首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Growing evidence has revealed that long noncoding RNAs (lncRNAs) have an important impact on tumorigenesis and tumor progression via a mechanism involving competing endogenous RNAs (ceRNAs). However, their use in predicting the survival of a patient with hepatocellular carcinoma (HCC) remains unclear. The aim of this study was to develop a novel lncRNA expression–based risk score system to accurately predict the survival of patients with HCC. In our study, using expression profiles downloaded from The Cancer Genome Atlas database, the differentially expressed messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) were explored in patients with HCC and normal liver tissues, and then a ceRNA network constructed. A risk score system was established between lncRNA expression of the ceRNA network and overall survival (OS) or recurrence-free survival (RFS); it was further analyzed for associations with the clinical features of patients with HCC. In HCC, 473 differentially expressed lncRNAs, 63 differentially expressed miRNAs, and 1417 differentially expressed mRNAs were detected. The ceRNA network comprised 41 lncRNA nodes, 12 miRNA nodes, 24 mRNA nodes, and 172 edges. The lncRNA expression–based risk score system for OS was constructed based on six lncRNAs (MYLK-AS1, AL359878.1, PART1, TSPEAR-AS1, C10orf91, and LINC00501), while the risk score system for RFS was based on four lncRNAs (WARS2-IT1, AL359878.1, AL357060.1, and PART1). Univariate and multivariate Cox analyses showed the risk score systems for OS or RFS were significant independent factors adjusted for clinical factors. Receiver operating characteristic curve analysis showed the area under the curve for the risk score system was 0.704 for OS, and 0.71 for RFS. Our result revealed a lncRNA expression–based risk score system for OS or RFS can effectively predict the survival of patients with HCC and aid in good clinical decision-making.  相似文献   

3.
Lung adenocarcinoma is the most common subtype of non-small-cell lung cancer affecting people all over the globe. Recent studies have indicated that long non-coding RNAs (lncRNAs) possess the ability to regulate gene expression. Initially, we uncovered increased LINC00355 expressions in lung adenocarcinoma tissues and cells. Functionally, our findings demonstrated that LINC00355 silencing suppressed the proliferation in vitro and in vivo. In addition, we found that LINC00355 negatively regulated miR-195 in lung adenocarcinoma cells. Simultaneously, silencing LINC00355 by shRNA resulted in suppressed proliferation, colony formation and promoted cell cycle arrest and apoptosis via miR-195. Moreover, silencing LINC00355 by shRNA inhibited the cyclin E1 (CCNE1) gene expression via miR-195 in lung adenocarcinoma cells. Collectively, this study demonstrates the novel lncRNA LINC00355 in regulatory network of CCNE1 via miR-195 in lung adenocarcinoma, highlighting LINC00355 as a new target for the treatment of lung adenocarcinoma.  相似文献   

4.
Colorectal cancer (CRC) is one of the leading causes of cancer‐associated death globally. Long non‐coding RNAs (lncRNAs) have been identified as micro RNA (miRNA) sponges in a competing endogenous RNA (ceRNA) network and are involved in the regulation of mRNA expression. This study aims to construct a lncRNA‐associated ceRNA network and investigate the prognostic biomarkers in CRC. A total of 38 differentially expressed (DE) lncRNAs, 23 DEmiRNAs and 27 DEmRNAs were identified by analysing the expression profiles of CRC obtained from The Cancer Genome Atlas (TCGA). These RNAs were chosen to develop a ceRNA regulatory network of CRC, which comprised 125 edges. Survival analysis showed that four lncRNAs, six miRNAs and five mRNAs were significantly associated with overall survival. A potential regulatory axis of ADAMTS9‐AS2/miR‐32/PHLPP2 was identified from the network. Experimental validation was performed using clinical samples by quantitative real‐time PCR (qRT‐PCR), which showed that expression of the genes in the axis was associated with clinicopathological features and the correlation among them perfectly conformed to the ‘ceRNA theory’. Overexpression of ADAMTS9‐AS2 in colon cancer cell lines significantly inhibited the miR‐32 expression and promoted PHLPP2 expression, while ADAMTS9‐AS2 knockdown had the opposite effects. The constructed novel ceRNA network may provide a comprehensive understanding of the mechanisms of CRC carcinogenesis. The ADAMTS9‐AS2/miR‐32/PHLPP2 regulatory axis may serve as a potential therapeutic target for CRC.  相似文献   

