the supereoiled structure of pDNA as determined by gel electrophoresis. PLL complexation of pDNA prior to encapsulation increased both the stability of the supercoiled form and the encapsulation efficiency. Free pDNA was completely degraded after exposure to DNase while encapsulation protected the pDNA from enzymatic degradation. Rapid initial in vitro release of pDNA was obtained from microspheres containing free pDNA. while the release from microspheres containing PLL-complexed pDNA was sustained for more than 42 days. Bioactivity of encapsulated pDNA determined by in vitro cell transfection using Chinese hamster ovary cells (CHO) showed that the bioactivity of encapsulated pDNA was retained in both formulations but to a greater extent with PLL-complexed pDNA microspheres. These results demonstrated that PLGA microspheres could be used to formulate a controlledrelease delivery system for pDNA that can protect the pDNA from DNase degradation without loss of functional activity.  相似文献   

6.
In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties.  相似文献   

7.
目的:建立基于聚(乳酸-羟基乙酸)纳米粒(PLGA)载DNA的基因转染体系,比较用空白聚(乳酸-羟基乙酸)纳米粒(PLG-A-E)吸附质粒DNA和用分枝PEI修饰后的PLGA纳米粒(PLGA-BPEI)吸附质粒DNA优缺点。方法:用乳化蒸发法制备纳米粒,对纳米粒进行表征研究,包括包封率、Zeta电位、粒径大小、稳定性,用荧光显微镜观察它们对NIH3T3和HEK293细胞的转染效率,用MTT检测对它们细胞的毒性。结果:制备了两种基于PLGA的纳米粒,PLGA-E和PLGA-BPEI粒径大小为200-270nm,zeta电位为0-30mV,在血清和不同的pH值时两者均较稳定,转染效率PLGA-BPEI较PLGA-E高,且释放时间早,但前者较后者对细胞毒性大。结论:这两种基于PLGA纳米粒均能有效转染质粒DNA,它们存在不同的优缺点,应根据不同需要进行选择。  相似文献   

8.
Plasmid DNA (pDNA) is encapsulated into biocompatible microgels by an inverse microemulsion polymerization method. Plasmid DNA and doxorubicin are successfully released from pDNA microgels and their release profiles are characterized by appropriate release models. The co-delivery of genes and drugs from the microgels is evaluated as an enhancer of clinical treatment. Moreover, the release of the encapsulated pDNA is capable of transfection in vitro resulting in the expression of p53 protein. As a whole, a novel pDNA-based system is described that may find biomedical uses, especially in the cancer treatment through the combined action of chemotherapy and gene delivery approach.  相似文献   

9.
Electric potential control of DNA immobilization on gold electrode   总被引:5,自引:0,他引:5  
The assembly of synthetic, controllable molecules is one of the goals in nanotechnology. The primary objective of this contribution is to selectively immobilize DNA on gold via electric potential control. The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode. A new approach based on electric potential was firstly used to control DNA immobilization covalently onto the SAM with the activation of 1-ethyl-3(3-dimethyl-aminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) in low ionic strength solution. The influence of electric potential on DNA immobilization was investigated by means of cyclic voltammogram, A.C. impedance, auger electron spectrometer as well as atomic force microscope (AFM) on template-stripped gold surface. The result proves that controlled potential can affect the course of DNA immobilization. More negative potential can restrain the DNA immobilization, while the more positive potential can accelerate the DNA immobilization. It is of great significance for the control of DNA self-assembly and will find wide application in the fields of DNA-based devices.  相似文献   

10.
Reconstituted influenza virosomes (virus membrane envelopes) have been used previously to deliver pDNA (plasmid DNA) bound to their external surface to a variety of target cells. Although high transfection efficiencies can be obtained with these complexes in vitro, the virosome-associated DNA is readily accessible to nucleases and could therefore be prone to rapid degradation under in vivo conditions. In the present study, we show a new method for the production of DNA-virosomes resulting in complete protection of the DNA from nucleases. This method relies on the use of the short-chain phospholipid DCPC (dicaproylphosphatidylcholine) for solubilization of the viral membrane. The solubilized viral membrane components are mixed with pDNA and cationic lipid. Reconstitution of the viral envelopes and simultaneous encapsulation of pDNA is achieved by removal of the DCPC from the mixture through dialysis. Analysis by linear sucrose density-gradient centrifugation revealed that protein, phospholipid and pDNA physically associated to particles, which appeared as vesicles with spike proteins inserted in their membranes when analysed by electron microscopy. The DNA-virosomes retained the membrane fusion properties of the native influenza virus. The virosome-associated pDNA was completely protected from degradation by nucleases, providing evidence for the DNA being highly condensed and encapsulated in the lumen of the virosomes. DNA-virosomes, containing reporter gene constructs, transfected a variety of cell lines, with efficiencies approaching 90%. Transfection was completely dependent on the fusogenic properties of the viral spike protein haemagglutinin. Thus, DNA-virosomes prepared by the new procedure are highly efficient vehicles for DNA delivery, offering the advantage of complete DNA protection, which is especially important for future in vivo applications.  相似文献   