5.
The aberrant expression of long noncoding RNAs (lncRNAs) has drawn increasing attention in the field of hepatocellular carcinoma (HCC) biology. In the present study, we obtained the expression profiles of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in 371 HCC tissues and 50 normal tissues from The Cancer Genome Atlas (TCGA) and identified hepatocarcinogenesis-specific differentially expressed genes (DEGs, log fold change ≥ 2, FDR < 0.01), including 753 lncRNAs, 97 miRNAs, and 1,535 mRNAs. Because the specific functions of lncRNAs are closely related to their intracellular localizations and because the cytoplasm is the main location for competitive endogenous RNA (ceRNA) action, we analyzed not only the interactions among these DEGs but also the distributions of lncRNAs (cytoplasmic, nuclear or both). Then, an HCC-associated deregulated ceRNA network consisting of 37 lncRNAs, 10 miRNAs, and 26 mRNAs was constructed after excluding those lncRNAs located only in the nucleus. Survival analysis of this network demonstrated that 15 lncRNAs, 3 miRNAs, and 16 mRNAs were significantly correlated with the overall survival of HCC patients (p < 0.01). Through multivariate Cox regression and lasso analysis, a risk score system based on 13 lncRNAs was constructed, which showed good discrimination and predictive ability for HCC patient survival time. This ceRNA network-construction approach, based on lncRNA distribution, not only narrowed the scope of target lncRNAs but also provided specific candidate molecular biomarkers for evaluating the prognosis of HCC, which will help expand our understanding of the ceRNA mechanisms involved in the early development of HCC.  相似文献   

6.
Long noncoding RNAs (lncRNAs) regulate gene expression by acting with microRNAs (miRNAs). However, the roles of cancer specific lncRNA and its related competitive endogenous RNAs (ceRNA) network in hepatocellular cell carcinoma (HCC) are not fully understood. The lncRNA profiles in 372 HCC patients, including 372 tumor and 48 adjacent non-tumor liver tissues, from The Cancer Genome Atlas (TCGA) and NCBI GEO omnibus (GSE65485) were analyzed. Cancer specific lncRNAs (or HCC related lncRNAs) were identified and correlated with clinical features. Based on bioinformatics generated from miRcode, starBase, and miRTarBase, we constructed an lncRNA-miRNA-mRNA network (ceRNA network) in HCC. We found 177 cancer specific lncRNAs in HCC (fold change ≥ 1.5, P < 0.01), 41 of them were also discriminatively expressed with gender, race, tumor grade, AJCC tumor stage, and AJCC TNM staging system. Six lncRNAs (CECR7, LINC00346, MAPKAPK5-AS1, LOC338651, FLJ90757, and LOC283663) were found to be significantly associated with overall survival (OS, log-rank P < 0.05). Collectively, our results showed the lncRNA expression patterns and a complex ceRNA network in HCC, and identified a complex cancer specific ceRNA network, which includes 14 lncRNAs and 17 miRNAs in HCC.  相似文献   

7.
Breast cancer is a malignancy harmful to physical and mental health in women, with quite high mortality. Copy number variations (CNVs) are vital factors affecting the progression of breast cancer. Detecting CNVs in breast cancer to predict the prognosis of patients has become a promising approach to accurate treatment in recent years. The differential analysis was performed on CNVs of long noncoding RNAs (lncRNAs) as well as the expression of lncRNAs, microRNAs (miRNAs) and mRNAs in normal tissue and breast tumor tissue based on The Cancer Genome Atlas (TCGA) database. The CNV-driven lncRNAs were identified by the Kruskal–Wallis test. Meanwhile, a competitive endogenous RNA (ceRNA) network regulated by CNV-driven lncRNA was constructed. As the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed, the mRNAs in the dysregulated ceRNA network were mainly enriched in the biological functions and signaling pathways, including the Focal Adhesion-PI3K-Akt–mTOR-signaling pathway, the neuronal system, metapathway biotransformation Phase I and II and blood circulation, etc. The relationship between the CNVs of five lncRNAs and their gene expression in the ceRNA network was analyzed via a chi-square test, which confirmed that except for LINC00243, the expression of four lncRNAs was notably correlated with the CNVs. The survival analysis revealed that only the copy number gain of LINC00536 was evidently related to the poor prognosis of patients. The CIBERSORT algorithm showed that five lncRNAs were correlated with the abundance of immune cell infiltration and immune checkpoints. In a word, by analyzing CNV-driven lncRNAs and the ceRNA network regulated by these lncRNAs, this study explored the mechanism of breast cancer and provided novel insights into new biomarkers.  相似文献   

8.
子宫内膜癌(uterine corpus endometrial carcinoma, UCEC)是危害女性健康的癌症之一,但其发生发展机制尚不完全清楚。基因的异常表达在细胞癌变过程中发挥着重要的作用。本研究利用生物信息学方法对UCEC中异常表达的基因进行网络调控分析,为UCEC的机制研究及预后治疗提供理论依据。首先,利用"limma"包筛选得到差异表达的RNA分子;接着,利用R软件中的"GDCRNATools"包构建lncRNA-miRNA-mRNAceRNA网络;最后,利用DAVID(TheDatabasefor Annotation,Visualization and Integrated Discovery)、R软件中的"survival"包、MCODE(Molecular COmplex Detection)插件、StarBase数据库等对ceRNA网络中的RNA分子进行综合分析。结果显示,在UCEC中,我们鉴定了1 319个mRNA、68个lncRNA及100个miRNA为差异表达的RNA分子。同时,利用这些UCEC中的差异表达RNA分子,成功构建了ceRNA网络,结果表明,HCG11、LINC00958、LINC00667、MAGI2-AS3和AC093010.3可能具有ceRNA的功能。通过进一步对该网络成员的分析,结果发现,该网络中的mRNA分子聚集于内皮细胞增殖、细胞骨架和锌离子结合负调控等生物学过程中。生存分析显示,hsa-miR-449a、LINC00958、PKIA和DPYSL2等19个差异表达的RNA分子与UCEC患者预后显著相关。最后,利用MCODE插件对ceRNA网络进行筛选,共获得一个子网络,其成员分别是LINC00667、hsa-miR-449a、hsa-miR-34a-5p和RECK。该研究结果提示,在UCEC的发生发展中存在lncRNA、miRNA和mRNA的差异表达,并且这些RNA分子之间存在ceRNA网络模式的调控,其中一些关键分子与患者的预后相关,这将为进一步研究与理解UCEC的发病机制及预后提供理论依据。  相似文献   

9.
Long non‐coding RNAs (lncRNAs), which competitively bind miRNAs to regulate target mRNA expression in the competing endogenous RNAs (ceRNAs) network, have attracted increasing attention in breast cancer research. We aim to find more effective therapeutic targets and prognostic markers for breast cancer. LncRNA, mRNA and miRNA expression profiles of breast cancer were downloaded from TCGA database. We screened the top 5000 lncRNAs, top 5000 mRNAs and all miRNAs to perform weighted gene co‐expression network analysis. The correlation between modules and clinical information of breast cancer was identified by Pearson's correlation coefficient. Based on the most relevant modules, we constructed a ceRNA network of breast cancer. Additionally, the standard Kaplan‐Meier univariate curve analysis was adopted to identify the prognosis of lncRNAs. Ultimately, a total of 23 and 5 modules were generated in the lncRNAs/mRNAs and miRNAs co‐expression network, respectively. According to the Green module of lncRNAs/mRNAs and Blue module of miRNAs, our constructed ceRNA network consisted of 52 lncRNAs, 17miRNAs and 79 mRNAs. Through survival analysis, 5 lncRNAs (AL117190.1, COL4A2‐AS1, LINC00184, MEG3 and MIR22HG) were identified as crucial prognostic factors for patients with breast cancer. Taken together, we have identified five novel lncRNAs related to prognosis of breast cancer. Our study has contributed to the deeper understanding of the molecular mechanism of breast cancer and provided novel insights into the use of breast cancer drugs and prognosis.  相似文献   