11.
Arginine chromatography was used to fully separate supercoiled and open circular plasmid DNA (pDNA) isoforms. The results show that the arginine matrix promotes multiple interactions with pDNA, including not only electrostatic and hydrophobic but also biorecognition of nucleotide bases by the arginine ligand. The strong interactions occurring with DNA backbone provide stability, conducting to high effectiveness of arginine support to bind pDNA at low ionic strength. The specific interaction of arginine with sc pDNA could be due to the ability of arginine matrix to be involved in complex interactions that are partly dependent on the conformation of the DNA molecule.  相似文献   

12.
13.
Nanoparticulate complexes of plasmid DNA (pDNA) with cationic liposomes/polymer, of approx 200 nm diameter, were encapsulated with a high degree of efficiency within calcium pectinate gel beads. Electron microscopy showed the DNA nanocomplexes to be evenly distributed throughout the gel matrix. Controlled release of pDNA-lipid nanocomplexes was achieved by the action of pectinase enzymes, whereas release of naked and polymer-complexed DNA was found to be more greatly influenced by the swelling behavior of the polysaccharide matrices in buffer alone. Physical degradation of pDNA within pectin beads was found to be accelerated during bead drying, most probably as a result of shear forces generated within the gel matrices by the evaporation of water. Plasmid complexation with cationic liposomes provided a greater degree of protection for the DNA during bead drying than complexation with cationic polymer, and was shown to successfully transfect cultured cells after release from the beads, via the action of pectinase. Observations concerning the physical stability of nanocomplexed pDNA, and its encapsulation within and release from pectin gel beads, are discussed with reference to the electrostatic interactions existing between the various components.  相似文献   

14.
Wu M  Yuan F 《PloS one》2011,6(6):e20923
Electric field mediated gene delivery or electrotransfection is a widely used method in various studies ranging from basic cell biology research to clinical gene therapy. Yet, mechanisms of electrotransfection are still controversial. To this end, we investigated the dependence of electrotransfection efficiency (eTE) on binding of plasmid DNA (pDNA) to plasma membrane and how treatment of cells with three endocytic inhibitors (chlorpromazine, genistein, dynasore) or silencing of dynamin expression with specific, small interfering RNA (siRNA) would affect the eTE. Our data demonstrated that the presence of divalent cations (Ca(2+) and Mg(2+)) in electrotransfection buffer enhanced pDNA adsorption to cell membrane and consequently, this enhanced adsorption led to an increase in eTE, up to a certain threshold concentration for each cation. Trypsin treatment of cells at 10 min post electrotransfection stripped off membrane-bound pDNA and resulted in a significant reduction in eTE, indicating that the time period for complete cellular uptake of pDNA (between 10 and 40 min) far exceeded the lifetime of electric field-induced transient pores (~10 msec) in the cell membrane. Furthermore, treatment of cells with the siRNA and all three pharmacological inhibitors yielded substantial and statistically significant reductions in the eTE. These findings suggest that electrotransfection depends on two mechanisms: (i) binding of pDNA to cell membrane and (ii) endocytosis of membrane-bound pDNA.  相似文献   

15.
Hong J  Kim BS  Char K  Hammond PT 《Biomacromolecules》2011,12(8):2975-2981
Recent research has highlighted degradable multilayer films that enable the programmed release of different therapeutics. Multilayers constructed by the layer-by-layer (LbL) deposition that can undergo disassembly have been demonstrated to be of considerable interest, particularly for biomedical surface coatings due to their versatility and mild aqueous processing conditions, enabling the inclusion of biologic drugs with high activity. In this study, we examine the controlled release of a protein using a different mechanism for film disassembly, the gradual dissociation of film interactions under release conditions. Poly(β-amino ester)s and poly(L-lysine) (PLL) were used as the positively charged multilayer components coassembled with a model negatively charged antigen protein, ovalbumin (Ova). The release of the protein from these multilayer films is dominated by the slow shift in the charge of components under physiological pH conditions rather than by hydrolytic degradative release. The time scale of release can be varied over almost 2 orders of magnitude by varying the ratio of the two polyamines in the deposition solution. The highly versatile and tunable properties of these films form a basis for designing controlled and sequential delivery of drug coatings using a variety of polyions.  相似文献   

16.
We describe the direct electrochemical detection of DNA methylation in relatively long sequences by using a nanocarbon film electrode. The film was formed by employing the electron cyclotron resonance sputtering method and had a nanocrystalline sp2 and sp3 mixed bond structure. Our methylation detection technique measures the differences between the oxidation currents of both 5-methylcytosine and cytosine without a bisulfite reaction or labeling. This was possible because this film electrode has a wide potential window while maintaining the high electrode activity needed to quantitatively detect both bases by direct oxidation. By optimizing the electrode surface conditions using electrochemical pretreatment, we used this film to quantitatively detect single cytosine methylation regardless of the methylation position in the sequence including retinoblastoma gene fragments (∼24mers). This was probably due to the high stability of this film electrode, which we achieved by controlling the surface hydrophilicity to suppress the fouling, and by maintaining electrode activity against all the bases. The pH optimization of the oligonucleotide measurements was also useful for distinguishing both bases separately. Under the optimized conditions, this film electrode allowed us to realize the quantitative detection of DNA methylation ratios solely by measuring methylated 5′-cytosine-phosphoguanosine (CpG) repetition oligonucleotides (60mers) with different methylation ratios.  相似文献   