10.
Cholangiocarcinoma (CCA) is the second widespread liver tumor with relatively poor survival. Increasing evidence in recent studies showed long noncoding RNAs (lncRNAs) exert a crucial impact on the development and progression of CCA based on the mechanism of competing endogenous RNAs (ceRNAs). However, functional roles and regulatory mechanisms of lncRNA-regulated ceRNA in CCA, are only partially understood. The expression profile of messenger RNAs (mRNAs), lncRNAs, and microRNAs (miRNAs) downloaded from The Cancer Genome Atlas were comprehensively investigated. Differential expression of these three types of RNA between CCA and corresponding precancerous tissues were screened out for further analysis. On the basis of interactive information generated from miRDB, miRTarBase, TargetScan, and miRcode public databases, we then constructed an mRNA-miRNA-lncRNA regulatory network. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were conducted to identify the biological function of the ceRNA network involved in CCA. As a result, 2883 mRNAs, 136 miRNAs, and 993 lncRNAs were screened out as differentially expressed RNAs in CCA. In addition, a ceRNA network in CCA was constructed, composing of 50 up and 27 downregulated lncRNAs, 14 up and 7 downregulated miRNAs, 29 up and 25 downregulated mRNAs. Finally, gene set enrichment and pathway analysis indicated our CCA-specific ceRNA network was related with cancer-related pathway and molecular function. In conclusion, our research identified a novel lncRNA-related ceRNA network in CCA, which might act as a potential therapeutic target for patients with CCA.  相似文献   

11.
Colorectal cancer (CRC) is one of the most frequently diagnosed digestive system cancer. The aim of the present study was to investigate the interactions among messenger RNAs (mRNAs), microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) in CRC to reveal the mechanisms of CRC. Differentially expressed genes (DEGs) were identified from public gene expression data sets. One thousand eighty-one common dysregulated mRNAs in two data sets were identified. Gene function analysis and protein-protein interaction network analysis indicated that these DEGs might play important roles in CRC. LINC00365 was selected through coding- noncoding network analysis and its expression was validated upregulated in 22 paired clinical samples and four CRC cell lines. A competing endogenous RNA network composed of 70 miRNAs, nine mRNAs, and LINC00365 was constructed. Eight of nine mRNAs were validated upregulated in The Cancer Genome Atlas data set. Our results suggested that LINC00365 was an oncogene in CRC and it could regulate the expression of several mRNAs through sponging miRNAs.  相似文献   

12.
Long noncoding RNAs (lncRNAs) serve as competitive endogenous RNAs (ceRNAs) that play significant regulatory roles in the pathogenesis of tumors. However, the role of lncRNAs, especially the lncRNA-related ceRNA regulatory network, in glioblastoma (GBM) has not been fully elucidated. The goal of the current study was to construct lncRNA-microRNA-mRNA-related ceRNA networks for further investigation of their mechanism of action in GBM. We downloaded data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases and identified differential lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) associated with GBM. A ceRNA network was constructed and analyzed to examine the relationship between lncRNAs and patients’ overall survival. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGGs) were used to analyze the related mRNAs to indirectly explain the mechanism of action of lncRNAs. The potential effective drugs for the treatment of GBM were identified using the connectivity map (CMap). After integrated analysis, we obtained a total of 210 differentially expressed lncRNAs, 90 differentially expressed miRNAs, and 2508 differentially expressed mRNAs (DEmRNAs) from the TCGA and GEO databases. Using these differential genes, we constructed a lncRNA-associated ceRNA network. Six lncRNAs in the ceRNA network were associated with the overall survival of patients with GBM. Through KEGG analysis, it was found that the DEmRNAs involved in the network are related to cancer-associated pathways, for instance, mitogen-activated protein kinase and Ras signaling pathways. CMap analysis revealed four small-molecule compounds that could be used as drugs for the treatment of GBM. In this study, a multi-database joint analysis was used to construct a lncRNA-related ceRNA network to help identify the regulatory functions of lncRNAs in the pathogenesis of GBM.  相似文献   