17.
A novel ultrathin enzymatically degradable multilayered film using DNA as building blocks was fabricated by the layer-by-layer (LbL) technique. The UV-vis spectrometry and AFM experiments showed that the buildup of DNA and poly-L-lysine (PLL) was a kind of "exponentially growing films". The dye adsorption experiment suggested that the DNA molecules in the multilayered films were effectively protected by PLL. The films were further cross-linked by glutaraldehyde (GA). The cross-linking density of the films was modulated through the simple controlling of the time of the GA incubation process. An in vitro enzymatic degradation was carried out to investigate the DNA release profiles. The UV-vis spectrometry and fluorescence measurements indicated that the DNA release profiles were accordingly changed with the cross-linking density of the films. The nanoscale, easily processed enzymatically biodegradable PLL/DNA film with the ability to precisely control DNA release profiles may serve as a novel DNA delivery system, which may have great potential for gene therapy applications in implantable materials and biomedical devices.  相似文献   

18.
A novel protocol for development of DNA electrochemical biosensor based on gold nanoparticles (AuNPs) modified glassy carbon electrode (GCE) was proposed, which was carried out by the self-assembly of AuNPs on the mercaptophenyl film (MPF) via simple electrografting of in situ generated mercaptophenyl diazonium cations. The resulting MPF was covalently immobilized on GCE surface via C-C bond with high stability, which was desirable in fabrication of excellent performance biosensors. Probe DNA was self-assembled on AuNPs through the well-known Au-thiol binding. The recognition of fabricated DNA electrochemical biosensor toward complementary single-stranded DNA was determined by differential pulse voltammetry with the use of Co(phen)(3)(3+) as the electrochemical indicator. Taking advantage of amplification effects of AuNPs and stability of MPF, the developed biosensor could detect target DNA with the detection limit of 7.2×10(-11) M, which also exhibits good selectivity, stability and regeneration ability for DNA detection.  相似文献   

19.
DNA films are promising materials for diverse applications, including sensing, diagnostics, and drug/gene delivery. However, the ability to tune the stability of DNA films remains a crucial aspect for such applications. Herein, we examine the role of oligonucleotide length on the formation, and salt and thermal stability, of DNA multilayer films using oligonucleotides of homopolymeric diblocks (polyAG and polyTC), with each block (A, G, T, or C) ranging from 5 to 30 bases (10-, 20-, 30-, 40-, and 60-mer). Using a combination of quartz crystal microgravimetry, dual polarization interferometry, and flow cytometry, we demonstrate that at least 10 bases per hybridizing block in the DNA diblocks (that is, 20-mer) are required for successful hybridization and, hence, DNA multilayer film formation. Films assembled using longer oligonucleotide blocks were more stable in low salt conditions, with the DNA multilayer films assembled from the 60-mer oligonucleotides remaining intact in solutions of about 25 mM NaCl. A systematic increase in film melting temperature ( T m) was observed for the DNA multilayer films (assembled on colloids) with increasing oligonucleotide length, ranging from 38.5 degrees C for the 20-mer films to 53 degrees C for the 60-mer films. Further, an alternating trend in T m of the DNA multilayer films was observed with layer number (AG or TC); DNA multilayer films terminated with an AG layer exhibited a higher T m (44-49 degrees C) than films with an outermost TC layer (ca. 38 degrees C), suggesting a rearrangement of the film structure upon hybridization of the outermost layer. This work shows that the stability of DNA multilayer films can be tuned by varying the length of the oligonucleotide building blocks, thus providing a versatile means to tailor the salt and thermal stability of DNA films, which is necessary for the application of such films.  相似文献   

20.
The aim of this study is to prepare supermacroporous pseudospecific cryogel which can be used for the purification of plasmid DNA (pDNA) from bacterial lysate. N-methacryloyl-(l)-histidine methyl ester (MAH) was chosen as the pseudospecific ligand and/or comonomer. Poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-histidine methyl ester) [PHEMAH] cryogel was produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Compared with the PHEMA cryogel (50 μg/g polymer), the pDNA adsorption capacity of the PHEMAH cryogel (13,350 μg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The amount of pDNA bound onto the PHEMAH cryogel disks first increased and then reached a saturation value (i.e., 13,350μg/g) at around 300 μg/ml pDNA concentration. pDNA adsorption amount decreased from 1137 μg/g to 160 μg/g with the increasing NaCl concentration. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 90%. The PHEMAH cryogel could be used 3 times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH cryogel disks promise high selectivity for pDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号