13.
14.
The present study aimed to investigate the long noncoding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in the progression of gallbladder cancer and explore the potential physiopathologic mechanisms of gallbladder cancer in terms of competing endogenous RNAs (ceRNAs). The original lncRNA and mRNA expression profile data (nine gallbladder cancer tissues samples and nine normal gallbladder samples) in GSE76633 was downloaded from the Gene Expression Omnibus database. Differentially expressed mRNAs and lncRNAs between gallbladder cancer tissue and normal control were selected and the pathways in which they are involved were analyzed using bioinformatics analyses. MicroRNAs (miRNAs) were also predicted based on the differentially expressed mRNAs. Finally, the co-expression relation between lncRNA and mRNA was analyzed and the ceRNA network was constructed by combining the lncRNA-miRNA, miRNA-mRNA, and lncRNA-mRNA pairs. Overall, 373 significantly differentially expressed mRNAs and 47 lncRNAs were identified between cancer and normal tissue samples. The upregulated genes were significantly enriched in the extracellular matrix (ECM)-receptor interaction pathway, while the downregulated genes were involved in the complement and coagulation cascades. Altogether, 128 co-expression relations between lncRNA and mRNA were obtained. In addition, 196 miRNA-mRNA regulatory relations and 145 miRNA-lncRNA relation pairs were predicted. Finally, the lncRNA-miRNA-gene ceRNA network was constructed by combining the three types of relation pairs, such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6. mRNAs and lncRNAs may be involved in gallbladder cancer progression via ECM-receptor interaction pathways and the complement and coagulation cascades. Moreover, ceRNAs such as XLOC_011309-miR-548c-3p-SPOCK1 and XLOC_012588-miR-765-CEACAM6 can also be implicated in the pathogenesis of gallbladder cancer.  相似文献   

15.
The aim of our study is to construct the competing endogenous RNA (ceRNA) network of head and neck squamous cell carcinoma (HNSCC) and identify key long noncoding RNAs (lncRNAs) to predict prognosis. The genes whose expression were differentially in HNSCC and normal tissues were explored by the Cancer Genome Atlas database. The ceRNA network was constructed by the Cytoscape software. The lncRNAs which could estimate the overall survival were explored from Cox proportional hazards regression. There are 1997, 589, and 82 mRNAs, lncRNAs, and miRNAs whose expression were statistically significant different, respectively. Then, the network between miRNA and mRNA or miRNA and lncRNA was constructed by miRcode, miRDB, TargetScan, and miRanda. Five mRNAs, 10 lncRNAs, and 3 miRNAs were associated with overall survival. Then, 11-lncRNAs were found to be prognostic factors. Therefore, our research analyzed the potential signature of novel 11-lncRNA as candidate prognostic biomarker from the ceRNA network for patients with HNSCC.  相似文献   

16.
17.
Previous studies have shown that human papillomavirus (HPV)-negative patients with head and neck squamous cell cancer (HNSCC) suffer from an unsatisfactory prognosis. Long noncoding RNAs (lncRNAs) have been verified to participate in many biological processes, including regulating gene expression as competing endogenous RNAs (ceRNAs), while few studies focused the ceRNA network regulation mechanism in patients with HPV-negative HNSCC tumor. Meanwhile, the immune microenvironment may be critical in the development and prognosis of HPV-negative tumors. Our study aimed to further investigate the pathogenesis and potential biomarkers for the diagnosis, therapy and prognosis of HPV-negative HNSCC through a ceRNA network. Comprehensively analyzing the sequencing data of lncRNAs, microRNAs (miRNAs), and messenger RNAs (mRNAs) in The Cancer Genome Atlas HNSCC dataset, we constructed a differentially expressed ceRNA network containing 131 lncRNAs, 35 miRNAs and 162 mRNAs. Then, survival analysis in the network was cited to explore the prognostic biomarkers. Eight mRNAs, nine lncRNAs, and one miRNA were identified to be associated with prognosis. Neuropilin (NRP) binding function, retinoid X receptor (RXR) binding, and the vascular endothelial growth factor (VEGF) signaling pathway were associated with the enrichment analysis, and they also related to the immune microenvironment. Combined with the analysis of the immune microenvironment differences, we obtained new targeted therapies using an RXR agonist, or a combination of the VEGF monoclonal antibody and an NRP antagonist, which may provide a promising future for HPV-negative HNSCC patients.  相似文献   

18.
Gastric cancer (GC) is a lethal disease, and among its variety of etiological factors, Helicobacter pylori (H. pylori) infection is the strongest risk factor. However, the genetic and molecular mechanisms underlying H. pylori-related GC need further elucidation. We investigated the competing endogenous RNA (ceRNA) network differences between H. pylori (+) and H. pylori (−) GC. The long noncoding RNA (lncRNA), microRNA (miRNA), and messenger RNA (mRNA) expression data from 32 adjacent noncancerous samples and 18 H. pylori (+) and 141 H. pylori (−) stomach adenocarcinoma samples were downloaded from the TCGA database. After construction of lncRNA–miRNA–mRNA ceRNA networks of H. pylori (+) and H. pylori (−) GC, Panther and Kobas databases were used to analyze the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Finally, survival analysis was used to discover the key genes. In H. pylori (+) GC, we identified a total of 1,419 lncRNAs, 82 miRNAs, and 2,501 mRNAs with differentially expressed profiles. In H. pylori (−) GC, 2,225 lncRNAs, 130 miRNAs, and 3,146 mRNAs were differentially expressed. Furthermore, three unique pathways (cytokine–cytokine receptor interaction, HIF-1 signaling pathway, and Wnt signaling pathway) were enriched in H. pylori (+) GC. According to the overall survival analysis, three lncRNAs (AP002478.1, LINC00111, and LINC00313) and two mRNAs (MYB and COL1A1) functioned as prognostic biomarkers for patients with H. pylori (+) GC. In conclusion, our study has identified the differences in ceRNA regulatory networks between H. pylori (+) and H. pylori (−) GC and provides a rich candidate reservoir for future studies.  相似文献   

19.
20.
More and more evidence indicate long noncoding RNAs (lncRNAs) as competing endogenous RNAs (ceRNAs) to indirectly regulate messenger RNAs (mRNAs) by acting as microRNA (miRNA) sponges, which represents a novel layer of gene regulation that plays a critical role in the development of cancers. However, functional roles and regulatory mechanisms of lncRNA-mediated ceRNAs network in osteosarcoma are still largely unknown. Here, we comprehensively compared the expression profiles of mRNAs, lncRNAs, and miRNAs between osteosarcoma and normal samples from the Gene Expression Omnibus (GEO) to elaborate related latent mechanisms. Two lncRNAs, ie, LINC01560 and MEG3, were identified to be aberrantly expressed. Importantly, MEG3 was considered as a promising diagnostic biomarker and therapeutic target for patients with osteosarcoma according to the Kaplan-Meier analysis of another independent osteosarcoma data set from the Cancer Genome Atlas (P = 0.05). Eventually, we successfully established a dysregulated lncRNA-related ceRNA network, including one osteosarcoma-specific lncRNA, three miRNAs and four mRNAs. In conclusion, this study should be beneficial for improving our understanding of the lncRNA-mediated ceRNA regulatory mechanisms in the pathogenesis of osteosarcoma and providing it with novel candidate diagnostic and therapeutic biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号